Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The value of long-term ecological research for evolutionary insights

Abstract

Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change. For ecologists, we outline how long-term ecological experiments can be expanded for evolutionary inquiry, and for evolutionary biologists, we illustrate how observed long-term ecological patterns may motivate new evolutionary questions. We advocate for collaborative, multi-site investigations and discuss barriers to conducting evolutionary work at network sites. Ultimately, these networks offer valuable information and opportunities to improve predictions of species’ responses to global change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global LTERNs provide unique opportunities to study the complex evolutionary patterns that are revealed over longer timescales.
Fig. 2: Examples of published studies from global LTERNs and potential evolutionary inquiries.

Similar content being viewed by others

References

  1. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2013).

    Google Scholar 

  2. Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).

    CAS  PubMed  Google Scholar 

  3. Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  PubMed  Google Scholar 

  5. Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. McCulloch, G. A. & Waters, J. M. Rapid adaptation in a fast-changing world: emerging insights from insect genomics. Glob. Change Biol. 29, 943–954 (2023).

    CAS  Google Scholar 

  7. Blows, M. W. & Hoffmann, A. A. A reassessment of genetic limits to evolutionary change. Ecology 86, 1371–1384 (2005).

    Google Scholar 

  8. Strauss, S. Ecological and evolutionary responses in complex communities: Implications for invasions and eco-evolutionary feedbacks.Oikos 123, 257–266 (2013).

    Google Scholar 

  9. Hendry, A. P. A critique for eco-evolutionary dynamics. Funct. Ecol. 33, 84–94 (2019).

    Google Scholar 

  10. Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. BioScience 67, 271–281 (2017).

    Google Scholar 

  11. Jones, J. A. & Driscoll, C. T. Long-term ecological research on ecosystem responses to climate change. BioScience 72, 814–826 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Weese, D. J., Heath, K. D., Dentinger, B. T. M. & Lau, J. A. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69, 631–642 (2015).

    CAS  PubMed  Google Scholar 

  13. Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107–1120 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Schroeder, J., Nakagawa, S., Rees, M., Mannarelli, M.-E. & Burke, T. Reduced fitness in progeny from old parents in a natural population. Proc. Natl Acad. Sci. USA 112, 4021–4025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnston, S. E., Bérénos, C., Slate, J. & Pemberton, J. M. Conserved genetic architecture underlying individual recombination rate variation in a wild population of Soay sheep (Ovis aries). Genetics 203, 583–598 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bonnet, T. et al. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17, e3000493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Festa-Bianchet, M., Côté, S. D., Hamel, S. & Pelletier, F. Long-term studies of bighorn sheep and mountain goats reveal fitness costs of reproduction. J. Anim. Ecol. 88, 1118–1133 (2019).

    PubMed  Google Scholar 

  18. Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T. & Ozgul, A. Life history responses of meerkats to seasonal changes in extreme environments. Science 363, 631–635 (2019).

    CAS  PubMed  Google Scholar 

  19. Reinke, B. A., Miller, D. A. W. & Janzen, F. J. What have long-term field studies taught us about population dynamics? Annu. Rev. Ecol. Evol. Syst. 50, 261–278 (2019).

    Google Scholar 

  20. Benning, J. W., Faulkner, A. & Moeller, D. A. Rapid evolution during climate change: demographic and genetic constraints on adaptation to severe drought. Proc. R. Soc. B Biol. Sci. 290, 20230336 (2023).

    Google Scholar 

  21. Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total Environ. 626, 1439–1462 (2018).

    CAS  PubMed  Google Scholar 

  22. Dirnböck, T., Haase, P., Mirtl, M., Pauw, J. & Templer, P. H. Contemporary International Long-Term Ecological Research (ILTER)—from biogeosciences to socio-ecology and biodiversity research. Reg. Environ. Change 19, 309–311 (2019).

    Google Scholar 

  23. Muelbert, J. H. et al. ILTER—the International Long-Term Ecological Research Network as a platform for global coastal and ocean observation.Front. Mar. Sci. 6, 527 (2019).

    Google Scholar 

  24. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Google Scholar 

  25. Gough, L. & Hobbie, S. E. Responses of moist non-acidic arctic tundra to altered environment: productivity, biomass, and species richness. Oikos 103, 204–216 (2003).

    Google Scholar 

  26. Ladwig, L. M. et al. Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland. Oecologia 169, 177–185 (2012).

    PubMed  Google Scholar 

  27. Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103, 1538–1546 (2015).

    Google Scholar 

  28. Mozdzer, T. J., McCormick, M. K., Slette, I. J., Blum, M. J. & Megonigal, J. P. Rapid evolution of a coastal marsh ecosystem engineer in response to global change. Sci. Total Environ. 853, 157846 (2022).

    CAS  PubMed  Google Scholar 

  29. Magnoli, S. M. Rapid adaptation (or not) in restored plant populations. Evol. Appl. 13, 2030–2037 (2020).

    PubMed  PubMed Central  Google Scholar 

  30. Magnoli, S. M. & Lau, J. A. Novel plant–microbe interactions: rapid evolution of a legume–rhizobium mutualism in restored prairies. J. Ecol. 108, 1241–1249 (2020).

    Google Scholar 

  31. Vahsen, M. L. et al. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 379, 393–398 (2023).

    CAS  PubMed  Google Scholar 

  32. Huxman, T. E., Winkler, D. E. & Mooney, K. A. A common garden super-experiment: an impossible dream to inspire possible synthesis. J. Ecol. 110, 997–1004 (2022).

    Google Scholar 

  33. Franks, S. J., Hamann, E. & Weis, A. E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl. 11, 17–28 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Avolio, M. L., Beaulieu, J. M. & Smith, M. D. Genetic diversity of a dominant C4 grass is altered with increased precipitation variability. Oecologia 171, 571–581 (2013).

    PubMed  Google Scholar 

  35. Zhang, L. et al. QTL Ă— environment interactions underlie ionome divergence in switchgrass. G3 (Bethesda) 11, jkab144 (2021).

    CAS  PubMed  Google Scholar 

  36. Lambert, M. R., Brans, K. I., Des Roches, S., Donihue, C. M. & Diamond, S. E. Adaptive evolution in cities: progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).

    PubMed  Google Scholar 

  37. Franks, S. J., Kane, N. C., O’Hara, N. B., Tittes, S. & Rest, J. S. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol. Ecol. 25, 3622–3631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Browne, L., Wright, J. W., Fitz-Gibbon, S., Gugger, P. F. & Sork, V. L. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow. Proc. Natl Acad. Sci. USA 116, 25179–25185 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart, R. I. A. Mesocosm experiments as a tool for ecological climate-change research.Adv. Ecol. Res. 48, 71–181 (2013).

    Google Scholar 

  40. Zuk, M. & Travisano, M. Models on the runway: how do we make replicas of the world? Am. Nat. 192, 1–9 (2018).

    PubMed  Google Scholar 

  41. Brunner, F. S., Deere, J. A., Egas, M., Eizaguirre, C. & Raeymaekers, J. A. M. The diversity of eco-evolutionary dynamics: comparing the feedbacks between ecology and evolution across scales. Funct. Ecol. 33, 7–12 (2019).

    Google Scholar 

  42. Van Nuland, M. E., Ware, I. M., Bailey, J. K. & Schweitzer, J. A. Ecosystem feedbacks contribute to geographic variation in plant–soil eco-evolutionary dynamics across a fertility gradient. Funct. Ecol. 33, 95–106 (2019).

    Google Scholar 

  43. Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A. & Tikhonov, M. Functional biology in its natural context: a search for emergent simplicity. eLife 10, e67646 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Google Scholar 

  45. Silliman, B. R. & Zieman, J. C. Top-down control of Spartina alterniflora production by periwinkle grazing in a virginia salt marsh. Ecology 82, 2830–2845 (2001).

    Google Scholar 

  46. Peng, H.-B. et al. Efficient removal of Spartina alterniflora with low negative environmental impacts using imazapyr. Front. Mar. Sci. 9, 1054402 (2022).

    Google Scholar 

  47. Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).

    PubMed  Google Scholar 

  48. Whitney, K. D. & Campbell, M. Evolutionary Monitoring for the SEV LTER Program at the Sevilleta National Wildlife Refuge, New Mexico, https://doi.org/10.6073/PASTA/21589D5DE09B364C128C1456AAFAC39B (Environmental Data Initiative, 2024).

  49. Lustenhouwer, N., Wilschut, R. A., Williams, J. L., van der Putten, W. H. & Levine, J. M. Rapid evolution of phenology during range expansion with recent climate change. Glob. Change Biol. 24, e534–e544 (2018).

    Google Scholar 

  50. Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  51. Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).

    Google Scholar 

  52. Meirmans, P. G., Liu, S. & van Tienderen, P. H. The analysis of polyploid genetic data. J. Hered. 109, 283–296 (2018).

    CAS  PubMed  Google Scholar 

  53. Clark, L. V., Lipka, A. E. & Sacks, E. J. polyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 (Bethesda) 9, 663–673 (2019).

    CAS  PubMed  Google Scholar 

  54. Lovell, J. T. et al. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheldon, B. C., Kruuk, L. E. B. & Alberts, S. C. The expanding value of long-term studies of individuals in the wild. Nat. Ecol. Evol. 6, 1799–1801 (2022).

    PubMed  Google Scholar 

  56. Long-term relationships. Nat. Ecol. Evol. 1, 1209–1210 (2017).

  57. Ramírez-Castañeda, V. et al. A set of principles and practical suggestions for equitable fieldwork in biology. Proc. Natl Acad. Sci. USA 119, e2122667119 (2022).

    PubMed  PubMed Central  Google Scholar 

  58. Blonder, B. W. Carrying the moral burden of safe fieldwork. Bull. Ecol. Soc. Am. 104, e02031 (2023).

    Google Scholar 

  59. Coon, J. J. et al. Best practices for LGBTQ+ inclusion during ecological fieldwork: considering safety, cis/heteronormativity and structural barriers. J. Appl. Ecol. 60, 393–399 (2023).

    Google Scholar 

  60. Kottler, E. J., Shanebeck, K. M. & Collinge, S. K. Allyship requires action. Front. Ecol. Environ. 21, 163 (2023).

    Google Scholar 

  61. Gaiser, E. E. et al. Long-term ecological research and evolving frameworks of disturbance ecology. BioScience 70, 141–156 (2020).

    Google Scholar 

  62. Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Collins, S. L. & Avolio, M. L. Integrating evolution into long-term ecological research. BioScience 72, 499 (2022).

    Google Scholar 

  64. Kuebbing, S. E. et al. Long-term research in ecology and evolution: a survey of challenges and opportunities. Ecol. Monogr. 88, 245–258 (2018).

    Google Scholar 

  65. Vuorenmaa, J. et al. Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci. Total Environ. 625, 1129–1145 (2018).

    CAS  PubMed  Google Scholar 

  66. Knapp, A. K. et al. Past, present, and future roles of long-term experiments in the LTER network. BioScience 62, 377–389 (2012).

    Google Scholar 

  67. Baker, N. J., Pilotto, F., Jourdan, J., Beudert, B. & Haase, P. Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community. Sci. Total Environ. 758, 143685 (2021).

    CAS  PubMed  Google Scholar 

  68. Germ, M., Remec-Rekar, Š. & Gaberščik, A. Weather conditions and chlorophyll concentrations determine long-term macrophyte community dynamics of Lake Bohinj (Slovenia). Reg. Environ. Change 19, 339–348 (2019).

    Google Scholar 

  69. Wilson, S. S., Furman, B. T., Hall, M. O. & Fourqurean, J. W. Assessment of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs. Estuaries Coasts 43, 1119–1132 (2020).

    CAS  Google Scholar 

  70. Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

    Google Scholar 

  71. Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    PubMed  Google Scholar 

  72. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  73. Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Shaw for thoughtful feedback. This study was supported by the National Science Foundation Division of Environmental Biology (award number 2110351).

Author information

Authors and Affiliations

Authors

Contributions

J.M.C., A.M.H. and M.L.A. led the writing of the manuscript. All authors conceptualized the manuscript, contributed to writing and editing it and approved the submitted version.

Corresponding authors

Correspondence to Jennifer M. Cocciardi or Meghan L. Avolio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Ellen Welti, Beth Reinke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1. Information on global LTERNs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocciardi, J.M., Hoffman, A.M., Alvarado-Serrano, D.F. et al. The value of long-term ecological research for evolutionary insights. Nat Ecol Evol 8, 1584–1592 (2024). https://doi.org/10.1038/s41559-024-02464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02464-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing