Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection against domestication alleles in introduced rabbit populations

Abstract

Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild–domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population genomics of introduced rabbits across three continents.
Fig. 2: Introduced rabbit populations have a large proportion of domestic ancestry.
Fig. 3: Adaptation in an introduced population with a predominant domestic ancestry.
Fig. 4: Presence of mutations associated with multiple traits in domestic rabbits in the six introduced populations.
Fig. 5: Signatures of selection against domestic ancestry in introduced rabbit populations.

Similar content being viewed by others

Data availability

Whole-genome resequencing data are available in the Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA936804.

Code availability

A script developed for the calculation of the hybrid index is available at https://github.com/PJADPereira/hybridindex.

References

  1. Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The ‘domestication syndrome’ in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Stetter, M. G., Gates, D. J., Mei, W. & Ross-Ibarra, J. How to make a domesticate. Curr. Biol. 27, R896–R900 (2017).

    CAS  PubMed  Google Scholar 

  3. Kantar, M. B., Nashoba, A. R., Anderson, J. E., Blackman, B. K. & Rieseberg, L. H. The genetics and genomics of plant domestication. BioScience 67, 971–982 (2017).

    Google Scholar 

  4. Thulin, C. G., Alves, P. C., Djan, M., Fontanesi, L. & Peacock, D. Wild opportunities with dedomestication genetics of rabbits. Restor. Ecol. 25, 330–332 (2017).

    Google Scholar 

  5. Gering, E. et al. Getting back to nature: feralization in animals and plants. Trends Ecol. Evol. 34, 1137–1151 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Mabry, M. E., Rowan, T. N., Pires, J. C. & Decker, J. E. Feralization: confronting the complexity of domestication and evolution. Trends Genet. 37, 302–305 (2021).

    CAS  PubMed  Google Scholar 

  7. Flux, J. E. & Fullagar, P. J. World distribution of the rabbit Oryctolagus cuniculus on islands. Mammal Rev. 22, 151–205 (1992).

    Google Scholar 

  8. Cooke, B., Chudleigh, P., Simpson, S. & Saunders, G. The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust. Econ. Hist. Rev. 53, 91–107 (2013).

    Google Scholar 

  9. Allmert, T., Jeschke, J. M. & Evans, T. An assessment of the environmental and socio-economic impacts of alien rabbits and hares. Ambio 51, 1314–1329 (2022).

    PubMed  Google Scholar 

  10. Curry-Lindahl, K. Djuren i färg Däggdjur Kräldjur Groddjur 6th edn (Almqvist & Wiksell, 1970).

  11. Jaksic, F. M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 7, 1427–1445 (1998).

    Google Scholar 

  12. Bonino, N. & Soriguer, R. C. The invasion of Argentina by the European wild rabbit Oryctolagus cuniculus. Mammal Rev. 39, 159–166 (2009).

    Google Scholar 

  13. Cooke, B. D. Rabbits: manageable environmental pests or participants in new Australian ecosystems? Wildl. Res. 39, 279–289 (2012).

    Google Scholar 

  14. Bello‐Rodríguez, V. et al. Forecast increase in invasive rabbit spread into ecosystems of an oceanic island (Tenerife) under climate change. Ecol. Appl. 31, e02206 (2021).

    PubMed  Google Scholar 

  15. Zeuner, F. E. A History of Domesticated Animals (Hutchinson, 1963).

  16. Whitman, B. D. Domestic Rabbits and Their Histories: Breeds of the World (Leathers Publishing, 2004).

  17. Carneiro, M. et al. The genetic structure of domestic rabbits. Mol. Biol. Evol. 28, 1801–1816 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345, 1074–1079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Alves, J. M. et al. A single introduction of wild rabbits triggered the biological invasion of Australia. Proc. Natl Acad. Sci. USA 119, e2122734119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson, L. & Purugganan, M. Molecular genetic variation of animals and plants under domestication. Proc. Natl Acad. Sci. USA 119, e2122150119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Teotónio, H. & Rose, M. R. Perspective: reverse evolution. Evolution 55, 653–660 (2001).

    PubMed  Google Scholar 

  22. Lou, R. N., Jacobs, A., Wilder, A. P. & Therkildsen, N. O. A beginner’s guide to low-coverage whole genome sequencing for population genomics. Mol. Ecol. 30, 5966–5993 (2021).

    PubMed  Google Scholar 

  23. Alves, J. M. et al. Levels and patterns of genetic diversity and population structure in domestic rabbits. PLoS ONE 10, e0144687 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Peter, B. M. Admixture, population structure, and F-statistics. Genetics 202, 1485–1501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, T. H., Goodman, J., Anderson, K. V. & Niswander, L. Phactr4 regulates neural tube and optic fissure closure by controlling PP1-, Rb-, and E2F1-regulated cell-cycle progression. Dev. Cell 13, 87–102 (2007).

    PubMed  Google Scholar 

  26. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Farrar, J. E. et al. Abnormalities of the large ribosomal subunit protein, Rpl35a, in diamond-blackfan anemia. Blood 112, 1582–1592 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin, S. & Zhang, C. L. Role of Krüppel-like factor 4 in neurogenesis and radial neuronal migration in the developing cerebral cortex. Mol. Cell. Biol. 32, 4297–4305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bi, J. et al. KLF4 inhibits early neural differentiation of ESCs by coordinating specific 3D chromatin structure. Nucleic Acids Res. 50, 12235–12250 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jerng, H. H., Qian, Y. & Pfaffinger, P. J. Modulation of Kv4. 2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87, 2380–2396 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kise, Y. et al. Structural basis of gating modulation of Kv4 channel complexes. Nature 599, 158–164 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, Y. et al. CD180 ligation inhibits TLR7- and TLR9-mediated activation of macrophages and dendritic cells through the Lyn-SHP-1/2 Axis in murine lupus. Front. Immunol. 9, 2643 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Mulsant, P., Rochambeau, H. D. & Thébault, R. G. A note on linkage between the angora and fgf5 genes in rabbits. World Rabbit Sci. 12, 1–6 (2004).

    Google Scholar 

  34. Fontanesi, L., Tazzoli, M., Beretti, F. & Russo, V. Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus). Anim. Genet. 37, 489–493 (2006).

    CAS  PubMed  Google Scholar 

  35. Fontanesi, L. et al. A composite six bp in-frame deletion in the melanocortin 1 receptor (MC1R) gene is associated with the Japanese brindling coat colour in rabbits (Oryctolagus cuniculus). BMC Genet. 11, 1–11 (2010).

    Google Scholar 

  36. Diribarne, M. et al. A deletion in exon 9 of the LIPH gene is responsible for the rex hair coat phenotype in rabbits (Oryctolagus cuniculus). PLoS ONE 6, e19281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fontanesi, L., Scotti, E., Allain, D. & Dall’Olio, S. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet. 45, 248–255 (2014).

    CAS  PubMed  Google Scholar 

  38. Strychalski, J., Brym, P., Czarnik, U. & Gugołek, A. A novel AAT-deletion mutation in the coding sequence of the BCO2 gene in yellow-fat rabbits. J. Appl. Genet. 56, 535–537 (2015).

    CAS  PubMed  Google Scholar 

  39. Carneiro, M. et al. Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 locus. Genetics 205, 955–965 (2017).

    CAS  PubMed  Google Scholar 

  40. Letko, A. et al. A deletion spanning the promoter and first exon of the hair cycle‐specific ASIP transcript isoform in black and tan rabbits. Anim. Genet. 51, 137–140 (2020).

    CAS  PubMed  Google Scholar 

  41. Utzeri, V. J., Ribani, A., Schiavo, G. & Fontanesi, L. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. Ital. J. Anim. Sci. 20, 181–187 (2021).

    CAS  Google Scholar 

  42. Akey, J. M. et al. Tracking footprints of artificial selection in the dog genome. Proc. Natl Acad. Sci. USA 107, 1160–1165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 22, 3320–3334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lavado, A. et al. The hippo pathway prevents YAP/TAZ-driven hypertranscription and controls neural progenitor number. Dev. Cell 47, 576–591 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fan, W. et al. The transcriptional co‐activator Yap1 promotes adult hippocampal neural stem cell activation. EMBO J. 42, e110384 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rojek, K. O. et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 17, e3000253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoke, H. et al. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet. 16, e1008664 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dunn, A. D., Myers, H. E. & Dunn, J. T. The combined action of two thyroidal proteases releases T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology 137, 3279–3285 (1996).

    CAS  PubMed  Google Scholar 

  49. Suban, D. et al. Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin. Biochimie 94, 719–726 (2012).

    CAS  PubMed  Google Scholar 

  50. Helmreich, D. L. & Tylee, D. Thyroid hormone regulation by stress and behavioral differences in adult male rats. Horm. Behav. 60, 284–291 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yoon, K. J. et al. Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway. Mol. Brain 5, 40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang, K., Lee, D., Hong, S., Park, S. G. & Song, M. R. The E3 ligase Mind bomb-1 (Mib1) modulates Delta-Notch signaling to control neurogenesis and gliogenesis in the developing spinal cord. J. Biol. Chem. 288, 2580–2592 (2013).

    CAS  PubMed  Google Scholar 

  53. El‐Husseini, A. E. D., Bladen, C., Williams, J. A., Reiner, P. B. & Vincent, S. R. Nitric oxide regulates cyclic GMP‐dependent protein kinase phosphorylation in rat brain. J. Neurochem. 71, 676–683 (1998).

    PubMed  Google Scholar 

  54. Oster, H. et al. cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13, 725–733 (2003).

    CAS  PubMed  Google Scholar 

  55. Werner, C. et al. Importance of NO/cGMP signalling via cGMP‐dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur. J. Neurosci. 20, 3498–3506 (2004).

    PubMed  Google Scholar 

  56. Pfeifer, A. et al. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274, 2082–2086 (1996).

    CAS  PubMed  Google Scholar 

  57. Gressel, J. Crop Ferality and Volunteerism (CRC Press, 2005).

  58. Bergstrom, D. M. et al. Indirect effects of invasive species removal devastate World Heritage Island. J. Appl. Ecol. 46, 73–81 (2009).

    Google Scholar 

  59. Cubas, J. et al. Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc. R. Soc. B 286, 20190136 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Demello, M. in Texts, Animals, Environments: Zoopoetics and Ecopoetics (eds Middelhoff, F. et al.) 231–239 (Rombach Verlag, 2019).

  61. Hermisson, J. & Pennings, P. S. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 8, 700–716 (2017).

    Google Scholar 

  62. Johnsson, M. et al. Feralisation targets different genomic loci to domestication in the chicken. Nat. Commun. 7, 12950 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, S. J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 671 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Feulner, P. G. et al. Introgression and the fate of domesticated genes in a wild mammal population. Mol. Ecol. 22, 4210–4221 (2013).

    CAS  PubMed  Google Scholar 

  65. Wu, D., Lao, S. & Fan, L. De-domestication: an extension of crop evolution. Trends Plant Sci. 26, 560–574 (2021).

    CAS  PubMed  Google Scholar 

  66. Qiu, J. et al. Genomic variation associated with local adaptation of weedy rice during de-domestication. Nat. Commun. 8, 15323 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ben-Jemaa, S. et al. Genome-wide analysis reveals selection signatures involved in meat traits and local adaptation in semi-feral maremmana cattle. Front. Genet. 12, 675569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gering, E., Johnsson, M., Willis, P., Getty, T. & Wright, D. Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient red junglefowl reservoirs. Mol. Ecol. 24, 2112–2124 (2015).

    CAS  PubMed  Google Scholar 

  69. Picelli, S. et al. Tn5 transposaseand tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sprehn, C. G., Enbody, E., Zan, Y. & Andersson, L. Tn5 based tagmentation library prep protocol, high throughput. Protocols.io https://doi.org/10.17504/protocols.io.bv5gn83w (2021).

  71. Enbody, E. D. et al. A multispecies BCO2 beak color polymorphism in the Darwin’s finch radiation. Curr. Biol. 31, 5597–5604 (2021).

    CAS  PubMed  Google Scholar 

  72. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at ArXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  73. Li, H., 1000 Genome Project Data Processing Subgroup. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Google Scholar 

  75. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at ArXiv https://doi.org/10.48550/arXiv.1207.3907 (2012).

  76. Danecek, P., 1000 Genomes Project Analysis Group. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Garrison, E., Kronenberg, Z. N., Dawson, E. T., Pedersen, B. S. & Prins, P. A spectrum of free software tools for processing the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput. Biol. 18, e1009123 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of genetic variants. Bioinformatics 31, 2202–2204 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  82. Hammer, Ø., Harper, D. A. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electronica 4, 1–9 (2001).

    Google Scholar 

  83. Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, 1987).

  85. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 1–9 (2009).

    Google Scholar 

  86. Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Google Scholar 

  88. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Flouri, T. et al. The phylogenetic likelihood library. Syst. Biol. 64, 356–362 (2015).

    CAS  PubMed  Google Scholar 

  90. Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).

    CAS  PubMed  Google Scholar 

  91. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protocol. Bioinf. 69, e96 (2020).

    Google Scholar 

  93. Kofler, R., Pandey, R. V. & Schlötterer, C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27, 3435–3436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Pickrell, J. & Pritchard, J. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

    PubMed  Google Scholar 

  96. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, M., Zhao, Y. & Zhang, B. Efficient test and visualization of multi-set intersections. Sci. Rep. 5, 16923 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia (FCT) through projects PTDC/BIA-EVL/30628/2017 and UIDP/50027/2020; by FCT through research contracts CEECINST/00014/2018/CP1512/CT0002 (to M.C.), 2020.01405.CEECIND/CP1601/CT0011 (to P.A.) and 2020.00275.CEECIND/CP1601/CP1649/CT0001 (to R.F.); by the European Research Council (ERC; to M.C.) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 101000504); by research fellowships PD/BD/128492/2017 from FCT (to P.P.) under the Biodiversity, Genetics and Evolution (BIODIV) PhD programme; by project PID2020-114724RB-I00 supported by the Spanish Ministry of Science and Innovation (to R.V.); and by Vetenskapsrådet (2017-02907) and Knut and Alice Wallenberg Foundation (KAW 2016.0361) (to L.A.).

Author information

Authors and Affiliations

Authors

Contributions

M.C., L.A., N.F., P.A. and J.M.A. conceived the study; N.B., J.A.D., H.G., M.L., T.S., C.-G.T., G.Q., R.V. and N.F. coordinated and performed sample collection. C.G.S. and S.A. performed experiments. P.A., M.C., J.M.A., P.P., C.-J.R., E.S., E.E., R.F., Y.Z., F.M.J. and L.A. analysed data. P.A., J.M.A., L.A. and M.C. wrote the paper with input from all other authors.

Corresponding authors

Correspondence to Pedro Andrade, Leif Andersson or Miguel Carneiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Makenzie Mabry, Ang McGaughran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Admixture in introduced rabbit populations.

Admixture proportions calculated for a sample of domestic rabbits, wild rabbits from the native range and six introduced populations, based on genotype likelihoods. Results for several values of K are shown and the population names are given at the bottom of the figure.

Extended Data Fig. 2 Median-joining haplotype network of the mtDNA cytochrome b locus.

The size of the circle is proportional to the number of individuals that share the same haplotype. The number of mutations for each branch is given by the number of smaller cross-dashes on the branch.

Extended Data Fig. 3 Bayesian tree of mtDNA sequences.

Each individual is coloured according to the population of origin. Support values (Bayesian posterior probabilities, BPP) for each node are coloured according to the scale.

Extended Data Fig. 4 Genome-wide differences in allele frequency (ΔAF) between domestic rabbits and each introduced population.

Dots correspond to 100 kb windows, with a step of 25 kb. The red line corresponds to the top 0.1% of the empirical distribution for each contrast, while the blue line corresponds to the 1%. Only autosomes were considered due to the lower effective population size of the X chromosome, which results in higher-than-average differentiation for variants within that chromosome.

Extended Data Fig. 5 Signatures of selection on genomic regions of high differentiation (differences in allele frequency, ΔAF) between domestic rabbits and each introduced population.

For each introduced population we calculated Tajima’s D in 100 kb windows, with a step of 25 kb. We then inspected D values for the top 0.1% ΔAF windows in each domestic-population contrast (light brown, left box in each plot, n = 82) and compared them to genome-wide D values (dark brown, right box in each plot, n = 1,000 randomly selected windows). For each plot, whisker ends represent minimum and maximum of the distribution; box edges represent first quartile and third quartile of the distribution; centre line represents the median. See Supplementary Table 3 for statistical testing on the full genome-wide dataset.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, P., Alves, J.M., Pereira, P. et al. Selection against domestication alleles in introduced rabbit populations. Nat Ecol Evol 8, 1543–1555 (2024). https://doi.org/10.1038/s41559-024-02443-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02443-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing