Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbes as marine habitat formers and ecosystem engineers

Abstract

Despite their small individual size, marine prokaryotic and eukaryotic microbes can form large 3D structures and complex habitats. These habitats contribute to seafloor heterogeneity, facilitating colonization by animals and protists. They also provide food and refuge for a variety of species and promote novel ecological interactions. Here we illustrate the role of microbes as ecosystem engineers and propose a classification based on five types of habitat: microbial mats, microbial forests, microbial-mineralized habitats, microbial outcrops and microbial nodules. We also describe the metabolic processes of microbial habitat formers and their ecological roles, highlighting current gaps in knowledge. Their biogeography indicates that these habitats are widespread in all oceans and are continuously being discovered across latitudes and depths. These habitats are also expected to expand under future global change owing to their ability to exploit extreme environmental conditions. Given their high ecological relevance and their role in supporting endemic species and high biodiversity levels, microbial habitats should be included in future spatial planning, conservation and management measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of different marine microbial habitats.
Fig. 2: Morphology of microbial habitat formers.
Fig. 3: A graphical representation of the five main categories of marine microbial habitats and their sub-categories, with details of their structures.
Fig. 4: An example of the main ecological roles of microbial habitats.
Fig. 5: Global distribution of microbial habitats.

Similar content being viewed by others

References

  1. Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).

    Article  Google Scholar 

  2. Gómez-Gras, D. et al. Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves. Proc. R. Soc. B 288, 20212384 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thomsen, M. S. et al. Heterogeneity within and among co-occurring foundation species increases biodiversity. Nat. Commun. 13, 581 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. York, A. Marine biogeochemical cycles in a changing world. Nat. Rev. Microbiol. 16, 259–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kovalenko, K., Thomaz, S. & Warfe, D. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    Article  Google Scholar 

  7. Breusing, C. et al. Biophysical and population genetic models predict the presence of ‘phantom’ stepping stones connecting Mid-Atlantic Ridge vent ecosystems. Curr. Biol. 26, 2257–2267 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Caldwell, I. & Gergel, S. Thresholds in seascape connectivity: influence of mobility, habitat distribution, and current strength on fish movement. Landsc. Ecol. 28, 1937–1948 (2013).

    Article  Google Scholar 

  9. Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M. & Koedam, N. Global-scale dispersal and connectivity in mangroves. Proc. Natl Acad. Sci. USA 116, 915–922 (2019).

    Article  PubMed  Google Scholar 

  10. Cohen, Y. Bioremediation of oil by marine microbial mats. Int. Microbiol. 5, 189–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Mar. Sci. 3, 72 (2016).

  13. Prieto-Barajas, C. M., Valencia-Cantero, E. & Santoyo, G. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron. J. Biotechnol. 31, 48–56 (2018).

    Article  Google Scholar 

  14. Grünke, S. et al. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9, 330–348 (2011).

    Article  PubMed  Google Scholar 

  15. Valentine, D. L. et al. Autonomous marine robotic technology reveals an expansive benthic bacterial community relevant to regional nitrogen biogeochemistry. Environ. Sci. Technol. 50, 11057–11065 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME J. 6, 1250–1259 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Bolhuis, H., Cretoiu, M. S. & Stal, L. J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 90, 335–350 (2014).

    CAS  PubMed  Google Scholar 

  18. Rastelli, E. et al. High potential for temperate viruses to drive carbon cycling in chemoautotrophy-dominated shallow-water hydrothermal vents. Environ. Microbiol. 19, 4432–4446 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Flood, B. E., Louw, D. C., Van der Plas, A. K. & Bailey, J. V. Giant sulfur bacteria (Beggiatoaceae) from sediments underlying the Benguela upwelling system host diverse microbiomes. PLoS ONE 16, e0258124 (2021).

  20. Allen, M. A., Goh, F., Burns, B. P. & Neilan, B. A. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7, 82–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Carreira, C. et al. Fungi and viruses as important players in microbial mats. FEMS Microbiol. Ecol. 96, fiaa187 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Maza-Márquez, P., Lee, M. D. & Bebout, B. M. The abundance and diversity of fungi in a hypersaline microbial mat from Guerrero Negro, Baja California, México. J. Fungi 7, 210 (2021).

    Article  Google Scholar 

  23. Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Velázquez, D. et al. Ecosystem function decays by fungal outbreaks in Antarctic microbial mats. Sci. Rep. 6, 22954 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Franks, J. & Stolz, J. F. Flat laminated microbial mat communities. Earth Sci. Rev. 96, 163–172 (2009).

    Article  CAS  Google Scholar 

  26. Guerrero, R., Piqueras, M. & Berlanga, M. Microbial mats and the search for minimal ecosystems. Int. Microbiol. 5, 177–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Armitage, D. W., Kimberley, L. G., Youngblut, N. D., Buckley, D. H. & Zinder, S. H. Millimeter-scale patterns of phylogenetic and trait diversity in a salt marsh microbial mat. Front. Microbiol. 3, 293 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Cardoso, D. C., Cretoiu, M. S., Stal, L. J. & Bolhuis, H. Seasonal development of a coastal microbial mat. Sci. Rep. 9, 9035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jørgensen, B. B., Dunker, R., Grünke, S. & Røy, H. Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79°N). FEMS Microbiol. Ecol. 73, 500–513 (2010).

    PubMed  Google Scholar 

  30. Stokke, R. et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ. Microbiol. 17, 4063–4077 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Kato, S. & Yamagishi, A. A novel large filamentous deltaproteobacterium on hydrothermally inactive sulfide chimneys of the Southern Mariana Trough. Deep Sea Res. Part I 110, 99–105 (2016).

    Article  CAS  Google Scholar 

  32. Kato, S. et al. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ. Microbiol. 20, 862–877 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Grünke, S. et al. Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats. ISME J. 4, 1031–1043 (2010).

    Article  PubMed  Google Scholar 

  34. Schulz, H. N. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kouris, A., Kim Juniper, S., Frébourg, G. & Gaill, F. Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Mar. Ecol. 28, 63–71 (2007).

    Article  Google Scholar 

  36. Kouris, A., Limén, H., Stevens, C. & Juniper, S. Blue mats: faunal composition and food web structure in colonial ciliate (Folliculinopsis sp.) mats at Northeast Pacific hydrothermal vents. Mar. Ecol. Prog. Ser. 412, 93–101 (2010).

    Article  CAS  Google Scholar 

  37. Pasulka, A. L. et al. Colonial tube-dwelling ciliates influence methane cycling and microbial diversity within methane seep ecosystems. Front. Mar. Sci. 3, 276 (2017).

  38. Buck, K. R., Barry, J. P. & Hallam, S. J. Thioploca spp. sheaths as niches for bacterial and protistan assemblages. Mar. Ecol. 35, 395–400 (2014).

    Article  Google Scholar 

  39. Gallardo, V. A. Large benthic microbial communities in sulphide biota under Peru–Chile Subsurface Countercurrent. Nature 268, 331–332 (1977).

    Article  Google Scholar 

  40. Danovaro, R. et al. A submarine volcanic eruption leads to a novel microbial habitat. Nat. Ecol. Evol. 1, 0144 (2017).

    Article  Google Scholar 

  41. Gallardo, V., Fonseca, A., Musleh, S. & Espinoza, C. Extrapolations of standing-stocks of big bacteria in Humboldt Eastern Boundary Current Ecosystem (HEBCE). Oceanogr. Open Access 1, 1000110 (2013).

  42. Kalanetra, K. M. & Nelson, D. C. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar. Biol. 157, 791–800 (2010).

    Article  PubMed  Google Scholar 

  43. Schmaljohann, R. et al. Oxygen-minimum zone sediments in the northeastern Arabian Sea off Pakistan: a habitat for the bacterium Thioploca. Mar. Ecol. Prog. Ser. 211, 27–42 (2001).

    Article  CAS  Google Scholar 

  44. Grünke, S. et al. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9, 2947–2960 (2012).

    Article  Google Scholar 

  45. de Beer, D., Ferdelman, T., MacGregor, B. J., Teske, A. & Schutte, C. A. in Marine Hydrocarbon Seeps: Microbiology and Biogeochemistry of a Global Marine Habitat (eds Teske, A. & Carvalho, V.) 173–181 (Springer, 2020).

  46. Teske, A. & Salman, V. in The Prokaryotes (eds Rosenberg, E. et al.) 93–134 (Springer, 2014).

  47. Salman, V. et al. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst. Appl. Microbiol. 34, 243–259 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Jørgensen, B. B. & Gallardo, V. A. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999).

    Article  Google Scholar 

  49. Schulz, H. N., Jorgensen, B. B., Fossing, H. A. & Ramsing, N. B. Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile. Appl. Environ. Microbiol. 62, 1855–1862 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huettel, M., Forster, S., Kloser, S. & Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62, 1863–1872 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schulz, H. N., Strotmann, B., Gallardo, V. & Jørgensen, B. Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepción, Chile. Mar. Ecol. Prog. Ser. 200, 117–126 (2000).

    Article  CAS  Google Scholar 

  52. Ford, A. K. et al. Reefs under siege—the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).

    Article  Google Scholar 

  53. Sellanes, J. et al. A new threat to local marine biodiversity: filamentous mats proliferating at mesophotic depths off Rapa Nui. PeerJ 9, e12052 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paul, V. J., Thacker, R. W., Banks, K. & Golubic, S. Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24, 693–697 (2005).

    Article  Google Scholar 

  55. Stevens, E. W. N. et al. Barite encrustation of benthic sulfur‐oxidizing bacteria at a marine cold seep. Geobiology 13, 588–603 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Stott, M. B. et al. Culture-independent characterization of a novel microbial community at a hydrothermal vent at Brothers volcano, Kermadec arc, New Zealand. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2007JB005477 (2008).

  57. Schulz, H. N. & Schulz, H. D. Large sulfur bacteria and the formation of phosphorite. Science 307, 416–418 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Edwards, K. J. et al. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J. 5, 1748–1758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lubetkin, M. et al. Nontronite-bearing tubular hydrothermal deposits from a Galapagos seamount. Deep Sea Res. Part II 150, 181–194 (2018).

    Article  CAS  Google Scholar 

  60. Jones, B., de Ronde, C. E. J. & Renaut, R. W. Mineralized microbes from Giggenbach submarine volcano. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2007JB005482 (2008).

  61. Hein, J. R., Clague, D. A., Koski, R. A., Embley, R. W. & Dunham, R. E. Metalliferous sediment and a silica-hematite deposit within the Blanco Fracture Zone, Northeast Pacific. Mar. Georesour. Geotechnol. 26, 317–339 (2008).

    Article  CAS  Google Scholar 

  62. Steen, I. H. et al. Novel barite chimneys at the Loki’s Castle vent field shed light on key factors shaping microbial communities and functions in hydrothermal systems. Front. Microbiol. 6, 1519 (2016).

    Article  Google Scholar 

  63. Mänd, K. et al. Authigenesis of biomorphic apatite particles from Benguela upwelling zone sediments off Namibia: the role of organic matter in sedimentary apatite nucleation and growth. Geobiology 16, 640–658 (2018).

    Article  PubMed  Google Scholar 

  64. Chan, C. S. et al. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front. Microbiol. 7, 796 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Emerson, D. et al. A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2, e667 (2007).

  66. Li, J. et al. Microbial diversity and biomineralization in low-temperature hydrothermal iron-silica-rich precipitates of the Lau Basin hydrothermal field. FEMS Microbiol. Ecol. 81, 205–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Vander Roost, J., Thorseth, I. H. & Dahle, H. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge. PLoS ONE 12, e0185008 (2017).

  68. Moussard, H., Corre, E., Cambon-Bonavita, M.-A., Fouquet, Y. & Jeanthon, C. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13°N hydrothermal vent field, East Pacific Rise. FEMS Microbiol. Ecol. 58, 449–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Omoregie, E. O. et al. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl. Environ. Microbiol. 74, 3198–3215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sievert, S. M., Wieringa, E. B. A., Wirsen, C. O. & Taylor, C. D. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Loher, M. et al. Seafloor sealing, doming, and collapse associated with gas seeps and authigenic carbonate structures at Venere mud volcano, Central Mediterranean. Deep Sea Res. Part Oceanogr. Res. Pap. 137, 76–96 (2018).

    Article  CAS  Google Scholar 

  72. White, R. A., Visscher, P. T. & Burns, B. P. Between a rock and a soft place: the role of viruses in lithification of modern microbial mats. Trends Microbiol. 29, 204–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Pacton, M. et al. Viruses as new agents of organomineralization in the geological record. Nat. Commun. 5, 4298 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Suosaari, E. P. et al. The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia. Sci. Rep. 12, 12902 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reitner, J. in Microbial Mats (eds Seckbach, J. & Oren, A.) Vol. 14, 207–220 (Springer, 2010).

  76. Reid, R. P. et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. White, R. A. in Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth (eds Souza, V. et al.) 107–134 (Springer, 2020).

  78. Rishworth, G. M. et al. Non-reliance of metazoans on stromatolite-forming microbial mats as a food resource. Sci. Rep. 7, 42614 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Javaux, E. J. Challenges in evidencing the earliest traces of life. Nature 572, 451–460 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 20557 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth Sci. Rev. 96, 141–162 (2009).

    Article  CAS  Google Scholar 

  82. Guido, A., Rosso, A., Sanfilippo, R., Miriello, D. & Belmonte, G. Skeletal vs microbialite geobiological role in bioconstructions of confined marine environments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 593, 110920 (2022).

    Article  Google Scholar 

  83. Rosso, A. et al. Colonisers of the dark: biostalactite‐associated metazoans from ‘lu Lampiùne’ submarine cave (Apulia, Mediterranean Sea). Mar. Ecol. 42, e12634 (2021).

    Article  CAS  Google Scholar 

  84. Guido, A. et al. Commensal symbiosis between agglutinated polychaetes and sulfate-reducing bacteria. Geobiology 12, 265–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Guido, A. et al. Cryptic serpulid-microbialite bioconstructions in the Kakoskali submarine cave (Cyprus, Eastern Mediterranean). Facies 63, 1–17 (2017).

    Article  Google Scholar 

  86. Levin, L. A., Mendoza, G. F. & Grupe, B. M. Methane seepage effects on biodiversity and biological traits of macrofauna inhabiting authigenic carbonates. Deep Sea Res. Part II 137, 26–41 (2017).

    Article  CAS  Google Scholar 

  87. Marlow, J. J. et al. Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites. Proc. Natl Acad. Sci. USA 118, e2006857118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meister, P. et al. Anaerobic methane oxidation inducing carbonate precipitation at abiogenic methane seeps in the Tuscan archipelago (Italy). PLoS ONE 13, e0207305 (2018).

  89. Case, D. H. et al. Methane seep carbonates host distinct, diverse, and dynamic microbial assemblages. mBio 6, e01348-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Marlow, J. J. et al. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat. Commun. 5, 5094 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Jiang, X. D. et al. Characterization and quantification of magnetofossils within abyssal manganese nodules from the Western Pacific Ocean and implications for nodule formation. Geochem. Geophys. Geosyst. 21, e2019GC008811 (2020).

    Article  CAS  Google Scholar 

  92. Hein, J. R., Koschinsky, A. & Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat. Rev. Earth Environ. 1, 158–169 (2020).

    Article  CAS  Google Scholar 

  93. Diaz, M. R. & Eberli, G. P. Decoding the mechanism of formation in marine ooids: a review. Earth Sci. Rev. 190, 536–556 (2019).

    Article  CAS  Google Scholar 

  94. Wear, E. K. et al. Bacterial and archaeal communities in polymetallic nodules, sediments, and bottom waters of the abyssal Clarion-Clipperton zone: emerging patterns and future monitoring considerations. Front. Mar. Sci. 8, 634803 (2021).

    Article  Google Scholar 

  95. Wang, X. & Müller, W. E. G. Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol. 27, 375–383 (2009).

    Article  PubMed  Google Scholar 

  96. Lindh, M. et al. From the surface to the deep-sea: bacterial distributions across polymetallic nodule fields in the Clarion-Clipperton zone of the Pacific Ocean. Front. Microbiol. 8, 1696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Shulse, C. N., Maillot, B., Smith, C. R. & Church, M. J. Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities. Microbiol. Open 6, e00428 (2017).

    Article  Google Scholar 

  98. Wang, C.-S. et al. Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone. J. Microbiol. 48, 573–585 (2010).

    Article  PubMed  Google Scholar 

  99. Wu, Y. et al. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean. Deep Sea Res. Part I 79, 40–49 (2013).

    Article  CAS  Google Scholar 

  100. Xu, M., Wang, P., Wang, F. & Xiao, X. Microbial diversity at a deep-sea station of the Pacific nodule province. Biodivers. Conserv. 14, 3363–3380 (2005).

    Article  Google Scholar 

  101. Blöthe, M. et al. Manganese-cycling microbial communities inside deep-sea manganese nodules. Environ. Sci. Technol. 49, 7692–7700 (2015).

    Article  PubMed  Google Scholar 

  102. Shiraishi, F. et al. Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: implications for biogeochemical cycles. Earth Planet. Sci. Lett. 447, 10–20 (2016).

    Article  CAS  Google Scholar 

  103. Di Bella, M. et al. Modern iron ooids of hydrothermal origin as a proxy for ancient deposits. Sci. Rep. 9, 7107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Salama, W., El Aref, M. M. & Gaupp, R. Mineral evolution and processes of ferruginous microbialite accretion – an example from the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya Depression, Western Desert, Egypt. Geobiology 11, 15–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297, 1013–1015 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Nelson, D. C., Wirsen, C. O. & Jannasch, H. W. Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl. Environ. Microbiol. 55, 2909–2917 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McAllister, S. M. et al. Validating the Cyc2 neutrophilic iron oxidation pathway using meta-omics of Zetaproteobacteria iron mats at marine hydrothermal vents. mSystems 5, e00553-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Beckmann, S. et al. Expanding the repertoire of electron acceptors for the anaerobic oxidation of methane in carbonates in the Atlantic and Pacific Ocean. ISME J. 15, 2523–2536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gischler, E. et al. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstructions cemented by microbial micrite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 34–51 (2017).

    Article  Google Scholar 

  110. Yu, H. & Leadbetter, J. R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 583, 453–458 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cordes, E. E. et al. The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity: seep habitat heterogeneity. Mar. Ecol. 31, 51–65 (2010).

    Article  Google Scholar 

  112. Ding, W. et al. Early animal evolution and highly oxygenated seafloor niches hosted by microbial mats. Sci. Rep. 9, 13628 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bortoluzzi, G. et al. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago). Geobiology 15, 664–677 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Levin, L. A. et al. Biodiversity on the rocks: macrofauna inhabiting authigenic carbonate at Costa Rica methane seeps. PLoS ONE 10, e0131080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Génio, L., Warén, A., Matos, F. L. & Cunha, M. R. The snails’ tale in deep-sea habitats in the Gulf of Cadiz (NE Atlantic). Biogeosciences 10, 5159–5170 (2013).

    Article  Google Scholar 

  116. Bowden, D. A. et al. Cold seep epifaunal communities on the Hikurangi margin, New Zealand: composition, succession, and vulnerability to human activities. PLoS ONE 8, e76869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pereira, O. S. et al. The dynamic influence of methane seepage on macrofauna inhabiting authigenic carbonates. Ecosphere 12, e03744 (2021).

    Article  Google Scholar 

  118. Quattrini, A. M. et al. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities. PLoS ONE 10, e0139904 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cuvelier, D. et al. Are seamounts refuge areas for fauna from polymetallic nodule fields? Biogeosciences 17, 2657–2680 (2020).

    Article  Google Scholar 

  120. Schoening, T. et al. Megafauna community assessment of polymetallic-nodule fields with cameras: platform and methodology comparison. Biogeosciences 17, 3115–3133 (2020).

    Article  Google Scholar 

  121. Gooday, A. J. et al. Giant protists (xenophyophores, Foraminifera) are exceptionally diverse in parts of the abyssal eastern Pacific licensed for polymetallic nodule exploration. Biol. Conserv. 207, 106–116 (2017).

    Article  Google Scholar 

  122. Levin, L. A. & Rouse, G. W. Giant protists (xenophyophores) function as fish nurseries. Ecology 101, e02933 (2020).

    Article  PubMed  Google Scholar 

  123. Carrasco, F. D., Gallardo, V. A. & Baltazar, M. The structure of the benthic macrofauna collected across a transect at the central chile shelf and relationships with giant sulfur bacteria Thioploca spp. mats. Cah. Biol. Mar. 40, 195–202 (1999).

    Google Scholar 

  124. Neira, C., Sellanes, J., Soto, A., Gutiérrez, D. & Gallardo, V. A. Meiofauna and sedimentary organic matter off Central Chile: response to changes caused by the 1997–1998 El Niño. Oceanol. Acta 24, 313–328 (2001).

    Article  CAS  Google Scholar 

  125. Pascal, P., Dubois, S., Boschker, H. & Gros, O. Trophic role of large benthic sulfur bacteria in mangrove sediment. Mar. Ecol. Prog. Ser. 516, 127–138 (2014).

    Article  CAS  Google Scholar 

  126. Currie, B., Utne-Palm, A. C. & Salvanes, A. G. V. Winning ways with hydrogen sulphide on the Namibian shelf. Front. Mar. Sci. 5, 341 (2018).

    Article  Google Scholar 

  127. Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12914 (2016).

  128. Currin, C., Levin, L., Talley, T., Michener, R. & Talley, D. The role of cyanobacteria in Southern California salt marsh food webs. Mar. Ecol. 32, 346–363 (2011).

    Article  Google Scholar 

  129. Al-Maslamani, I., Le Vay, L. & Kennedy, H. Feeding on intertidal microbial mats by postlarval tiger shrimp, Penaeus semisulcatus De Haan. Mar. Biol. 156, 2001–2009 (2009).

    Article  Google Scholar 

  130. Seabrook, S., De Leo, F. C. & Thurber, A. R. Flipping for food: the use of a methane seep by tanner crabs (Chionoecetes tanneri). Front. Mar. Sci. 6, 43 (2019).

  131. Niemann, H. et al. Methane-carbon flow into the benthic food web at cold seeps – a case study from the Costa Rica subduction zone. PLoS ONE 8, e74894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Salvanes, A., Utne-Palm, A., Currie, B. & Braithwaite, V. Behavioural and physiological adaptations of the bearded goby, a key fish species of the extreme environment of the northern Benguela upwelling. Mar. Ecol. Prog. Ser. 425, 193–202 (2011).

    Article  Google Scholar 

  133. Le, J., Girguis, P. & Levin, L. Using deep-sea images to examine ecosystem services associated with methane seeps. Mar. Environ. Res. 181, 105740 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Roa, R. et al. Nursery ground, age structure and abundance of juvenile squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Mar. Ecol. Prog. Ser. 116, 47–54 (1995).

    Article  Google Scholar 

  135. Taylor, C. D., Wirsen, C. O. & Gaill, F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ. Microbiol. 65, 2253–2255 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Levin, L. A. in Oceanography and Marine Biology, an Annual Review (eds Gibson, R. N. et al.) Vol. 43, 1–46 (CRC, 2005).

  137. Drazen, J. C., Goffredi, S. K., Schlining, B. & Stakes, D. S. Aggregations of egg-brooding deep-sea fish and cephalopods on the Gorda Escarpment: a reproductive hot spot. Biol. Bull. 205, 1–7 (2003).

    Article  PubMed  Google Scholar 

  138. Treude, T., Kiel, S., Linke, P., Peckmann, J. & Goedert, J. Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators. Mar. Ecol. Prog. Ser. 437, 175–181 (2011).

    Article  Google Scholar 

  139. Bernardino, A. F., Levin, L. A., Thurber, A. R. & Smith, C. R. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE 4, e33515 (2012).

    Article  Google Scholar 

  140. Chaban, E. M., Schepetov, D. M., Ekimova, I. A., Nekhaev, I. O. & Chеrnyshev, A. V. The first record of the family Parvaplustridae (Gastropoda, Heterobranchia) from hydrothermal vent fields of the Piip Volcano, Bering Sea with the description of a new species of the genus Parvaplustrum. Deep Sea Res. Part II 202, 105135 (2022).

    Article  Google Scholar 

  141. Malyutina, M. V. & Golovan, O. A. The first record of Asellota (Isopoda) from hydrothermal vent biotopes of the submarine Piip Volcano, Bering Sea, with descriptions of two new species of Munnopsidae. Deep Sea Res. Part II 202, 105137 (2022).

    Article  Google Scholar 

  142. Van Gaever, S., Raes, M., Pasotti, F. & Vanreusel, A. Spatial scale and habitat-dependent diversity patterns in nematode communities in three seepage related sites along the Norwegian Sea margin. Mar. Ecol. 31, 66–77 (2010).

    Article  Google Scholar 

  143. Bernhard, J. M., Buck, K. R., Farmer, M. A. & Bowser, S. S. The Santa Barbara Basin is a symbiosis oasis. Nature 403, 77–80 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Bernhard, J. M., Visscher, P. T. & Bowser, S. S. Submillimeter life positions of bacteria, protists, and metazoans in laminated sedimentsof the Santa Barbara Basin. Limnol. Oceanogr. 48, 813–828 (2003).

    Article  Google Scholar 

  145. Crépeau, V. et al. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol. Ecol. 76, 524–540 (2011).

    Article  PubMed  Google Scholar 

  146. Levin, L. A. et al. Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6, 2063–2098 (2009).

    Article  CAS  Google Scholar 

  147. Baco, A. R., Rowden, A. A., Levin, L. A., Smith, C. R. & Bowden, D. A. Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Mar. Geol. 272, 251–259 (2010).

    Article  CAS  Google Scholar 

  148. Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep Sea Res. Part I 55, 777–787 (2008).

    Article  Google Scholar 

  149. Magalhães, V. H. et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz. Sediment. Geol. 243–244, 155–168 (2012).

    Article  Google Scholar 

  150. Guido, A. et al. Pendant bioconstructions cemented by microbial carbonate in submerged marine caves (Holocene, SE Sicily). Palaeogeogr. Palaeoclimatol. Palaeoecol. 388, 166–180 (2013).

    Article  Google Scholar 

  151. Sanfilippo, R., Rosso, A., Guido, A. & Gerovasileiou, V. Serpulid communities from two marine caves in the Aegean Sea, eastern Mediterranean. J. Mar. Biol. Assoc. UK 97, 1059–1068 (2017).

    Article  CAS  Google Scholar 

  152. Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L. & Arbizu, P. M. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Report of the Expert Workshop on Scientific and Technical Guidance on the Use of Biogeographic Classification Systems and Identification of Marine Areas Beyond National Jurisdiction in Need of Protection (Convention on Biological Diversity, 2009).

  154. Report of the Technical Consultation on International Guidelines for the Management of Deep-Sea Fisheries in the High Seas (Food and Agriculture Organization, 2008).

  155. Menini, E. & Van Dover, C. L. An atlas of protected hydrothermal vents. Mar. Policy 108, 103654 (2019).

    Article  Google Scholar 

  156. Gallardo, V. A., Espinoza, C., Fonseca, A. & Musleh, S. Las grandes bacterias del Sulfureto de Humboldt. Gayana 77, 136–170 (2013).

    Google Scholar 

  157. Khimasia, A., Rovere, A. & Pichler, T. Hydrothermal areas, microbial mats and sea grass in Paleochori Bay, Milos, Greece. J. Maps 16, 348–356 (2020).

    Article  Google Scholar 

  158. Breier, J. A., Gomez-Ibanez, D., Reddington, E., Huber, J. A. & Emerson, D. A precision multi-sampler for deep-sea hydrothermal microbial mat studies. Deep Sea Res. Part I 70, 83–90 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Tangherlini for drawing Figs. 3 and 4. This study was conducted in the framework of the National Recovery and Resilience Plan of the Italian Ministry of University and Research funded by the European Union (NextGenerationEU; project code CN_00000033) National Biodiversity Future Center. L.A.L. acknowledges support from NSF OCE-2048720. This Review was carried out in the framework of Project FORESCUE (BioDiversa+) funded by the EU.

Author information

Authors and Affiliations

Authors

Contributions

R.D. conceived the Review and its structure. All authors contributed to the Review’s design and writing. All authors contributed to corrections and approved the submitted version.

Corresponding authors

Correspondence to Roberto Danovaro or Cinzia Corinaldesi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Stephanie Archer and Jason Sylvan for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and references.

Supplementary Table 2

Supplementary Table 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danovaro, R., Levin, L.A., Fanelli, G. et al. Microbes as marine habitat formers and ecosystem engineers. Nat Ecol Evol (2024). https://doi.org/10.1038/s41559-024-02407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-024-02407-7

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene