Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate change may reveal currently unavailable parts of species’ ecological niches

Abstract

The ability of climatic niche models to predict species extinction risks can be hampered if niches are incompletely quantified. This can occur when niches are estimated considering only currently available climatic conditions, disregarding the fact that climate change can open up portions of the fundamental niche that are currently inaccessible to species. Using a new metric, we estimate the prevalence of potential situations of fundamental niche truncation by measuring whether current ecological niche limits are contiguous to the boundaries of currently available climatic conditions for 24,944 species at the global scale in both terrestrial and marine realms and including animals and plants. We show that 12,172 (~49%) species are showing niche contiguity, particularly those inhabiting tropical ecosystems and the marine realm. Using niche expansion scenarios, we find that 86% of species showing niche contiguity could have a fundamental niche potentially expanding beyond current climatic limits, resulting in lower—yet still alarming—rates of predicted biodiversity loss, particularly within the tropics. Caution is therefore advised when forecasting future distributions of species presenting niche contiguity, particularly towards climatic limits that are predicted to expand in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of niche truncation and niche contiguity for an example species (the African grass rat).
Fig. 2: Assessment of niche contiguity.
Fig. 3: Niche contiguity in the climatic space.
Fig. 4: Interpolated niche contiguity in geographical space.
Fig. 5: Temporal evolution of niche contiguity.

Similar content being viewed by others

Data availability

All of the datasets used in this study are publicly available from the figshare repository at https://doi.org/10.6084/m9.figshare.21916419.v1 (ref. 92). Expert-verified range maps are available from https://www.iucnredlist.org/resources/spatial-data-download and http://datazone.birdlife.org/species/requestdis. Current and future climate data are available at https://chelsa-climate.org/ (for the terrestrial realm) and https://www.bio-oracle.org/ (for the marine realm). Terrestrial climate data for the Last Interglacial period are available at http://www.paleoclim.org/.

Code availability

The code used to analyse these data and generate the results presented in this study can be obtained from the figshare repository at https://doi.org/10.6084/m9.figshare.21916419.v1 (ref. 92).

References

  1. Brondizio, E., Settele, J., Díaz, S. & Ngo, H. Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).

  2. Hannah, L., Midgley, G. F. & Millar, D. Climate change-integrated conservation strategies. Glob. Ecol. Biogeogr. 11, 485–495 (2002).

    Article  Google Scholar 

  3. Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).

  4. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge Univ. Press, 2017).

  5. Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction (Cambridge Univ. Press, 2010).

  6. Peterson, A. T. et al. Ecological Niches and Geographic Distributions. Monographs in Population Biology (Princeton Univ. Press, 2011).

  7. Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).

    Article  Google Scholar 

  8. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  PubMed  Google Scholar 

  9. Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

    Article  Google Scholar 

  10. Chevalier, M., Broennimann, O., Cornuault, J. & Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl. 31, e02427 (2021).

    Article  PubMed  Google Scholar 

  11. Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G. & Guisan, A. Accounting for niche truncation to improve spatial and temporal predictions of species distributions. Front. Ecol. Evol. 10, 1–14 (2022).

    Article  Google Scholar 

  12. Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Article  Google Scholar 

  13. Soberon, J. & Peterson, T. A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2, 1–10 (2005).

    Article  Google Scholar 

  14. Saupe, E. E. et al. Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol. Model. 237–238, 11–22 (2012).

    Article  Google Scholar 

  15. Jiménez, L. & Soberón, J. Estimating the fundamental niche: accounting for the uneven availability of existing climates in the calibration area. Ecol. Model. 464, 109823 (2022).

    Article  Google Scholar 

  16. Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).

    Article  PubMed  Google Scholar 

  17. Barbet-Massin, M., Thuiller, W. & Jiguet, F. How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33, 878–886 (2010).

    Article  Google Scholar 

  18. Raes, N. Partial versus full species distribution models. Nat. Conserv. 10, 127–138 (2012).

    Article  Google Scholar 

  19. Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).

    Article  Google Scholar 

  20. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 106, 19644–19650 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sales, L. P. et al. The effect of past defaunation on ranges, niches, and future biodiversity forecasts. Glob. Change Biol. 28, 3683–3693 (2022).

    Article  CAS  Google Scholar 

  22. Chiarenza, A. A. et al. 100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Curr. Biol. 33, 109–121.e3 (2022).

    Article  PubMed  Google Scholar 

  23. Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article  Google Scholar 

  24. Peterson, A. T. Ecological niche conservatism: a time-structured review of evidence. J. Biogeogr. 38, 817–827 (2011).

    Article  Google Scholar 

  25. Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    Article  PubMed  Google Scholar 

  26. Brodie, J. F. & Mannion, P. D. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol. Evol. 38, 15–23 (2022).

    Article  PubMed  Google Scholar 

  27. Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  PubMed  Google Scholar 

  28. Gould, S. & Vrba, E. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article  Google Scholar 

  29. Bradshaw, S. D. Desert reptiles: a case of adaptation or pre-adaptation? J. Arid. Environ. 14, 155–174 (1988).

    Article  Google Scholar 

  30. Maiorano, L. et al. Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Glob. Ecol. Biogeogr. 22, 302–317 (2013).

    Article  Google Scholar 

  31. Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).

    Article  Google Scholar 

  32. Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).

    Article  PubMed  Google Scholar 

  33. Bush, A. et al. Truncation of thermal tolerance niches among Australian plants. Glob. Ecol. Biogeogr. 27, 22–31 (2017).

    Article  Google Scholar 

  34. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830 (2011).

    Article  Google Scholar 

  35. Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).

    Article  Google Scholar 

  36. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  37. Laurance, W. F. Have we overstated the tropical biodiversity crisis? Trends Ecol. Evol. 22, 65–70 (2007).

    Article  PubMed  Google Scholar 

  38. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  40. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feeley, K. J. & Silman, M. R. Biotic attrition from tropical forests correcting for truncated temperature niches. Glob. Change Biol. 16, 1830–1836 (2010).

    Article  Google Scholar 

  43. Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).

    Article  Google Scholar 

  44. Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  PubMed  Google Scholar 

  45. Angert, A. L. The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. Proc. Natl Acad. Sci. USA 106, 19693–19698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article  PubMed  Google Scholar 

  48. Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. USA 104, 13384–13389 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alhajeri, B. H. & Fourcade, Y. High correlation between species-level environmental data estimates extracted from IUCN expert range maps and from GBIF occurrence data. J. Biogeogr. 46, 1329–1341 (2019).

    Article  Google Scholar 

  50. Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘Wallacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges? Divers. Distrib. 19, 1043–1050 (2013).

    Article  Google Scholar 

  51. Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schlaepfer, D. R., Glättli, M., Fischer, M. & van Kleunen, M. A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. New Phytol. 185, 1087–1099 (2010).

    Article  PubMed  Google Scholar 

  53. Ivalú Cacho, N. & Strauss, S. Y. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc. Natl Acad. Sci. USA 111, 15132–15137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sianta, S. A. & Kay, K. M. Adaptation and divergence in edaphic specialists and generalists: serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. Am. J. Bot. 106, 690–703 (2019).

    Article  PubMed  Google Scholar 

  55. Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. Paleoclim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article  PubMed  Google Scholar 

  57. Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Svenning, J. C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Article  Google Scholar 

  60. Freeman, B. G., Strimas-Mackey, M. & Miller, E. T. Interspecific competition limits bird species’ ranges in tropical mountains. Science 377, 416–420 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, 6332 (2017).

    Article  Google Scholar 

  62. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    Article  PubMed  Google Scholar 

  64. Cucherousset, J. & Villéger, S. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecol. Indic. 56, 152–160 (2015).

    Article  CAS  Google Scholar 

  65. Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1349 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    Article  PubMed  Google Scholar 

  68. Liu, C., Wolter, C., Courchamp, F., Roura-Pascual, N. & Jeschke, J. M. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology 103, e3719 (2022).

    Article  PubMed  Google Scholar 

  69. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).

    Article  Google Scholar 

  71. Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).

    Article  Google Scholar 

  73. Assis, J. et al. Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).

    Article  Google Scholar 

  74. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  75. Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article  Google Scholar 

  76. Bailey, R. G. in Ecoregions: The Ecosystem Geography of the Oceans and Continents 21–31 (Springer, 1998).

  77. Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article  Google Scholar 

  78. Qiao, H., Escobar, L. E., Saupe, E. E., Ji, L. & Soberón, J. A cautionary note on the use of hypervolume kernel density estimators in ecological niche modelling. Glob. Ecol. Biogeogr. 26, 1066–1070 (2017).

    Article  Google Scholar 

  79. Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3.6-26 https://cran.r-project.org/web/packages/raster/raster.pdf (2021).

  80. Wand, M. P. & Jones, M. C. Kernel Smoothing (Chapman and Hall/CRC, 1994).

  81. Brown, J. L. & Carnaval, A. C. A tale of two niches: methods, concepts, and evolution. Front. Biogeogr. 11, e44158 (2019).

    Article  Google Scholar 

  82. Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).

    Article  Google Scholar 

  83. Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine - Open Source (‘GEOS’). R package version 0.6-4 https://cran.r-project.org/src/contrib/Archive/rgeos/ (2018).

  84. Van-Aelst, S. & Rousseeuw, P. Minimum volume ellipsoid. Wiley Interdiscip. Rev. Comput. Stat. 1, 71–82 (2009).

    Article  Google Scholar 

  85. Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography 41, 521–534 (2018).

    Google Scholar 

  86. Escobar, L. E., Qiao, H., Cabello, J. & Peterson, A. T. Ecological niche modeling re-examined: a case study with the Darwin’s fox. Ecol. Evol. 8, 4757–4770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Osorio-Olvera, L., Yáñez-Arenas, C., Martínez-Meyer, E. & Peterson, T. A. Relationships between population densities and niche-centroid distances in North American birds. Ecol. Lett. 23, 555–564 (2020).

    Article  PubMed  Google Scholar 

  88. Soberón, J. A Grinnellian niche perspective on species–area relationships. Am. Nat. 194, 760–775 (2019).

    Article  PubMed  Google Scholar 

  89. Soberón, J. & Peterson, A. T. What is the shape of the fundamental Grinnellian niche? Theor. Ecol. 13, 105–115 (2020).

    Article  Google Scholar 

  90. Maechler, M. et al. robustbase: Basic robust statistics. R package version 0.93-8 https://cran.r-project.org/web/packages/robustbase/robustbase.pdf (2021).

  91. Janzen, D. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  92. Chevalier, M., Broennimann, O. & Guisan, A. Climate change may reveal currently unavailable parts of species’ ecological niches. figshare https://doi.org/10.6084/m9.figshare.21916419.v1 (2024).

Download references

Acknowledgements

We are grateful to F. Mazel who provided important comments on some sections of the manuscript. We are also grateful to the International Union for Conservation of Nature consortium for their amazing assessment of species distributions. A.G. obtained support from the Swiss National Science Foundation (grant number CR23I2_162754) and ValPar.CH national project (granted by the Swiss Federal Office for the Environment).

Author information

Authors and Affiliations

Authors

Contributions

M.C. developed the idea, processed the data, ran the analyses and wrote the first draft of the manuscript. O.B. and A.G. contributed to refining the hypotheses, concepts and analyses. O.B. and M.C. produced the figures. All authors provided critical comments on previous versions of the manuscript and contributed to writing the final version.

Corresponding authors

Correspondence to Mathieu Chevalier, Olivier Broennimann or Antoine Guisan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Alison Eyres, David Nogues-Bravo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Discussion and Table 1.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, M., Broennimann, O. & Guisan, A. Climate change may reveal currently unavailable parts of species’ ecological niches. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02426-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing