Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities

Abstract

Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of microbial inoculants on soil microbial attributes.
Fig. 2: The effects of microbial inoculants on soil microbial biomass.
Fig. 3: The effects of microbial inoculants on soil microbial alpha diversity.
Fig. 4: The effects of microbial inoculants on soil microbial community structure and beta diversity.
Fig. 5: Global co-occurrence networks of bacterial ASVs in the CK and microbial inoculant treatments.

Similar content being viewed by others

Data availability

The sequences used in this study consist of publicly available published data and can be downloaded using the provided accession numbers. All accession numbers, Supplementary Dataset and other relevant data featured in this Article are available via GitHub at https://github.com/aijingjing1314/Microbial-inoculants_Meta-analysis. Source data are provided with this paper.

Code availability

The code used in this study is available via GitHub at https://github.com/aijingjing1314/Microbial-inoculants_Meta-analysis.

References

  1. Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019).

    CAS  PubMed  Google Scholar 

  2. Jack, C. N., Petipas, R. H., Cheeke, T. E., Rowland, J. L. & Friesen, M. L. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 29, 299–308 (2021).

    CAS  PubMed  Google Scholar 

  3. Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2021).

    PubMed  Google Scholar 

  4. Mallon, C. A., Van Elsas, J. D. & Salles, J. F. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719–729 (2015).

    CAS  PubMed  Google Scholar 

  5. Mawarda, P. C., Le Roux, X., Van Elsas, J. D. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol. Biochem. 148, 107874 (2020).

    CAS  Google Scholar 

  6. Singh, J. S. & Gupta, V. K. Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci. Total Environ. 634, 497–500 (2018).

    CAS  PubMed  Google Scholar 

  7. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, X., Le Roux, X. & Salles, J. F. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience 25, 103821 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mallon, C. A. et al. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 12, 728–741 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alori, E. T., Dare, M. O. & Babalola, O. O. in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 281–307 (Springer International Publishing, 2017).

  13. Hernandez, D. J., David, A. S., Menges, E. S., Searcy, C. A. & Afkhami, M. E. Environmental stress destabilizes microbial networks. ISME J. 15, 1722–1734 (2021).

    PubMed  PubMed Central  Google Scholar 

  14. Hartmann, M. & Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4, 4–18 (2023).

    Google Scholar 

  15. Jiang, M. et al. Home‐based microbial solution to boost crop growth in low‐fertility soil. New Phytol. 239, 752–765 (2023).

    CAS  PubMed  Google Scholar 

  16. Liu, X., Mei, S. & Salles, J. F. Inoculated microbial consortia perform better than single strains in living soil: a meta-analysis. Appl. Soil Ecol. 190, 105011 (2023).

    Google Scholar 

  17. Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).

    CAS  PubMed  Google Scholar 

  18. Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta‐analysis. New Phytol. 222, 543–555 (2019).

    CAS  PubMed  Google Scholar 

  19. Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Durán, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e914 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Kurkjian, H. M., Akbari, M. J. & Momeni, B. The impact of interactions on invasion and colonization resistance in microbial communities. PLoS Comput. Biol. 17, e1008643 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, T. et al. Resource availability modulates biodiversity–invasion relationships by altering competitive interactions. Environ. Microbiol. 19, 2984–2991 (2017).

    PubMed  Google Scholar 

  23. Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Anthony, M. A., Bender, S. F. & van der Heijden, M. G. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS  PubMed  Google Scholar 

  26. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  PubMed  Google Scholar 

  27. Herren, C. M. Disruption of cross-feeding interactions by invading taxa can cause invasional meltdown in microbial communities. Proc. R. Soc. B 287, 20192945 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

    PubMed  Google Scholar 

  29. Li, Q. et al. Plant growth‐promoting rhizobacterium Pseudomonas sp. CM11 specifically induces lateral roots. New Phytol. 235, 1575–1588 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, C., Chen, H. Y., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Toljander, J. F., Artursson, V., Paul, L. R., Jansson, J. K. & Finlay, R. D. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol. Lett. 254, 34–40 (2006).

    CAS  PubMed  Google Scholar 

  32. Stopnisek, N. et al. Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264 (2016).

    CAS  PubMed  Google Scholar 

  33. Batista, B. D. & Singh, B. K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 14, 1258–1268 (2021).

    PubMed  PubMed Central  Google Scholar 

  34. Saad, M. M., Eida, A. A. & Hirt, H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J. Exp. Bot. 71, 3878–3901 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    PubMed  Google Scholar 

  36. Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Muhammad, I. et al. Cover cropping enhances soil microbial biomass and affects microbial community structure: a meta-analysis. Geoderma 381, 114696 (2021).

    CAS  Google Scholar 

  38. Li, C. et al. Plant and native microorganisms amplify the positive effects of microbial inoculant. Microorganisms 11, 570 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    CAS  PubMed  Google Scholar 

  40. Jiang, Y. et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172–1175 (2017).

    CAS  PubMed  Google Scholar 

  41. Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 124, 949–958 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao, Y., Zhao, Z., Chen, L. & Li, Y. Arbuscular mycorrhizal fungi and organic manure have synergistic effects on Trifolium repens in Cd-contaminated sterilized soil but not in natural soil. Appl. Soil Ecol. 149, 103485 (2020).

    Google Scholar 

  43. Gu, Y. et al. Invader–resident community similarity contribute to the invasion process and regulate biofertilizer effectiveness. J. Clean. Prod. 241, 118278 (2019).

    Google Scholar 

  44. Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 2738 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Zuluaga, M. Y. A. et al. Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants. Appl. Soil Ecol. 158, 103784 (2021).

    Google Scholar 

  46. Kong, Z. & Liu, H. Modification of rhizosphere microbial communities: a possible mechanism of plant growth promoting rhizobacteria enhancing plant growth and fitness. Front. Plant Sci. 13, 920813 (2022).

    PubMed  PubMed Central  Google Scholar 

  47. Orwin, K. H. et al. Linkages of plant traits to soil properties and the functioning of temperate grassland. J. Ecol. 98, 1074–1083 (2010).

    Google Scholar 

  48. Dong, L. et al. Biofertilizers regulate the soil microbial community and enhance Panax ginseng yields. Chin. Med. 14, 20 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M. & Standish, R. J. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecol. 40, 140–149 (2019).

    Google Scholar 

  50. Scheffer, R. A. & Aerts, R. Root decomposition and soil nutrient and carbon cycling in two temperate fen ecosystems. Oikos 91, 541–549 (2000).

    Google Scholar 

  51. Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534 (2000).

    Google Scholar 

  52. Nazaries, L. et al. The response of soil multi-functionality to agricultural management practices can be predicted by key soil abiotic and biotic properties. Agric. Ecosyst. Environ. 307, 107206 (2021).

    CAS  Google Scholar 

  53. Li, H. et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 199, 104577 (2020).

    Google Scholar 

  54. Bai, X. et al. Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition. Ecol. Indic. 121, 107200 (2021).

    CAS  Google Scholar 

  55. Trabelsi, D. & Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: a review. Biomed. Res. Int. 2013, 863240 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Ma, Z. & Chen, H. Y. Positive species mixture effects on fine root turnover and mortality in natural boreal forests. Soil Biol. Biochem. 121, 130–137 (2018).

    CAS  Google Scholar 

  57. Zhang, T. A., Chen, H. Y. & Ruan, H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 12, 1817–1825 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson, T.-H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).

    Google Scholar 

  59. Moscatelli, M. C., Lagomarsino, A., Marinari, S., De Angelis, P. & Grego, S. Soil microbial indices as bioindicators of environmental changes in a poplar plantation. Ecol. Indic. 5, 171–179 (2005).

    CAS  Google Scholar 

  60. Sadegh Kasmaei, L. et al. Influence of plant growth promoting rhizobacteria, compost, and biochar of Azolla on rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil. Commun. Soil Sci. Plant Anal. 50, 119–131 (2019).

    CAS  Google Scholar 

  61. Allison, S. D. & Martiny, J. B. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiao, S. et al. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Glob. Change Biol. 28, 6653–6664 (2022).

    CAS  Google Scholar 

  63. Fan, K. et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 15, 550–561 (2021).

    CAS  PubMed  Google Scholar 

  64. Bastida, F. et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi‐arid soils. Mol. Ecol. 25, 4660–4673 (2016).

    CAS  PubMed  Google Scholar 

  65. Amor, D. R., Ratzke, C. & Gore, J. Transient invaders can induce shifts between alternative stable states of microbial communities. Sci. Adv. 6, eaay8676 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hang, X. et al. Trichoderma-amended biofertilizer stimulates soil resident Aspergillus population for joint plant growth promotion. NPJ Biofilms Microbiomes 8, 57 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tao, C. et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8, 137 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Deng, X. et al. Bio‐organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytol. 235, 1558–1574 (2022).

    CAS  PubMed  Google Scholar 

  69. Wen, T. et al. Deciphering the mechanism of fungal pathogen‐induced disease‐suppressive soil. New Phytol. 238, 2634–2650 (2023).

    CAS  PubMed  Google Scholar 

  70. Zhang, L., Zhou, J., George, T. S., Limpens, E. & Feng, G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci. 27, 402–411 (2022).

    CAS  PubMed  Google Scholar 

  71. Li, C. et al. Mineral-solubilizing microbial inoculant positively affects the multifunctionality of anthropogenic soils in abandoned mining areas. J. Environ. Manage. 344, 118553 (2023).

    CAS  PubMed  Google Scholar 

  72. Bashan, Y., de-Bashan, L. E., Prabhu, S. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2014).

    CAS  Google Scholar 

  73. Qiu, L. et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 15, 2474–2489 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed  Google Scholar 

  75. Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao, J. et al. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 67, 443–453 (2014).

    PubMed  Google Scholar 

  77. Stokstad, E. The nitrogen fix. Science 353, 1225–1227 (2016).

    CAS  PubMed  Google Scholar 

  78. Yang, J. et al. Mechanisms underlying legume–rhizobium symbioses. J. Integr. Plant Biol. 64, 244–267 (2022).

    PubMed  Google Scholar 

  79. Yan, J., Han, X., Lu, X., Chen, X. & Zou, W. Land use indirectly affects the cycling of multiple nutrients by altering the diazotrophic community in black soil. J. Sci. Food Agric. 102, 3788–3795 (2022).

    CAS  PubMed  Google Scholar 

  80. Mo, Y. et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).

    CAS  PubMed  Google Scholar 

  82. Liu, W. et al. Dynamic microbial assembly processes correspond to soil fertility in sustainable paddy agroecosystems. Funct. Ecol. 34, 1244–1256 (2020).

    Google Scholar 

  83. Sun, C. et al. Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Res. 200, 117295 (2021).

    CAS  PubMed  Google Scholar 

  84. Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–00110 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. Ling, N., Wang, T. & Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 13, 836 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).

    PubMed  Google Scholar 

  87. McGrath, S. et al. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Stat. Methods Med. Res. 29, 2520–2537 (2020).

    PubMed  PubMed Central  Google Scholar 

  88. Ruehlmann, J. & Körschens, M. Calculating the effect of soil organic matter concentration on soil bulk density. Soil Sci. Soc. Am. J. 73, 876–885 (2009).

    CAS  Google Scholar 

  89. Nel, T., Hardie, A. G. & Clarke, C. E. Simple and multivariate linear regression models for pH conversion between measurement techniques. Commun. Soil Sci. Plant Anal. 53, 1797–1808 (2022).

    CAS  Google Scholar 

  90. Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Z., Zheng, M., Xia, J. & Wang, C. Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Sci. Total Environ. 806, 150569 (2022).

    CAS  PubMed  Google Scholar 

  92. Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).

    CAS  PubMed  Google Scholar 

  93. Rosenberg, M. S. MetaWin: statistical software for meta-analysis: version 2 (Sinauer, 2000).

  94. Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus‐rich signature of fire in the soil–plant system: a global meta‐analysis. Ecol. Lett. 21, 335–344 (2018).

    PubMed  Google Scholar 

  95. Jin, Z. C., Zhou, X. H. & He, J. Statistical methods for dealing with publication bias in meta‐analysis. Stat. Med. 34, 343–360 (2015).

    PubMed  Google Scholar 

  96. Rosenberg, M. S. The file‐drawer problem revisited: a general weighted method for calculating fail‐safe numbers in meta‐analysis. Evolution 59, 464–468 (2005).

    PubMed  Google Scholar 

  97. Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).

    Google Scholar 

  98. Ji, X., Liu, M., Yang, J. & Feng, F. Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics. Soil Biol. Biochem. 168, 108608 (2022).

    CAS  Google Scholar 

  99. Flora of China Editorial Committee Beijing (China): Flora of China (Science Press, 1999).

  100. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using ‘Eigen’ and S4. R version 1.1–27.1 https://cran.r-project.org/package=lme4 (2021).

  101. Oksanen, J. Vegan: community ecology package. R version 1.8–5 https://www.cran.r-project.org (2007).

  102. Leinonen, R., Sugawara, H., Shumway, M. & Collaboration, I. N. S. D. The Sequence Read Archive. Nucleic Acids Res. 39, D19–D21 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  104. Liu, Y. X. et al. EasyAmplicon: an easy‐to‐use, open‐source, reproducible, and community‐based pipeline for amplicon data analysis in microbiome research. iMeta 2, e83 (2023).

    PubMed  PubMed Central  Google Scholar 

  105. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  PubMed  Google Scholar 

  107. Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS  PubMed  Google Scholar 

  108. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  110. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    Google Scholar 

  112. Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009).

    Google Scholar 

  114. Guimera, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Peng, G.-s & Wu, J. Optimal network topology for structural robustness based on natural connectivity. Phys. A 443, 212–220 (2016).

    Google Scholar 

  117. Herren, C. M. & McMahon, K. D. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Bashan, Y., Prabhu, S., de-Bashan, L. E. & Kloepper, J. W. Disclosure of exact protocols of fermentation, identity of microorganisms within consortia, formation of advanced consortia with microbe-based products. Biol. Fertil. Soils 56, 443–445 (2020).

    Google Scholar 

Download references

Acknowledgements

We sincerely thank all the researchers whose valuable data were included in this global synthesis. We would like to express our gratitude to Y. Wu, who contributed to the project development through valuable discussions. C.L. is grateful for the partial financial support from the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21_0915) and the China Scholarship Council (202108320300). J.Z. acknowledges the funding support from Jiangsu Science and Technology Plan Project (BE2022420), the Innovation and Promotion of Forestry Science and Technology Program of Jiangsu Province (LYKJ[2021]30), the Scientific Research Project of Baishanzu National Park (2021ZDLY01) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

C.L., Z.J., B.Z., X.L. and J.Z. conceived the study. C.L., S.M. and J.Q. collected and organized the data. C.L., X.C. and L.Z. analysed the data. C.L. wrote the first draft of the paper. X.C., Z.J., L.Z., B.Z., U.G., X.L., J.Z. and C.M. reviewed the paper before submission. The authors have approved the final paper for publication.

Corresponding authors

Correspondence to Xin Liu or Jinchi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Elly Morriën, Xavier Roux and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The effects of microbial inoculants on soil microbial biomass.

a, bacterial biomass; b, fungal biomass; c, actinobacterial biomass; d, diazotrophic biomass. Bars around the means denote 95% confidence intervals (CIs). Mean values < 0 indicate a higher value in control treatment (yellow dots), while mean values > 0 indicate a higher value in microbial inoculant treatment (blue dots). Bacteria, fungi, and AMF in front of each subgroup name represent bacterial inoculants, fungal inoculants, and arbuscular mycorrhizal fungi (AMF) inoculants, respectively. The number of observations is beside each attribute. The between-group heterogeneity (Qbetween) statistic is computed using the one-sided chi-square test. A significance level is set at Prandom < 0.05 to determine the significance of Qbetween. Differences among subgroups are deemed significant when their CIs do not overlap. Source data are provided as a Source Data file.

Source data

Extended Data Fig. 2 Effects of microbial inoculant on soil microbial biomass associated with soil background physicochemical properties.

Points signify the values predicted by the partial regressions of soil background physicochemical properties. Black lines represent the average responses with their 95% confidence intervals (CIs) shaded in grey. n represents the number of observations. The one-sided F-test is used to calculate P values.

Extended Data Fig. 3 The effects of microbial inoculants on soil microbial alpha diversity.

a, Bacterial Shannon diversity; b, bacterial richness diversity; c, fungal Shannon diversity; d, fungal richness diversity. Bars around the means denote 95% confidence intervals (CIs). Bacteria, fungi, and AMF in front of each subgroup name represent bacterial inoculants, fungal inoculants, and arbuscular mycorrhizal fungi (AMF) inoculants, respectively. The number of observations is beside each attribute. The between-group heterogeneity (Qbetween) statistic is computed using the one-sided chi-square test. A significance level is set at Prandom < 0.05 to determine the significance of Qbetween. Differences among subgroups are deemed significant when their CIs do not overlap. Source data are provided as a Source Data file.

Source data

Extended Data Fig. 4 The effects of microbial inoculants on soil bacterial alpha diversity and community structure based on reanalysis of amplicon data.

a, bacterial alpha diversity, including Shannon, Pielou, ACE, Chao, and Richness diversity. Error bars on the columns represent standard errors (SD). Statistical comparisons are assessed through two-tailed Wilcoxon’s rank sum tests. P values are adjusted using the Benjamini–Hochberg false discovery rate (FDR) correction. All dots signify the change in response ratio between the control and microbial inoculant bacterial diversity at 95% confidence intervals (CIs). The number of observations is provided beside each attribute. b, Principal Coordinate Analysis (PCoA) plots depict the Bray-Curtis distance of bacterial communities in CK and microbial inoculant treatments (CK n = 453 vs. microbial inoculant n = 1076) c, Three non-parametric multivariate analyses, including non-parametric multivariate analysis of variance (Adonis), analysis of similarity (ANOSIM), and multi-response permutation procedure (MRPP), consistently support the significant alteration of bacterial community structure by microbial inoculants. P values are adjusted using the Benjamini–Hochberg method with sequentially modified Bonferroni correction. Source data are provided as a Source Data file.

Source data

Extended Data Fig. 5 The effects of microbial inoculants on soil microbial community.

a, bacterial community structure; b, bacterial beta diversity; c, fungal community structure; d, fungal beta diversity. Bars around the means denote 95% confidence intervals (CIs). Mean values < 0 indicate a higher value in control treatment (yellow dots), while mean values > 0 indicate a higher value in microbial inoculant treatment (blue dots). Bacteria, fungi, and AMF in front of each subgroup name represent bacterial inoculants, fungal inoculants, and arbuscular mycorrhizal fungi (AMF) inoculants, respectively. RRStructure < 0 indicates that microbial inoculant has no effect on microbial community structure, and a greater positive value of RRStructure indicates a greater magnitude of change in the community structure. The number of observations is beside each attribute. The between-group heterogeneity (Qbetween) statistic is computed using the one-sided chi-square test. A significance level is set at Prandom < 0.05 to determine the significance of Qbetween. Differences among subgroups are deemed significant when their CIs do not overlap. Source data are provided as a Source Data file.

Source data

Extended Data Fig. 6 Effects of microbial inoculant on soil microbial diversity associated with soil background physicochemical properties.

Points signify the values predicted by the partial regressions of soil background physicochemical properties. n represents the number of observations. The one-sided F-test is used to calculate P values.

Extended Data Fig. 7 Phylogenetic tree showing the top 200 bacterial amplicon sequences variants (ASVs) with the highest cumulative relative abundance.

The color of the inner ring represents the taxonomy at the phylum level, while the name of the inner ring corresponds to the genus. Medium ring 1 illustrates the relative abundance of 200 ASVs in the CK treatment, and Medium ring 2 depicts the relative abundance of 200 ASVs in the microbial inoculant treatment. Medium ring 3 displays the relative abundance of ASVs across different treatments, with yellow indicating higher enrichment in the CK treatment and blue indicating higher enrichment in the microbial inoculant treatment. The symbol * represents a significance level of P < 0.05, determined through two-tailed Wilcoxon’s rank sum tests. P values are adjusted using the Benjamini–Hochberg false discovery rate (FDR) correction. The outer ring represents taxonomy at the class level.

Source data

Extended Data Fig. 8 The composition of bacterial communities under CK and microbial inoculant treatments at the phylum level.

a, the composition of bacterial communities under CK and microbial inoculant treatments at the phylum level; b, differences at the phylum level caused by microbial inoculants; c, differences at the phylum level caused by bacterial inoculants; d, differences at the phylum level caused by AMF inoculants; e, differences at the phylum level caused by fungal inoculants; f, differences at the phylum level caused by Mix inoculants. ▲ represents the increase of taxa under microbial inoculant treatments; represents the decrease of taxa under microbial inoculant treatments. Statistical comparisons are assessed through two-tailed Wilcoxon’s rank sum tests. P values are adjusted using the Benjamini–Hochberg false discovery rate (FDR) correction.

Source data

Extended Data Fig. 9 The composition of bacterial communities under CK and microbial inoculant treatments at the class level.

a, the composition of bacterial communities under CK and microbial inoculant treatments at the class level; b, differences at the class level caused by microbial inoculants; c, differences at the class level caused by bacterial inoculants; d, differences at the class level caused by AMF inoculants; e, differences at the class level caused by fungal inoculants; f, differences at the class level caused by Mix inoculants. ▲ represents the increase of taxa under microbial inoculant treatments; represents the decrease of taxa under microbial inoculant treatments. Statistical comparisons are assessed through two-tailed Wilcoxon’s rank sum tests. P values are adjusted using the Benjamini–Hochberg false discovery rate (FDR) correction.

Source data

Extended Data Fig. 10 The experimental locations in this meta-analysis.

a, the experimental locations of 335 publications included in this meta-analysis (microbial attributes); b, the experimental locations of 48 publications included in this meta-analysis (reanalysis of amplicon data based on upper microbial attributes database).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and Tables 1–3.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, X., Jia, Z. et al. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nat Ecol Evol 8, 1270–1284 (2024). https://doi.org/10.1038/s41559-024-02437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02437-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene