Abstract
Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species’ responses to global change.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2013).
Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).
McCulloch, G. A. & Waters, J. M. Rapid adaptation in a fast-changing world: emerging insights from insect genomics. Glob. Change Biol. 29, 943–954 (2023).
Blows, M. W. & Hoffmann, A. A. A reassessment of genetic limits to evolutionary change. Ecology 86, 1371–1384 (2005).
Strauss, S. Ecological and evolutionary responses in complex communities: Implications for invasions and eco-evolutionary feedbacks.Oikos 123, 257–266 (2013).
Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).
Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).
Jones, J. A. & Driscoll, C. T. Long-term ecological research on ecosystem responses to climate change. BioScience 72, 814–826 (2022).
Weese, D. J., Heath, K. D., Dentinger, B. T. M. & Lau, J. A. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69, 631–642 (2015).
Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107–1120 (2019).
Schroeder, J., Nakagawa, S., Rees, M., Mannarelli, M.-E. & Burke, T. Reduced fitness in progeny from old parents in a natural population. Proc. Natl Acad. Sci. USA 112, 4021–4025 (2015).
Johnston, S. E., Bérénos, C., Slate, J. & Pemberton, J. M. Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovis aries). Genetics 203, 583–598 (2016).
Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17, e3000493 (2019).
Festa-Bianchet, M., Côté, S. D., Hamel, S. & Pelletier, F. Long-term studies of bighorn sheep and mountain goats reveal fitness costs of reproduction. J. Anim. Ecol. 88, 1118–1133 (2019).
Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).
Reinke, B. A., Miller, D. A. W. & Janzen, F. J. What have long-term field studies taught us about population dynamics? Annu. Rev. Ecol. Evol. Syst. 50, 261–278 (2019).
Benning, J. W., Faulkner, A. & Moeller, D. A. Rapid evolution during climate change: demographic and genetic constraints on adaptation to severe drought. Proc. R. Soc. B Biol. Sci. 290, 20230336 (2023).
Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 626, 1439–1462 (2018).
Dirnböck, T., Haase, P., Mirtl, M., Pauw, J. & Templer, P. H. Contemporary International Long-Term Ecological Research (ILTER)—from biogeosciences to socio-ecology and biodiversity research. Reg. Environ. Change 19, 309–311 (2019).
Muelbert, J. H. et al. ILTER—the International Long-Term Ecological Research Network as a platform for global coastal and ocean observation.Front. Mar. Sci. 6, 527 (2019).
Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).
Gough, L. & Hobbie, S. E. Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103, 204–216 (2003).
Ladwig, L. M. et al. Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169, 177–185 (2012).
Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103, 1538–1546 (2015).
Mozdzer, T. J., McCormick, M. K., Slette, I. J., Blum, M. J. & Megonigal, J. P. Rapid evolution of a coastal marsh ecosystem engineer in response to global change. Sci. Total Environ. 853, 157846 (2022).
Magnoli, S. M. Rapid adaptation (or not) in restored plant populations. Evol. Appl. 13, 2030–2037 (2020).
Magnoli, S. M. & Lau, J. A. Novel plant–microbe interactions: rapid evolution of a legume–rhizobium mutualism in restored prairies. J. Ecol. 108, 1241–1249 (2020).
Vahsen, M. L. et al. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 379, 393–398 (2023).
Huxman, T. E., Winkler, D. E. & Mooney, K. A. A common garden super-experiment: an impossible dream to inspire possible synthesis. J. Ecol. 110, 997–1004 (2022).
Franks, S. J., Hamann, E. & Weis, A. E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl. 11, 17–28 (2017).
Avolio, M. L., Beaulieu, J. M. & Smith, M. D. Genetic diversity of a dominant C4 grass is altered with increased precipitation variability. Oecologia 171, 571–581 (2013).
Zhang, L. et al. QTL Ă— environment interactions underlie ionome divergence in switchgrass. G3 (Bethesda) 11, jkab144 (2021).
Lambert, M. R., Brans, K. I., Des Roches, S., Donihue, C. M. & Diamond, S. E. Adaptive evolution in cities: progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).
Franks, S. J., Kane, N. C., O’Hara, N. B., Tittes, S. & Rest, J. S. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol. Ecol. 25, 3622–3631 (2016).
Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA 116, 25179–25185 (2019).
Stewart, R. I. A. Mesocosm experiments as a tool for ecological climate-change research.Adv. Ecol. Res. 48, 71–181 (2013).
Zuk, M. & Travisano, M. Models on the runway: how do we make replicas of the world? Am. Nat. 192, 1–9 (2018).
Brunner, F. S., Deere, J. A., Egas, M., Eizaguirre, C. & Raeymaekers, J. A. M. The diversity of eco-evolutionary dynamics: comparing the feedbacks between ecology and evolution across scales. Funct. Ecol. 33, 7–12 (2019).
Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in plant–soil eco-evolutionary dynamics across a fertility gradient. Funct. Ecol. 33, 95–106 (2019).
Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A. & Tikhonov, M. Functional biology in its natural context: a search for emergent simplicity. eLife 10, e67646 (2021).
Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).
Silliman, B. R. & Zieman, J. C. Top-down control of Spartina alterniflora production by periwinkle grazing in a virginia salt marsh. Ecology 82, 2830–2845 (2001).
Peng, H.-B. et al. Efficient removal of Spartina alterniflora with low negative environmental impacts using imazapyr. Front. Mar. Sci. 9, 1054402 (2022).
Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).
Whitney, K. D. & Campbell, M. Evolutionary Monitoring for the SEV LTER Program at the Sevilleta National Wildlife Refuge, New Mexico, https://doi.org/10.6073/PASTA/21589D5DE09B364C128C1456AAFAC39B (Environmental Data Initiative, 2024).
Lustenhouwer, N., Wilschut, R. A., Williams, J. L., van der Putten, W. H. & Levine, J. M. Rapid evolution of phenology during range expansion with recent climate change. Glob. Change Biol. 24, e534–e544 (2018).
Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).
Meirmans, P. G., Liu, S. & van Tienderen, P. H. The analysis of polyploid genetic data. J. Hered. 109, 283–296 (2018).
Clark, L. V., Lipka, A. E. & Sacks, E. J. polyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 (Bethesda) 9, 663–673 (2019).
Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).
Sheldon, B. C., Kruuk, L. E. B. & Alberts, S. C. The expanding value of long-term studies of individuals in the wild. Nat. Ecol. Evol. 6, 1799–1801 (2022).
Long-term relationships. Nat. Ecol. Evol. 1, 1209–1210 (2017).
RamĂrez-Castañeda, V. et al. A set of principles and practical suggestions for equitable fieldwork in biology. Proc. Natl Acad. Sci. USA 119, e2122667119 (2022).
Blonder, B. W. Carrying the moral burden of safe fieldwork. Bull. Ecol. Soc. Am. 104, e02031 (2023).
Coon, J. J. et al. Best practices for LGBTQ+ inclusion during ecological fieldwork: considering safety, cis/heteronormativity and structural barriers. J. Appl. Ecol. 60, 393–399 (2023).
Kottler, E. J., Shanebeck, K. M. & Collinge, S. K. Allyship requires action. Front. Ecol. Environ. 21, 163 (2023).
Gaiser, E. E. et al. Long-term ecological research and evolving frameworks of disturbance ecology. BioScience 70, 141–156 (2020).
Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).
Collins, S. L. & Avolio, M. L. Integrating evolution into long-term ecological research. BioScience 72, 499 (2022).
Kuebbing, S. E. et al. Long-term research in ecology and evolution: a survey of challenges and opportunities. Ecol. Monogr. 88, 245–258 (2018).
Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).
Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. BioScience 62, 377–389 (2012).
Baker, N. J., Pilotto, F., Jourdan, J., Beudert, B. & Haase, P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total Environ. 758, 143685 (2021).
Germ, M., Remec-Rekar, Š. & Gaberščik, A. Weather conditions and chlorophyll concentrations determine long-term macrophyte community dynamics of Lake Bohinj (Slovenia). Reg. Environ. Change 19, 339–348 (2019).
Wilson, S. S., Furman, B. T., Hall, M. O. & Fourqurean, J. W. Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuaries Coasts 43, 1119–1132 (2020).
Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).
Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).
Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).
Acknowledgements
We thank R. Shaw for thoughtful feedback. This study was supported by the National Science Foundation Division of Environmental Biology (award number 2110351).
Author information
Authors and Affiliations
Contributions
J.M.C., A.M.H. and M.L.A. led the writing of the manuscript. All authors conceptualized the manuscript, contributed to writing and editing it and approved the submitted version.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Ellen Welti, Beth Reinke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1. Information on global LTERNs.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cocciardi, J.M., Hoffman, A.M., Alvarado-Serrano, D.F. et al. The value of long-term ecological research for evolutionary insights. Nat Ecol Evol 8, 1584–1592 (2024). https://doi.org/10.1038/s41559-024-02464-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-024-02464-y