Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limited herbivore migration during the Last Glacial Period of Kenya

Abstract

Eastern Africa is home to the largest terrestrial migrations on Earth. Though these migratory systems have been well studied for decades, little is known of their antiquity and evolutionary history. Serially sampled strontium stable isotopes (87Sr/86Sr) from tooth enamel can be used to track migration in mammals. Here we analyse 87Sr/86Sr for 79 bovid and equid individuals representing 18 species from four localities in Kenya to characterize prehistoric migratory systems during the Last Glacial Period (115–11.7 ka). Of the species analysed, 16 lack definitive evidence for migration, including blue wildebeest (Connochaetes taurinus), Thomson’s gazelle (Eudorcas thomsonii) and plains zebra (Equus quagga), which are long-distance migrants today in the Greater Serengeti Ecosystem and historically in the Athi-Kapiti Plains. Only two species, the extinct wildebeests Rusingoryx atopocranion and Megalotragus sp., were migratory. These findings suggest a possible alternative narrative about ecosystem dynamics during the Last Glacial Period and shed light on the behaviour of both extant and extinct species at this time. In particular, these results indicate that migratory behaviour in extant species either emerged during the Holocene or was more spatiotemporally constrained in the past. Our results contribute to a growing body of evidence suggesting that the structure and function of geologically recent large mammal communities in eastern Africa differed considerably from those observed in the present day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 87Sr/86Sr isoscape of southern Kenya and northern Tanzania.
Fig. 2: 87Sr/86Sr results for each individual.
Fig. 3: Subsampled standard deviations of 87Sr/86Sr for each individual.

Similar content being viewed by others

Data availability

All raw data associated with this work are available in supplementary tables.

References

  1. Estes, R. D. The Gnu’s World (Univ. California Press, 2014).

  2. Allsopp, R. & Baldry, D. A. T. A general description of the Lambwe Valley area of South Nyanza District, Kenya. Bull. World Health Organ. 47, 691–697 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Marean, C. W. Hunter-gatherer foraging strategies in tropical grasslands: model building and testing in the East African Middle and Later Stone Age. J. Anthropol. Archaeol. 16, 189–225 (1997).

    Article  Google Scholar 

  4. Holdo, R. M., Holt, R. D. & Fryxell, J. M. Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. Am. Nat. 173, 431–445 (2009).

    Article  PubMed  Google Scholar 

  5. Anderson, T. et al. Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology 91, 1519–1529 (2010).

    Article  PubMed  Google Scholar 

  6. Naidoo, R. et al. A newly discovered wildlife migration in Namibia and Botswana is the longest in Africa. Oryx 50, 138–146 (2016).

    Article  Google Scholar 

  7. Morjan, M. D. et al. Armed conflict and development in South Sudan threatens some of Africa’s longest and largest ungulate migrations. Biodivers. Conserv. 27, 365–380 (2018).

    Article  Google Scholar 

  8. Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).

    Article  Google Scholar 

  9. Hoppe, K., Koch, P., Carlson, R. & Webb, S. Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 27, 439–442 (1999).

    Article  CAS  Google Scholar 

  10. Wooller, M. et al. Lifetime mobility of an Arctic woolly mammoth. Science 373, 806–808 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Britton, K., Grimes, V., Dau, J. & Richards, M. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). J. Archaeol. Sci. 36, 1163–1172 (2009).

    Article  Google Scholar 

  12. Glassburn, C. et al. Strontium and oxygen isotope profiles of sequentially sampled modern bison (Bison bison bison) teeth from interior Alaska as proxies of seasonal mobility. Arctic 71, 183–200 (2018).

    Article  Google Scholar 

  13. Hodell, D., Quinn, R., Brenner, M. & Kamenov, G. Spatial variation of strontium isotopes (Sr-87/Sr-86) in the Maya region: a tool for tracking ancient human migration. J. Archaeol. Sci. 31, 585–601 (2004).

    Article  Google Scholar 

  14. Lugli, F. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat. Ecol. Evol. 3, 905–911 (2019).

    Article  PubMed  Google Scholar 

  15. Price, T. D., Knipper, C., Grupe, G. & Smrcka, V. Strontium isotopes and prehistoric human migration: the Bell Beaker period in central Europe. Eur. J. Archaeol. 7, 9–40 (2004).

    Article  Google Scholar 

  16. Copeland, S. R. et al. Strontium isotope investigation of ungulate movement patterns on the Pleistocene Paleo-Agulhas Plain of the Greater Cape Floristic Region, South Africa. Quat. Sci. Rev. 141, 65–84 (2016).

    Article  Google Scholar 

  17. Tucker, L. et al. Initial assessment of bioavailable strontium at Oldupai Gorge, Tanzania: potential for early mobility studies. J. Archaeol. Sci. https://doi.org/10.1016/j.jas.2019.105066 (2020).

  18. Janzen, A. et al. Spatial variation in bioavailable strontium isotope ratios (Sr-87/Sr-86) in Kenya and northern Tanzania: Implications for ecology, paleoanthropology, and archaeology. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.109957 (2020).

  19. O’Brien, K. et al. Migratory behavior in the enigmatic Late Pleistocene bovid Rusingoryx atopocranion. Front. Environ. Archaeol. 2, 1237714 (2023).

    Article  Google Scholar 

  20. Jenkins, K. E. et al. Evaluating the potential for tactical hunting in the Middle Stone Age: insights from a bonebed of the extinct bovid, Rusingoryx atopocranion. J. Hum. Evol. 108, 72–91 (2018).

    Article  Google Scholar 

  21. Bataille, C. et al. A bioavailable strontium isoscape for Western Europe: a machine learning approach. PLoS ONE https://doi.org/10.1371/journal.pone.0197386 (2018).

  22. Bataille, C., Crowley, B., Wooller, M. & Bowen, G. Advances in global bioavailable strontium isoscapes. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.109849 (2020).

  23. Lazzerini, N. et al. Monthly mobility inferred from isoscapes and laser ablation strontium isotope ratios in caprine tooth enamel. Sci. Rep. 11, 2277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, D. et al. BITS: a Bayesian isotope turnover and sampling model for strontium isotopes in proboscideans and its potential utility in movement ecology. Methods Ecol. Evol. 14, 2800–2813 (2023).

    Article  Google Scholar 

  25. Estes, R. D. The Behavior Guide to African Mammals (Univ. California Press, 1991).

  26. Tryon, C. A. et al. Late Pleistocene artefacts and fauna from Rusinga and Mfangano islands, Lake Victoria, Kenya. Azania Archaeol. Res. Afr. 47, 14–38 (2012).

    Google Scholar 

  27. Faith, J. T. et al. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. J. Hum. Evol. 83, 28–45 (2015).

    Article  PubMed  Google Scholar 

  28. Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marean, C. W. Late Quaternary Paleoenvironments and Faunal Exploitation in East Africa. PhD thesis, Univ. California, Berkeley (1990).

  30. Silberbauer, G. B. Hunter and Habitat in the Central Kalahari Desert (Cambridge Univ. Press, 1981).

  31. Lee, R. B. Kung spatial organization: an ecological and historical perspective. Hum. Ecol. 1, 125–147 (1972).

    Article  Google Scholar 

  32. Bower, J. R. F., Nelson, C. M., Waibel, A. F. & Wandibba, S. The University of Massachusetts’ Later Stone Age/Pastoral ‘Neolithic’ comparative study in central Kenya: an overview. Azania. Archaeol. Res. Afr. 12, 119–146 (1977).

    Google Scholar 

  33. Bower, J. R. F. & Nelson, C. M. Early pottery and pastoral cultures of the Central Rift Valley, Kenya. Man 13, 554–566 (1978).

    Article  Google Scholar 

  34. Coppolillo, P. B. et al. The landscape ecology of pastoral herding: spatial analysis of land use and livestock production in East Africa. Hum. Ecol. 28, 527–560 (2000).

    Article  Google Scholar 

  35. Beverly, E. J. et al. Rapid Pleistocene desiccation and the future of Africa’s Lake Victoria. Earth Planet. Sci. Lett. 530, 115883 (2020).

    Article  CAS  Google Scholar 

  36. Tryon, C. A. & Faith, J. T. A demographic perspective on the Middle to Later Stone Age transition from Nasera rockshelter, Tanzania. Philos. Trans. R. Soc. B 371, 20150238 (2016).

    Article  Google Scholar 

  37. Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tryon, C. A. et al. The Pleistocene prehistory of the Lake Victoria Basin. Quat. Int. 404, 100–114 (2016).

    Article  Google Scholar 

  39. Faith, J. T. et al. Late Pleistocene mammals from Kibogo, Kenya: systematic paleontology, paleoenvironments, and non-analog associations. J. Vertebr. Paleontol. 40, e1841781 (2020).

    Article  Google Scholar 

  40. Marean, C. W. Implications of late Quaternary mammalian fauna from Lukenya Hill (south-central Kenya) for paleoenvironmental change and faunal extinctions. Quat. Res. 37, 239–255 (1992).

    Article  Google Scholar 

  41. Gramly, R. M. Upper Pleistocene archaeological occurrences at site GvJm/22, Lukenya Hill, Kenya. Man 11, 319–344 (1976).

    Article  Google Scholar 

  42. Tryon, C. A. et al. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya). Proc. Natl Acad. Sci. USA 112, 2682–2687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharp, W. et al. Th-230/U burial dating of ostrich eggshell. Quat. Sci. Rev. 219, 263–276 (2019).

    Article  Google Scholar 

  44. Balasse, M., Bocherens, H., Mariotti, A. & Ambrose, S. Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). J. Archaeol. Sci. 28, 235–245 (2001).

    Article  Google Scholar 

  45. Bendrey, R., Vella, D., Zazzo, A., Balasse, M. & Lepetz, S. Exponentially decreasing tooth growth rate in horse teeth: implications for isotopic analyses. Archaeometry 57, 1104–1124 (2015).

    Article  CAS  Google Scholar 

  46. Milhaud, G. & Nezit, J. Molar development in sheep—morphology, radiography, microhardness. Recl. Med. Vet. 167, 121–127 (1991).

    Google Scholar 

  47. Nacarino-Meneses, C., Jordana, X., Orlandi-Oliveras, G. & Kohler, M. Reconstructing molar growth from enamel histology in extant and extinct Equus Sci. Rep. https://doi.org/10.1038/s41598-017-16227-2 (2017).

  48. Zazzo, A. et al. The isotope record of short- and long-term dietary changes in sheep tooth enamel: implications for quantitative reconstruction of paleodiets. Geochim. Cosmochim. Acta 74, 3571–3586 (2010).

    Article  CAS  Google Scholar 

  49. Hoppe, K., Stover, S., Pascoe, J. & Amundson, R. Tooth enamel biomineralization in extant horses: implications for isotopic microsampling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 355–365 (2004).

    Article  Google Scholar 

  50. Mackey, G. N. & Fernandez, D. P. High throughput Sr isotope analysis using an automated column chemistry system. America Geophysical Union (2011).

Download references

Acknowledgements

Stable isotope processing was funded by the National Science Foundation Doctoral Dissertation Research Improvement Grant no. 2234426 to J.T.F. and K.O. and Graduate Research Fellowship (fellow ID 2020294514) to K.O., a Graduate Research Grant from the Leakey Foundation to K.O., the Dawson Grant from the Society of Vertebrate Paleontology to K.O. and a University of Utah Global Change and Sustainability Center Graduate Research Grant to K.O. We thank J. Rowan and A. Janzen for their roles in conceiving this project and S. Muteti and E. Ndiema for allowing destructive analysis on specimens at the National Museums of Kenya.

Author information

Authors and Affiliations

Authors

Contributions

K.O. and J.T.F. conceived the project. K.O., J.T.F., C.A.T. and T.E.C. provided funding. K.O., L.A., T.E.C., K.P. and D.P.F. conducted stable isotope analyses. K.O. wrote the paper. All authors provided paper feedback and gave final approval for paper publication.

Corresponding author

Correspondence to Kaedan O’Brien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Abraham Dabengwa, Daniel Green and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and Figs. 1–83.

Reporting Summary

Peer Review File

Supplementary Tables 1 and 2

Supplementary Table 1. Results of 87Sr/86Sr and elemental ratios for all samples. Supplementary Table 2. Subsampled standard deviation values for all individuals and classification as migrant, possible migrant or non-migrant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, K., Podkovyroff, K., Fernandez, D.P. et al. Limited herbivore migration during the Last Glacial Period of Kenya. Nat Ecol Evol 8, 1191–1198 (2024). https://doi.org/10.1038/s41559-024-02413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02413-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology