Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Increasing frequency and intensity of the most extreme wildfires on Earth



Climate change is exacerbating wildfire conditions, but evidence is lacking for global trends in extreme fire activity itself. Here we identify energetically extreme wildfire events by calculating daily clusters of summed fire radiative power using 21 years of satellite data, revealing that the frequency of extreme events (≥99.99th percentile) increased by 2.2-fold from 2003 to 2023, with the last 7 years including the 6 most extreme. Although the total area burned on Earth may be declining, our study highlights that fire behaviour is worsening in several regions—particularly the boreal and temperate conifer biomes—with substantial implications for carbon storage and human exposure to wildfire disasters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution and trends of the most extreme wildfires on Earth.
Fig. 2: Patterns in extreme wildfire events among biogeographical realms and biomes.

Similar content being viewed by others

Data availability

MODIS active fire records used in the analysis were downloaded from the University of Maryland ftp server (s and are available via figshare at (ref. 53). Biomes of the world were downloaded from

Code availability

Code for the analysis is available via figshare at (ref. 54).


  1. Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

    Article  Google Scholar 

  2. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  3. Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).

    Article  Google Scholar 

  4. van der Velde, I. R. et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597, 366–369 (2021).

    Article  PubMed  Google Scholar 

  5. van Eeden, L. M. & Dickman, C. R. in Australia’s Megafires: Biodiversity Impacts and Lessons from 2019–2020 (eds Rumpff, L. et al) Ch. 12 (CSIRO Publishing, 2023).

  6. Godfree, R. C. et al. Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation. Nat. Commun. 12, 1023 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koplitz, S. N. et al. Public health impacts of the severe haze in Equatorial Asia in September–October 2015: demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environ. Res. Lett. 11, 094023 (2016).

    Article  Google Scholar 

  8. The World Bank The Cost of Fire: An Economic Analysis of Indonesia’s 2015 Fire Crisis (World Bank, 2016).

  9. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. (2021).

  13. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernández-García, V. & Alonso-González, E. Global patterns and dynamics of burned area and burn severity. Remote Sens. 15, 3401 (2023).

    Article  Google Scholar 

  15. Yang, X., Zhao, C., Zhao, W., Fan, H. & Yang, Y. Characterization of global fire activity and its spatiotemporal patterns for different land cover types from 2001 to 2020. Environ. Res. 227, 115746 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zubkova, M., Humber, M. L. & Giglio, L. Is global burned area declining due to cropland expansion? How much do we know based on remotely sensed data? Int. J. Remote Sens. 44, 1132–1150 (2023).

    Article  Google Scholar 

  17. Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Understanding the critical elements of the pyrocumulonimbus storm sparked by high-intensity wildland fire. Commun. Earth Environ. 3, 243 (2022).

    Article  Google Scholar 

  18. Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article  Google Scholar 

  19. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  20. Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. USA 118, e2111875118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Novick, K. A. et al. The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant Cell Environ. (2024).

  22. Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).

    Article  CAS  Google Scholar 

  23. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of Anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Article  Google Scholar 

  25. Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).

    Article  Google Scholar 

  26. Parisien, M.-A. et al. Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s. Commun. Earth Environ. 4, 309 (2023).

    Article  Google Scholar 

  27. Bowman, D. M. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).

    Article  PubMed  Google Scholar 

  28. Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iglesias, V., Balch, J. K. & Travis, W. R. U.S. fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 8, eabc0020 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B 371, 20150345 (2016).

    Article  Google Scholar 

  31. Giglio, L., Schroeder, W., Hall, J. & Justice, C. MODIS Collection 6 Active Fire Product User’s Guide Revision B (NASA, 2018);

  32. Easterling, D. R. et al. Maximum and minimum temperature trends for the globe. Science 277, 364–367 (1997).

    Article  CAS  Google Scholar 

  33. Balch, J. K. et al. Warming weakens the night-time barrier to global fire. Nature 602, 442–448 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abatzoglou, J. T., Rupp, D. E., O’Neill, L. W. & Sadegh, M. Compound extremes drive the Western Oregon wildfires of September 2020. Geophys. Res. Lett. 48, e2021GL092520 (2021).

    Article  Google Scholar 

  36. Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forest-fire area to aridity in the Western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Abatzoglou, J. T. et al. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. 2, 227 (2021).

    Article  Google Scholar 

  38. Lomborg, B. Climate change hasn’t set the world on fire. Wall Street Journal (31 June 2023).

  39. Le Page, Y., Oom, D., Silva, J. M. N., Jönsson, P. & Pereira, J. M. C. Seasonality of vegetation fires as modified by human action: observing the deviation from eco-climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).

    Article  Google Scholar 

  40. Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

    Article  Google Scholar 

  42. Witze, A. Earth boiled in 2023—will it happen again in 2024? Nature News (12 January 2024);

  43. MODIS Collection 6 Hotspot/Active Fire Detections MCD14ML distributed from NASA FIRMS;

  44. Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).

    Article  Google Scholar 

  45. Giglio, L., Schroeder, R. L., Hall, J. V. & Justice, C. MODIS Collection 6 and Collection 6.1 Active Fire Product User’s Guide (NASA, 2021).

  46. Williamson, G. J., Price, O. F., Henderson, S. B. & Bowman, D. M. J. S. Satellite-based comparison of fire intensity and smoke plumes from prescribed fires and wildfires in south-eastern Australia. Int. J. Wildland Fire 22, 121–129 (2013).

    Article  Google Scholar 

  47. Giglio, L., Csiszar, I. & Justice, C. O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. (2006).

  48. Korontzi, S., McCarty, J., Loboda, T., Kumar, S. & Justice, C. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob. Biogeochem. Cycles (2006).

  49. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023);

  50. Muff, S., Nilsen, E. B., O’Hara, R. B. & Nater, C. R. Rewriting results sections in the language of evidence. Trends Ecol. Evol. (2021).

    Article  PubMed  Google Scholar 

  51. Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).

  52. Lindén, A. & Mäntyniemi, S. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92, 1414–1421 (2011).

    Article  PubMed  Google Scholar 

  53. Cunningham, C. MODIS active fire records used in analysis of extreme wildfires. figshare (2024).

  54. Cunningham, C. Code accompanying “Increasing frequency and intensity of the most extreme wildfires on Earth”. figshare (2024).

Download references


Funding was provided by the Australian Research Council (FL220100099) to D.M.J.S.B. We acknowledge the use of data from the Fire Information for Resource Management System (FIRMS;, part of the Earth Observing System Data and Information System (EOSDIS) of NASA.

Author information

Authors and Affiliations



C.X.C.: formal analysis, investigation, methodology, software, visualization, and writing—original draft, review and editing. G.J.W.: conceptualization, methodology, and writing—review and editing. D.M.J.S.B.: conceptualization, funding acquisition, project administration, supervision, and writing—review and editing.

Corresponding author

Correspondence to Calum X. Cunningham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Evan Ellicott and Helen Poulos for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global distribution of extreme wildfire events in each year from 2003 to 2023.

Points show the locations of energetically extreme events in each year (≥ 99.99th percentile).

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunningham, C.X., Williamson, G.J. & Bowman, D.M.J.S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat Ecol Evol (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing