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Horizontal gene transfer, the exchange of genetic material through means
other thanreproduction, is afundamental force in prokaryotic genome
evolution. Genomic persistence of horizontally transferred genes has
been shown to be influenced by both ecological and evolutionary factors.
However, there is limited availability of ecological information about
species other than the habitats from which they were isolated, which has
prevented a deeper exploration of ecological contributions to horizontal
gene transfer. Here we focus on transfers detected through comparison
ofindividual gene trees to the species tree, assessing the distribution

of gene-exchanging prokaryotes across over a million environmental
sequencing samples. By analysing detected horizontal gene transfer events,
we show distinct functional profiles for recent versus old events. Although
most genes transferred are part of the accessory genome, genes transferred
earlier in evolution tend to be more ubiquitous within present-day species.
We find that co-occurring, interacting and high-abundance species tend

to exchange more genes. Finally, we show that host-associated specialist
species are most likely to exchange genes with other host-associated
specialist species, whereas species found across different habitats have
similar gene exchange ratesirrespective of their preferred habitat.

Our study covers an unprecedented scale of integrated horizontal

gene transfer and environmental information, highlighting broad
eco-evolutionary trends.

The gene content of microbial genomes constantly changes through  once in their evolutionary history**. However, foreign genes can be
gain and loss of genes'. Gene gain through horizontal gene transfer ~ a burden or even toxic to the recipient’, typically persisting only as
(HGT) in particular is a driving force in prokaryotic genome evolu-  long as is imposed by fluctuating environmental circumstances. Ina
tion'?, and most genes have been shown to undergo HGT at least  simple two-class model of gene evolution®, such genes display high
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rates of turnover. In contrast, other foreign genes may provide suf-
ficient benefit to the recipient, outweighing maintenance costs and
persistinglong enoughtobe detected in present-day genomes through
computational methods’.

Multiple conceptually diverse approaches for computational HGT
detection exist®. Detecting genomic regions with abnormal sequence
composition has the advantage of requiring the recipient genome
only. However, such detection is restricted to recent transfer events
due to gene amelioration, whereby foreign DNA evolves to resemble
that of its host species™. Alternatively, HGT can be detected through
comparing genomes and identifying discrepancies between gene and
species evolutionary history. These comparative genomics approaches
include the detection of nearly identical sequences in genomes from
different species™ ' or the more computationally intensive modelling
of gene evolution through processes such as gene duplication, transfer
orloss**°, The next-generation sequencing revolution has enabled
HGT detection through comparative genomics approaches by enabling
anabundance of publicly available, high-quality prokaryotic genomes
in curated databases such as proGenomes?®.

Previous large-scale surveys of HGT across different environments
have showcased the contribution of shared ecology to HGT"*'*2,
Generally, inter-environmental transfers were found to berare, with the
possible exception of antibiotic resistance genes'. The importance of
shared ecology in determining HGT frequency can be explained from
two different perspectives. On the one hand, similar environments
may exert similar pressures, prioritizing the persistence of specific
functional traits. Onthe other hand, asmost HGT mechanisms require
physical proximity between the donor and the recipient®, co-occurring
within the same environment may simply provide more opportunities
for HGT.

Inthis study, we aim to elucidate both ecological and evolutionary
factors that contribute to a successful gene gain event through HGT.
Using the gene content of 8,790 species’ pangenomes® clustered into
over amilliongene families, we ran RANGER-DTL to model duplication,
transfer and loss events in gene evolution®. In parallel, we searched
for these species in the MicrobeAtlas database (https://microbeatlas.
org/), obtaining more than one million microbial community profiles
fromdiverse, globally distributed environments. By following species
presence and abundance profiles across this dataset, we show that
co-occurrence, abundance and dispersal patterns all determine HGT
success. By looking at functionality and ubiquity of transferred genes,
we observe that recent transfers are enriched for genes involved in
transcription, replication and repair, and in antimicrobial resistance
genes. By comparison, old transfers are enriched for genes involvedin
aminoacid, carbohydrate, and energy metabolism, and are more likely
to concern genes that are present in nearly all members of a species.
This study provides an overview of global ecological trends in HGT.

Results and discussion

Extensive contribution of HGT to prokaryote genome evolution
To detect HGT events, we first created pangenomes for 8,790 species
based on 78,315 high-quality, single-isolate genomes®. The resulting
41million genes were clustered on minimum 80% nucleotide identity
and minimum 50% sequence overlap into 22 million clusters, 961,821
(4.4%) of which covered more than Sspecies. For each such gene cluster,
reconciliationwiththe species tree based on 40 universal single-copy
marker genes”° was performed using RANGER-DTL? (Fig. 1and Meth-
ods), resulting in 2.4 million well-supported unique transfer events
that involved 8,756 species and 1.7 million species pairs (4.4% of all
possible species pairs). Previous studies considering trends in HGT
based on thousands of genomes have focused on transfers involv-
ing gene pairs with >299% nucleotide identity™'*>', Such gene pairs
comprised 3.1% of detected events in our dataset (see right peripheral
histograms in Fig. 2a and Extended Data Fig. 1a for the distribution of
HGT events across gene distances). By using tree reconciliation for

HGT event detection, we obtained an extended set of gene transfers
that allowed us to compare whether transfers that happened earlier
inevolution were subjected to the same trends as very recent transfer
events. Nevertheless, we observed fewer transferred gene pairs with
gene tree distances exceeding 0.6 (Fig. 2a and Extended Data Fig. 1a).
Older transfers were more difficult to detect with high confidence and
were thus less likely to pass our conservative thresholds for HGT event
detection (Methods).

Atleast onetransfer event was detectedin 634,352 gene trees out
0f 961,821 (-66%). The fraction of transferred genes varied between
species. For example, a transfer event was detected in 61.5% of the
genes considered for Acinetobacter baumannii, but only in 19.8% for
Listeria monocytogenes. Across all species, this resulted in an average
of42.5% (interquartile range, 35.9-50.5%) of genes per species affected
by HGT. This number is lower than previously reported estimates of an
average of 73% (ref. 17) and 81% (ref. 4) genes per genome affected by
HGT. This discrepancy is probably because we use astricter threshold to
cluster sequences: 80% nucleotide identity as opposed to 30% (ref.17)
and 25% (ref. 4) amino acid identity. Therefore, we do not capture the
oldest transfers considered in these studies*"” but we are able to assess
HGT inamuch larger dataset and look at more recent transfers.

We observed no association (r=0.01, Ppeys0n = 0.17) between the
average fraction of transferred genes per species and the number of
genomes used for generating the pangenome (Extended Data Fig. 2a).
The average fraction of transferred genes was therefore not notably
skewed towards better-studied species. Interestingly, the average frac-
tion of transferred genes per species was weakly positively correlated
(r=0.18, Ppeyrson = 7.0 x 107%*) with the number of genes in the genome
(Extended Data Fig. 2b). Previous studies comparing closely related
prokaryotic genomes of different sizes have found evidence that HGT
is the driving force behind genome expansion, which leads to larger
genomes containing a higher fraction of transferred genes'.

Previous studies have shown host-associated species to exchange
more genes than those found in water or soil™**, leading us to next
investigate the interspecies variability in gene transfer rates from this
perspective. We mapped the species in our dataset to operational
taxonomic units (OTUs) in the MicrobeAtlas database (Fig. 1), assign-
ing ‘preferred’ habitats based on the highest average relative abun-
dances. Restricting the analysis to transfers concerning gene pairs
with>98% nucleotide identity, weindeed observed the highest median
fraction of transferred genes in animal-associated species (1.32%).
Plant-associated species had the second highest median fraction of
transferred genes (0.46%), followed by soil-associated (0.16%) and
finally water-associated (0.10%) species (Extended Data Fig. 2¢). In
contrast, when considering all transfer eventsin the dataset, we found
nosignificant difference between animal-associated, water-associated
and soil-associated species (Extended Data Fig. 2d). These findings
indicatethat onlongerevolutionary scales, theloss of transferred genes
may compensate for the higher rate of HGT in animal-associated spe-
cies. Alternatively, animal-associated species may disappear at higher
rates, possibly as aresult of their host species going extinct.

Enrichment of accessory genes in recent transfers

We next focused on the distribution of our dataset with respect to
species and gene distance (see Fig. 2a for all gene pairs in the dataset
and Extended DataFig. 1afor onerepresentative gene pair per transfer
event). The majority of gene pairsin the dataset originated from closely
related species (species distance <0.3; Fig. 2aand Extended DataFig. 1a,
top histograms). However, gene pairs with transfer events were more
likely to originate from distantly related species when compared with
gene pairs without transfer events, especially after subsampling gene
pairswith and without transfer events to follow the same gene distance
distribution (Pyann-whieyu < 2.2 X 10™%; Fig. 2b and Extended DataFig. 1b).
Inaddition, we observed generally lower gene distances in gene pairs
with detected transfers, especially after subsampling gene pairs with
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Fig.1| Global-scale computational detection of HGT events and dataset
integration with relative abundance profiles from over a million
environmental samples. Pangenomes from 8,790 species were generated by
clustering coding sequences at 95% nucleotide identity. A toy example depicts
the pangenomes of five prokaryotic species: yellow, pink, orange, purple and
green. The genomes belonging to these species are depicted as fragmented
circles of the corresponding colour, wherein each fragment represents a coding
sequence. Coding sequences chosen as representatives in the pangenome are
outlined with a darker shade of the same colour. These representative sequences,
depicted as colourful rectangles, were then clustered at 80% identity to form
gene ‘families’ (semi-transparent grey rectangles, clusters containing at least five

genes are outlined). For each cluster containing data from at least five species, a
phylogenetic tree was generated and compared with the species tree to detect
HGT events. In parallel, 16S rRNA gene sequences were predicted (depicted as
rectanglesin the colour denoting the species assignment of the corresponding
genome) and mapped to OTUs in the MicrobeAtlas database to obtain relative
abundance data across ecological samples. Relative abundance dataare
depicted as points on the MicrobeAtlas sample map, with colours representing
the annotated habitat of the corresponding sample (red, animal; blue, aquatic;
green, plant; orange, soil) and darker colours reflecting a higher relative
abundance of the species of interest. The HGT event data and relative abundance
profiles were then integrated for downstream analysis.

and without transfer events to follow the same species distance dis-
tribution (Pyann-whimey v < 2.2 X 107 Fig. 2c and Extended Data Fig. 1c).
These results confirmed that transferred genes are more similar than
expected based on species similarity.

The extent of HGT and resulting within-species gene content vari-
ationleads toacommondistinction between core genes (presentin all
genomes of aspecies) and accessory genes (presentin some genomes
of a species)?. Therefore, we studied the ubiquity of genes, namely,
how often the transferred genes are found within the pangenome
of a species, based on previously defined thresholds for extended
core, intermediate-frequency accessory (shell) and low-frequency
accessory (cloud) genes” (Fig. 2d). We observed that the odds of
encountering a transferred gene within cloud genes were over twice
as high as encountering a non-transferred gene within cloud genes
(odds ratio =2.07 in putative recipient species and 2.87 in putative
donor species, P, < 2.2 x 107 in both cases; Fig. 2d and Extended
DataFig.3a).In contrast, the odds of encountering atransferred gene
within the extended core genes were over twice as low as encoun-
tering a non-transferred gene within the extended core genes (odds
ratio = 0.46 in putative recipient species and 0.37 in putative donor
species, Pygher < 2.2 x 107 in both cases). We next used gene distance

asaproxy for timesince the transfer event because genes transferred
earlier in evolution have had more time to accumulate mutations and
diverge from the donor. Interestingly, we observed higher fractions
of extended core genes in older transfers (Extended Data Fig. 3b),
implying persistence of a subset of transferred genes during species
evolution. However, core gene sequences may produce more reliable
treesthanaccessory genes (and, indeed, are used for building species
trees®®), increasing the chances of detecting old transfers with high
confidence. Theseresults need to beinterpreted with caution but they
are congruent with the two-class model of gene evolution®, whereby
genes with high turnover rates can be recruited to perform biological
functions withlong-termbenefit. Such genes then switchto the second,
slowly evolving and persistent, class.

Functional repertoires of recent and old transfer events

Multiple studies have considered the function of transferred
genes”>151827734 which, in the context of very recent transfers, hasbeen
showntobe predictive of HGT events®”. To explore further, we divided
ourlandscape of detected transfer eventsinto bins based onspecies and
gene distance and performed functional enrichment analysis for each
bin using the Clusters of Orthologous Genes (COG) categories from
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Fig.2|Genes participating in HGT are mostly accessory and display
distinct functional profiles depending on time passed since transfer.

a, Two-dimensional histogram depicting distributions of the distance between
genesina pair (y axis, right marginal histogram) against the distance between
their corresponding species (x axis, top marginal histogram), comparing gene
pairs with (green; n =15,561,491) and without (brown; n = 3,042,429) transfers.
Bins containing fewer than ten observations from each group are coloured in
grey. b, After normalizing for differences in gene distance distributions, the
species distance distribution of gene pairs with transfers (green) is significantly
different to that of gene pairs without transfers (brown) (two-sided Mann-
Whitney U-test, P<2.2 x 10, n=3,037,896 per group). ¢, After normalizing for
differences in species distance distributions, the gene distance distribution of
gene pairs with transfers (green) is significantly different to that of gene pairs
without transfers (brown) (two-sided Mann-Whitney U-test, P<2.2 x 107,

n=2,854,965 per group). d, Distribution of gene ubiquity (expressed in the
fraction of genomes in species with gene) in putative recipient species for
gene pairs with (green; n = 335,841) and without (brown; n = 40,450) transfers.
e, Two-dimensional histogram depicting distribution of all transfer events
(n=2,385,585) based on average gene distances of all genes involved in the
transfer event and average species distances of all corresponding species.

f, Functional enrichment within bins depicted in e. Species distance bins are
labelled1(0.08-0.72),2(0.72-1.36) and 3 (1.36-2.00). Gene distance bins are
labelled a (0.50-0.75), b (0.25-0.50), ¢ (0.00-0.25), d (0.00-0.05) and e (0.00—
0.01). The significance (postmultiple testing correction) of enrichment (blue)
or depletion (red) in the number of transfers is indicated using asterisks within
boxes. ***P<0.001,**P< 0.01, *P < 0.05, two-sided binomial test after multiple
testing correction using the Holm-Sidak method. NS, not significant.

eggNOG™ (Fig. 2e and Methods), with gene distance again actingas a
proxy for time since the transfer event. Recent transfers were enriched
for genes participatingin defence mechanisms, intracellular trafficking,

cell cycle control, transcription, replication and repair, the mobilome,
and genes of unknown function (Figs. 2fand 3 and Extended DataFig. 4).
In contrast, genes involved in various metabolic functions were
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top of the figure. For mapping between the different categories used and COG
categories, see Supplementary Table 1.

depletedinrecent transfer events and enriched in older transfer events
(Figs. 2f and 3 and Extended Data Fig. 4). Finally, we found an overall
depletion of transfers in genes involved in signal transduction, cell wall
biogenesis and cell motility (Figs. 2f and 3 and Extended Data Fig. 4). To
validate our findings with another system of functional annotation, we
repeated the analysis using KEGG pathways* (Fig. 3 and Extended Data
Fig.5). As most pathways considered were associated with metabolic
function, we observed a similar trend of significant depletionin recent
transfers and enrichment in older transfers, although the latter was
not always statistically significant (Fig. 3 and Extended Data Fig. 5).

The use of various methods for defining transferred genes, dif-
ferent functional annotation systems and choice of background
expectation complicate direct comparison between different stud-
ies. Moreover, in contrast to most previous studies, we performed
functional enrichment analysis separately for gene and species pairs
of varying degrees of divergence to prevent recent transfers between
closelyrelated species from dominating the enrichment results (Fig. 2e,
bottom left). Nevertheless, we were able to select ten previous studies
onHGT that performed functional enrichment analysis and compared
their results with our observations fromrecent transfers (gene distance
binsc, d, ande; Fig. 3, Supplementary Table 1and Methods).

Notably, of the broad functional categories analysed for enrich-
ment or depletion in HGT, 12 categories showed over 80% agreement
in direction across studies. In cases where there was disagreement
between studies (and/or with our study), some of the differences might
reflect variations in how the functional categories were defined, or
whichgene families were particularly amenable to HGT detection. For
example, there was low overall consensus in some categories related

to information storage and processing, which has been previously
discussed to be depleted in HGT***°**, For such categories, it may
be worth looking at the processes with a more fine-grained resolu-
tion. For example, in transcription, a case can be made for comparing
genesinvolvedintranscriptionregulation separately fromother genes
involved in transcription, as these appear to be more consistently
enriched in transfers (Fig. 3). Furthermore, as genes can occasionally
be transferred together with neighbouring genes on the chromo-
some, functional classification systems that pay increased attention
to operon structures might be particularly suitable in interpreting
large-scale HGT trends.

Antimicrobial resistance genes have been previously observed
to be transferred at high rates™ . Therefore, we focused on genes
annotated as such by KEGG. The most recent transfers displayed an
over threefold enrichmentin genes conferring resistance to 3-lactams,
aminoglycosides, tetracyclines, macrolides, phenicols and rifamycins
(Extended Data Fig. 6). The degree of enrichment increased with spe-
cies distance, suggesting that aggressive environmental selection for
antimicrobial resistance can help overcome mechanistic barriers to
HGT* between distantly related species. Apart from the most recent
transfers, however, we generally observed adepletionin transfers or no
significant signal. The low degree of divergence between antimicrobial
resistance genes shared viaHGT could indicate transfer event recency
but could also stem from strong evolutionary selection acting on these
genes. Unfortunately, we are unable to distinguish whether these trans-
fersoccurredbefore or after widespread antibiotic usage, with previous
estimatesindicating nearly identical genes to have been transferred at
any pointinthelast1,000 (ref.13) or 10,000 (ref. 16) years.
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Fig.4 | Co-occurring species are more likely to participate in HGT.

a, Stepwise procedure to correct for the phylogenetic signal contributing to the
association between co-occurrence and the number of genes transferred. For
each OTUand its partners in HGT, the relationship between co-occurrence and
phylogenetic distance is modelled using the power law equation and corrected
before correlating the number of genes transferred with co-occurrence.

The Spearman correlations (p) between co-occurrence and the number of
genes transferred are significantly greater both precorrection (yellow) and
postcorrection (orange) when compared with randomized HGT data (grey) (two-
sided Mann-Whitney U-test, P< 2.2 x107¢, n = 3758 OTUs). The formula used for
calculating co-occurrence (indicated with an asterisk) is shown on the top right.
b, Two-dimensional histogram depicting distributions of the co-occurrence
between OTUs participating in HGT (y axis, right marginal histogram) against

16S rRNA gene tree distance

their phylogenetic distance (x axis, top marginal histogram), comparing OTU
pairs with at least 7 genes transferred (green; n = 83,725) and OTU pairs with
atmost1gene transferred (brown; n =7,762,564). Bins containing fewer than

five observations are coloured in grey. ¢, After normalizing for differencesin
phylogenetic distance distributions, the co-occurrence distribution of gene
pairs with at least 7 genes transferred (green) is significantly different to that of
gene pairs with at most1gene transferred (brown) (two-sided Mann-Whitney
U-test, P<2.2x107%, n=57,399 per group). d, After normalizing for differences in
co-occurrence distributions, the phylogenetic distance distribution of gene pairs
withatleast 7 gene transferred (green) is significantly different to that of gene
pairs with at most1gene transferred (brown) (two-sided Mann-Whitney U-test,
P<2.2x107%, n=75,620 per group).

Co-occurring species are more likely to transfer genes
We then studied the species participating in HGT and possible asso-
ciated ecological factors. By using the MicrobeAtlas database, an

extensive collection of environmental samples mapped to the same
16S rRNA gene reference collection, we were able to observe the pres-
ence of two taxa within the same environmental sample and directly
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Fig. 5| Comparingrelative abundance profiles across different environments
shows different patterns of HGT for abundant versus rare species and
generalists versus specialists. a, Comparing the fraction of OTU pairs with a
transfer against phylogenetic distance in animal- (shades of red; n = 28,385 for
high-high OTU pairs, 54,421 for high-low and 27,372 for low-low), water- (shades
ofblue; n=58,988 for high-high, 91,127 for high-low and 37,504 for low-low),
plant- (shades of green; n =11,855 for high-high, 22,082 for high-low and 10,126
for low-low) and soil-associated (shades of orange; n = 6,496 for high-high,

12,168 for high-low and 5,553 for low-low) prokaryotes with high (dark shades)
and low (light shades) abundance. Error bands are calculated using the Bernoulli
principle of uncertainty and depicted in alighter shade. b, Comparison of the
fraction of OTU pairs with transfers across the four main environments depicted
for all species (left), generalists (centre) and specialists (right). The darker the
shade of green, the higher the number of OTU pairs with transfers. Each square
contains observations from 9,761 OTU pairs.

calculate co-occurrence rates. After mapping our dataset to OTUs in
the MicrobeAtlas database, we observed a positive correlation between
co-occurrence and the number of genes transferred for most OTUs
(Fig.4a, stepland precorrection histogram). However, genetic similar-
ity hasbeen shown to influence the success of HGT™*"*'¢* Indeed, the
number of transferred genes negatively correlated with the phyloge-
netic distance between the OTU pair (Fig. 4a, step 2). In addition, we
observed a decrease in co-occurrence with increasing phylogenetic
distance, in accordance with closely related taxa preferring similar
environments® (Fig. 4a, step 2). We thus sought to correct for the
phylogenetic signal in our observations on HGT and co-occurrence.
To thisend, we modelled the relationship between co-occurrence
and phylogenetic distance using the power law equation (Fig.4a, step 3).
Upon comparing model residuals on co-occurrence with the number
of genes transferred, the positive correlation remained for most OTUs
(Fig. 4a, steps 4 and 5 and postcorrection histogram). As a comple-
mentary approach, we compared species pairs with multiple (seven or
more) genestransferred with those with at most one gene transferred
withrespectto their phylogenetic distance and co-occurrence (Fig. 4b).
After normalizing for differences in phylogenetic distance distribu-
tion, we observed that pairs of species with multiple transferred genes
were significantly more likely to co-occur than pairs of species with

at most one transferred gene (Pynn-whitmey v < 2.2 X 107¢; Fig. 4c). Cor-
respondingly, when comparing species pairs with similar degrees of
co-occurrence, we observed that pairs withmultiple transferred genes
were more likely to be closely related (Pyunn-whitmeyu < 2.2 X 107 Fig. 4d).

Observing a positive relationship between co-occurrence and
thenumber of genes transferred, we next asked whether co-occurring
species alsoneedtointeracttoincrease the chance of asuccessful HGT
event.Predicting ecological interactions between two species based on
co-occurrence canresultinspurious associations arising from shared
habitats, batch effects or interactions of both considered species with a
third intermediary species. To correct for these effects, we used Flash-
Weave to generate a network of predicted ecological interactions’®.
In brief, FlashWeave uses a Bayesian network-learning approach and
interleaved conditional testing to heuristically adjust the associations
for potential confounders (Methods). After generating the network, we
compared the number of predicted ecological interactions between
species pairs with multiple genes transferred and species pairs with at
most one gene transferred, subsampling these two groups to follow the
same phylogenetic distance and co-occurrence distributions. Within
this datasubset, we observed 1,012 interactions detected between spe-
cies pairswithmultiple genes transferred and 571 interactions between
species pairs withat most one gene transferred, a1.8-fold enrichment.
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In contrast, generating a network without conditional testing to remove
putative spurious associations yielded 12,525 and 10,071 interactions
respectively, al.2-fold enrichment. This suggeststhat thereisanotable
contribution of ecological interactions to HGT in an environment in
addition to mere co-occurrence but further research that considers a
larger number of interactions is needed.

Species with high abundance are more likely to transfer genes
We used the MicrobeAtlas database not only to look at presence or
absence data but also to compare relative abundance profiles across
over a million environmental samples. So far, only one study'® has
looked into the relationship between HGT and species abundance,
concluding thatabundantbacteriaare morelikely to transfer genes to
other abundant bacteria within the human gut. Unlike this previously
mentioned study, we do not possess directly matched culturedisolate
genomes with their relative abundance in the corresponding environ-
mental sample, but we can determine whether a species is generally
found in high or low abundances within a particular environment.
Therefore, we assigned each OTU to its preferred habitat and com-
pared HGT in OTUs lying on opposite ends of the environment’s OTU
abundance distribution (Extended Data Fig. 7).

We observed a higher fraction of high-abundance OTU pairs par-
ticipating in HGT when comparing pairs with similar phylogenetic
distance (Fig. 5a). Interestingly, the increase in HGT probability with
respect to abundance was higher in animal- and plant-associated
microorganisms, and was significant in all pairwise comparisons
of high-high, high-low and low-low abundance OTUs (Fig. 5a and
Extended Data Table 1). In water- and soil-associated microorgan-
isms, theincrease in HGT probability was less apparent and not always
significant (Fig. 5a and Extended Data Table 1). As HGT mechanisms
often require physical proximity between cells exchanging DNA*,
high-abundance species have more opportunities for transfer,
assuming a well-mixed environment. The stronger signal observed in
animal- and plant-associated organisms, however, indicates arole for
host-associated factorsin HGT.

Finally, we defined an index of species generalism based on the
relative abundance measurements of OTUs across different environ-
ments (Methods). Generalist species can thrive within awide range of
environments, whereas specialist species are confined to a particular
environment. Our expectation was therefore that OTUs high on the
generalism index can more easily disperse between environments,
creating more opportunities for inter-environmental HGT. To this
end, we selected 200 OTUs with the highest (generalists) and low-
est (specialists) generalism index and compared the number of OTU
pairs with at least one transfer event (Fig. 5b). Compared with all spe-
cies, generalists showed alower s.d. (Z-score, the number of standard
deviations from the mean of the corresponding statistic calculated
based onallspecies, = -10.5), lower range (Z-score = —6.56) and higher
mean (Z-score = 2.67) of inter-environmental transfer rates. In con-
trast, specialists showed a higher s.d. (Z-score = 37) and higher range
(Z-score =31.4) of inter-environmental transfer rates. Interestingly,
we observed a much higher rate of HGT between animal-associated
specialists when compared with any other environmental and general-
ismindex combination.

Conclusion

HGT is extensive and a fundamental driving force in prokaryotic
genome evolution. In this study, we performed large-scale computa-
tional detection of HGT and integrated these data with an extensive
microbial ecology dataset. In our dataset, an average of 42.5% genes
in the genome were at one point affected by HGT. Most transferred
genes were accessory and probably subjected to high turnover rates.
Nevertheless, afraction of genes transferred earlier in evolution man-
aged to persist and become part of the extended core genome of the
species. We have shown that such genes transferred earlier inevolution

are enriched for metabolic functions. In contrast, genes transferred
most recently are enriched for defence mechanisms and antimicrobial
resistance. When considering previous knowledge on HGT and gene
function, we show that 9 of 21 COG categories display no consistent
signal across studies, suggesting additional factors at play.

Using the MicrobeAtlas database, we followed the global distribu-
tion of species that participated in HGT. Even after correction for the
confoundingeffect of phylogenetic relatedness, species co-occurrence
rates were positively correlated with larger numbers of transferred
genes. Inaddition, we have shown that speciesinteractions, abundance
and dispersal affect HGT rates, indicating theimportance of cell prox-
imity for creating opportunities to transfer genes. These ecological
factors could not have been assessed on such aglobal scale with previ-
ously available data, showing the value of the MicrobeAtlas database
indescribing high-level trends in microbial ecology and evolution.

Methods

Genome selection and pangenome generation

We based our analysis on the proGenomes v.2.2 dataset containing
82,400 genomes grouped into 11,562 species (that is, specl clusters)
that were defined based on 40 single-copy marker genes®’. The cor-
responding species tree generated based on concatenated marker
gene sequences was kindly provided by the authors of the proGenomes
article®.

Fromthisinitial selection, we filtered out metagenome-assembled
genomes, single-amplified genomes, genomes flagged as chimeric by
GUNC?’, genomes that were not taxonomically cohesive with the rest
of the specl cluster according to GTDB?, genomes with no 16S rRNA
gene sequence detected and genomes we could not confidently map
to the MicrobeAtlas database (see ‘Mapping genomes to MicrobeAtlas
database OTUs’ below). The species tree was pruned to remove these
genomes using the ETE Toolkit v.3 (ref. 40). As aresult, we obtained
78,315genomes grouped into 8,790 species. For each species, apange-
nome was generated by clustering allgene sequences on 95% nucleotide
sequence identity as described in ref. 41.

HGT event detection

Allgene sequences were clustered using MMseqs2 (ref. 42) with mini-
mum overlap of 50%, minimum identity threshold of 80% and clustering
mode 0. The rest of the parameters were left as default. For each gene
cluster, whenever sequences originated from more than one genome
withinaspecies, we only retained sequences that were most similar to
those from other species within the gene cluster. We then proceeded
with gene clusters containing sequences from at least five different
species. Sequences were then aligned using the automatic strategy
selection option in MAFFT v.7.471 (ref. 43), with all other parameters
left as default. On the basis of the multiple sequence alignment, agene
tree was generated using FastTree v.2.1.11 (ref. 44) using the generalised
time-reversible model® of nucleotide evolution, with all parameters
left as default.

Before performing tree reconciliation, we subsampled the spe-
cies tree using ETE Toolkit v.3 (ref. 40) to decrease computational
requirementsin the following manner: for each gene cluster, the spe-
cies tree node corresponding to the last common ancestor of all spe-
cies within the gene cluster was selected. Clades within the species
tree not containing any genes from the gene cluster were collapsed
for computational efficiency. Subsequently, the subsampled species
tree was used to root the gene tree using the OptRoot module from
RANGER-DTL v.2.0 (ref. 23). We then ran RANGER-DTL with default
settings to perform gene and species tree reconciliation for a total of
500x. Gene clusters inwhich more than 50 optimal roots were detected
were not considered further. Reconciliations from each optimal root
were aggregated using the AggregateRanger_recipient module from
RANGER-DTLv.2.0. We used a custom script to aggregate results across
optimal roots and detect tree nodes that were labelled as transfers.
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For downstream analysis, we considered only transfer events detected
in>=80% reconciliations that contained gene pairs with >0.5 minimum
branch support in the gene tree. In addition, all multifurcations con-
taining 100% identical genes from different species were considered
to be transfer events.

Calculating the average fraction of genes transferred

For each genome, we counted a gene as having undergone transfer as
long as its pangenome-representative gene was involved in a transfer
event. For the denominator (that is, total number of genes assessed),
we only considered genes if their pangenome-representative genes
had passed all steps described above in ‘HGT event detection’. The
number of genes transferred was then divided by the total number
of genes assessed and the average based on all genomes within a spe-
cies was calculated. For the examples mentioned in the main text, we
used data from specl_v3_Cluster259 for A. baumannii and data from
specl_v3_Cluster712 for L. monocytogenes.

MicrobeAtlas dataretrieval
The NCBISequence Read Archive*® was searched for samples and stud-
ies containing any of the keywords ‘metagenomic’,‘microb*, ‘bacteria’
or ‘archaea’ in their metadata. The corresponding raw sequence data
(as of 7March 2020) were downloaded and quality filtered. To assign
OTU labels, quality filtered data were mapped to MAPrefv.2.2.1using
MAPseqv.1.0 at a>0.5 confidence level”. We then filtered out samples
containing less than 1,000 reads and/or less than 20 OTUs defined at
97% 16S rRNA gene identity and retained samples with at least 90%
community coverage (calculated based on the formulainref. 48).
NCBISequence Read Archive sample metadata were parsed to clas-
sify every sampleinto four general environments: animal, aquatic, plant
and soil. Subsequently, we calculated Bray-Curtis distances between
all samplesinthe dataset and compared community compositionsin
samples from independent studies. When a sample was consistently
similar to samples assigned to a different environment, we adjusted
itsenvironment label. In cases where samples with similar community
compositions had no general agreement between assigned environ-
ments, we removed the environmental label.

Mapping genomes to MicrobeAtlas database OTUs

We used barrnap*’ with default settings to predict 16S rRNA gene
sequencesinthe genomeselection, proceeding with sequences of >50%
of expected length. The sequences were then mapped to MAPrefv.2.2.1
using MAPseq v.1.0 (ref. 47), retaining only sequences that mapped to
anOTUwitha>0.3 confidencelevel. Genomes containing multiple 16S
rRNA gene copies were mapped to OTUs based on amajority rule (>50%
copies) or high confidence (at least one copy with a 0.98 confidence
level). Species containing multiple genomes were mapped to OTUs
based on majority (=50% genomes).

Preferred habitat assignment

Foreach OTU withinthe dataset, the average abundance was calculated
separately for allsamples assigned to the animal, aquatic, plant and soil
environments. The OTU was then assigned toits preferred environment
based on the highest of the four numbers.

Gene and species distance normalization

Distances between gene and species pairs were extracted from the
corresponding trees using the dist functionin ETE Toolkit v.3 (ref. 40).
To plot the distribution in Fig. 2a, only gene pairs with >0.5 minimum
branchsupportvalues and >50% sequence overlap within the multiple
sequence alignment were considered. Gene pairs with and without
transfer events were normalized with respect to species distance by
splitting the species distance distributions into 80 bins and subsam-
pling the group with the larger number of pairs in each bin (either
‘transfer detected’ or ‘no transfer detected’) to the number of pairsin

thesecondgroupinthe correspondingbin (either ‘no transfer detected’
or ‘transfer detected’). The same procedure was performed for nor-
malizing gene pairs with and without transfer events with respect to
gene distance. After normalization, the resulting distributions were
compared using the two-sided Mann-Whitney U-test.

Pangenome analysis

To calculate gene ubiquity, we counted the number of genomes rep-
resented by a gene in each pangenome versus the total number of
genomesinthe species. For subsequent analysis, only species encom-
passing ten or more genomes were considered. We used previously
defined thresholds® to distinguish extended core genes (=90% gene
ubiquity) and cloud genes (<15% gene ubiquity). In the species pair
participating in HGT, the species with the higher gene ubiquity was
labelled as the putative donor, whereas the species with the lower gene
ubiquity was labelled as the putative recipient. To compare extended
core and cloud genes with or without transfer events, a two-sided
Fisher’s exact test was performed.

Genome annotation and functional enrichment analysis

We used the COG category and KEGG pathway functional annotations
provided by the proGenomes database after running eggNOG-mapper
foreggNOG 5.0 (ref. 35). Each gene cluster was annotated to the corre-
sponding functional categories based on the union of all gene annota-
tions within the cluster. To analyse genes associated with the mobilome,
we looked up whichterms corresponded to the ‘X—Mobilome: phages,
transposons’ category in the database of COGs***' (mobilome, curated,
inExtended DataFig. 4).Inaddition, we extracted terms that contained
the following keywords in the annotations provided by the proGe-
nomes database: ‘phage’, ‘transposon’, ‘transposase’, ‘transposition’,
‘transposable’, ‘mobile’, ‘mobilization’, ‘integrase’, ‘integration’, ‘plas-
mid’, ‘conjugative’, ‘conjugation’, ‘transformation’ and ‘competence’
(mobilome, uncurated, in Extended Data Fig. 4). To analyse genes
associated with transcription regulation, we extracted terms from
the transcription category that contained the following keywords in
the annotations provided by the proGenomes database: ‘regulation’
and ‘regulator’ (transcription regulation, uncurated, in Extended Data
Fig.4). We calculated a functional category’s background expectation
fraction by counting the total number of genes that passed the pipeline
that were annotated to this category divided by the total number of
genes that passed the pipeline.

For each detected transfer event, we calculated the average
species and gene distance by taking all average pairwise distances
between left descendants and right descendants of the transfer event
(for gene distance calculations, only gene pairs with >50% sequence
overlap were considered). The resulting distribution of species and
gene distances can be seen in Fig. 2e. For functional enrichment
analysis, minimum and maximum species and gene distance cut-offs
were selected insuch away that there were no bins without observa-
tions, with the resulting area divided into thirds. We also looked spe-
cifically at transfer events at the 0.01and 0.05 gene distance cut-offs
(approximately >99% and >95% sequence identity, respectively) as
these results would be more comparable to previous studies that
detected HGT events based on nearly identical sequences. We then
counted the number of transfer events annotated to each functional
category divided by the total number of transfer events in the area.
The observed fraction of events annotated to a specific function was
then tested with a two-sided binomial test against the fraction of all
geneson which the pipeline was run that were annotated to this func-
tion. Resulting Pvalues were corrected for multiple testing using the
Holm-Sidak method.

A similar procedure was performed using KEGG ortholog anno-
tations, grouping them into KEGG pathway maps (09101-09145) for
Extended Data Fig. 5and antimicrobial resistance genes (BR:ko01504)
for Extended Data Fig. 6.
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Functional repertoire comparison with previous studies

We compared our functional enrichment analysis results with those
fromrefs.9,13,18,28-34. In most of these studies, functional categories
were based on the COG database, with the exception of ref. 13 (with
categories based on the SEED*) and refs. 9,28 (both with categories
based on TIGRFAMs**). The mapping between COG categories and
KEGG pathways (used in our study), SEED and TIGRFAMs can be found
inSupplementary Table 1.

For our study, we considered enrichment data from the most
recent transfers, thatis, gene distance bins 0.00-0.01,0.00-0.05 and
0.00-0.25. These three gene distance bins together with three species
distance bins provided us with nine data points to consider for each
functional category. We assigned a functional category to have strong
evidence for enrichment or depletion in transfers if at least seven of
the nine data points showed significant enrichment or depletion. We
assigned afunctional category to have weak evidence for enrichment
or depletion in transfers if most data points showed enrichment or
depletion but this was not always statistically significant.

Forref. 18, we considered the results depicted in Fig. 8d and Sup-
plementary Table 13 of the article. We calculated the first and third
quartiles of the HGT index using all genes in Supplementary Table 13.
We assigned afunctional category to have strong evidence for enrich-
mentin transfers ifthe median HGT index from genesin this category
was greater than the third quartile. We assigned a functional category
to have strong evidence for depletion in transfers if the median HGT
index from genes in this category was less than the first quartile. Only
functional categories containing at least five genes were considered.

Forref.34, we considered theresults depicted in Fig. 9 of the arti-
cle.We considered only recent HGT events (=99% nucleotide sequence
identity). We assigned a functional category to have strong evidence
forenrichmentin transfers if the median recent HGTs in this category
was greater than the third quartile. We assigned a functional category
to havestrongevidence for depletionin transfersifthe medianrecent
HGTs in this category was less than the first quartile.

Forref.32, we considered the results depicted in Fig. 4a (HTgenes
row) of the article. We considered a functional category to have
strong evidence for enrichment or depletion in transfers if the
observed-to-expected ratio of orthologous groups was significantly
different from one.

For ref. 31, we considered the results depicted in Supplementary
Fig.7 of the article. We considered a functional category to have strong
evidence for enrichmentor depletionin transfersiftherelative propor-
tion of transferred genes was significantly over- or underrepresented
when compared with the set of all bacterial genes.

For ref. 30, we considered the results depicted in the first two
columns of Table 3 of the article. We considered a functional category
tobeenrichedintransfersifitsrelative transferability was higher than
one, and to be depleted in transfers if its relative transferability was
lower than one. We used a Pvalue cut-off of 0.05 to distinguish strong
and weak evidence for enrichment or depletion.

Forref.33, we considered theresultsdepictedin Table2of thearticle.
Inthetable, functional categories were listed that significantly differed
fromthebackground of all gene families. We used a Pvalue cut-off of 0.05
to distinguish strong and weak evidence for enrichment or depletion.

For ref. 29, we considered the results depicted in Fig. 4b of the
article. We used Z-score cut-offs of 2 and -2 to distinguish strong and
weak evidence for enrichment or depletion.

Forref. 13, we considered the results depicted in Supplementary
File 6 (SEED level 1 and SEED level 2) of the article. We used a P value
cut-off of 0.05 to distinguish strong and weak evidence for enrichment
or depletion. We downweighted depletion evidence for the ‘transcrip-
tion (regulatory)’ and ‘signal transduction’ categories as they both
mapped to ‘regulation and cell signalling’ in the SEED. For COG cat-
egories that mapped to multiple categories in the SEED, we indicated
evidence based on the consensus from these categories.

For ref. 28, we considered the results depicted in Table 2 of the
article. We downweighted depletion evidence for ‘cell cycle control
and mitosis’ and ‘cell motility’ as they both mapped to the ‘cellular pro-
cesses’in TIGRFAMs. We also downweighted enrichment evidence for
‘carbohydrate transport and metabolism’ as there was no one-to-one
mapping for this category.

For ref. 9, we considered the results depicted in Fig. 2 of the arti-
cle. We considered afunctional category to be enriched in transfersif
the proportion of transferred genes was greater than 10%, and to be
depleted in transfers if the proportion of transferred genes was less
than 3%.

Co-occurrence analysis

An OTU was detected as present in a given sample if its relative abun-
dancewas atleast 0.01%. To calculate the co-occurrence between two
OTUs, we counted the number of samples in which both OTUs were
present and divided it by the number of samples in which the less
prevalent OTU was present. Phylogenetic distances between OTUs
were retrieved from the MicrobeAtlas database 16S rRNA tree using
the dist functionin ETE Toolkit v.3 (ref. 40).

For modelling the relationship between co-occurrence and phy-
logenetic distance, we only considered OTUs that exchanged at least
1gene with 30 other OTUs and OTU pairs in which both OTUs were
presentinatleast 20 environmental samples. The power law equation
(1) is as follows:

CO ~ k x PD?, 1

where CO stands for co-occurrence, PD stands for phylogenetic dis-
tance, and k and a are parameters fitted using the nlstools package
in R**. Model residuals were then used to calculate Spearman correla-
tionswiththe number of genes transferred. To generate the background
distribution, the number of genes was shuffled before calculating
Spearman correlations. The resulting distributions of Spearman cor-
relations generated based on raw co-occurrence (precorrection),
modelresiduals (postcorrection) or background were compared with
each other using the two-sided Mann-Whitney U-test.

The analysis depicted in Fig. 4b—d has been performed using a
similar set-up as described in ‘Gene and species distance normaliza-
tion’. We used the >7 genes transferred cut-off to denote OTU pairs with
many transfer events as this corresponded to the 80% quantile of OTU
pairswith at least 1gene transferred.

Interaction prediction and analysis

Global networks of predicted interactions were computed with Flash-
Weavev.0.19.0 (ref. 38). This method uses the local-to-global learning
approach®tolearn the skeleton of a Bayesian network encoding puta-
tive ecological relationships between species adjusted for ecological
or technical confounders. To this end, FlashWeave uses aninterleaved
testing scheme that (1) heuristically determines likely confounding
variables for each pair of species (based on univariate associations
and previous iterations of the algorithm), and (2) subsequently tests
whether the focal association holds when conditioned on these can-
didate confounders.

The parameters used for running FlashWeave were as follows:
sensitive = false, heterogeneous = true, and max_k =3 (with con-
founder correction) or max_k = 0 (without confounder correction).
With these settings, FlashWeave converts non-zero read counts to
centred log-ratio-transformed values to account for compositionality
and discretizes these values. Mutual information tests are then run
onthediscretized values. We used co-occurrence data fromall 95,422
OTUs contained within the environmental sample dataset, filtering the
resulting network for edges between the 4,380 OTUs for which transfer
eventdatawere generated. OTU pairs withascore higher thanzerowere
considered asinteracting. To normalize for differences in phylogenetic
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distance and co-occurrence distributions between species with at least
seven genes transferred and species with zero or one gene transfer, the
procedure describedin ‘Gene and species distance normalization’ was
performed with simultaneous subsampling on phylogenetic distance
and co-occurrence for 80 x 80 bins.

Abundance analysis

We used the same relative abundance numbers as calculated in ‘Pre-
ferred habitat assignment’. For each OTU, we only considered its abun-
dance within its preferred environment, denoting high-abundance
OTUs as those whose abundance was above the 80% quantile in this
environment. In contrast, we denoted low-abundance OTUs as those
whose abundance was below the 20% quantile in this environment. OTU
pairswere then sorted based on phylogenetic distance and the fraction
of OTU pairs with at least one transfer event detected was calculated
foreach phylogenetic distance bin. Error bands were calculated using
Bernoulli’s principle of uncertainty. Resulting fractions were then pair-
wise compared between the high-high, high-low and low-low groups
using a one-sided Wilcoxon rank-sum test. Resulting P values were
corrected for multiple testing using the Benjamini-Hochberg method.

Generalist and specialist analysis

We computed a generalismindex for each OTU reflecting its environ-
mental flexibility. Thisindex was calculated based on the entropy of the
OTU’s abundance values across the four major environments (animal,
aquatic, soil and plant). OTUs with similar abundances across envi-
ronments had higher entropy. OTUs with uneven abundances across
environments (a higher abundancein one or afew of the environments
compared with the rest) had lower entropy.

To compareinter-environmental transfers, we selected 200 OTUs
assigned to each environment (see ‘Preferred habitat assignment’) that
displayed the highest entropy (generalists) and 200 OTUs that displayed
the lowest entropy (specialists). OTU pairs were then subsampled in
suchaway that phylogenetic distance distributions were equal between
all environments and between generalists, specialists and all species.
We then counted the fraction of OTU pairs with at least one transfer
event detected. To generate the background expectation, OTU pairs
from all species were subsampled to the target phylogenetic distance
distribution1,000x. We then fitanormal distribution to the generated
datausing the fitdistr functionin R*® to get an estimate of the expected
mean, s.d. and range of transfer rates between different environments.

Data visualization

DatafromFigs.2and 4b,c and Extended Data Figs.1-6 were visualized
using seabornv.0.11.2 (ref. 57) and matplotlib v.3.5.1 (ref. 58) in Python
v.3.7.4.DatafromFigs. 3,4a,and 5and Extended Data Fig. 7 were visual-
ized using ggplot2v.3.3.5 (ref. 59) inRv.4.1.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The original datafrom proGenomesv.2 canbe downloaded per genome
or perspecl cluster at http://progenomes2.embl.de. The MicrobeAtlas
databaseis developed withinthe C.v.M. group and can be downloaded
from https://microbeatlas.org/. For the study, we used a subset of an
older version of MicrobeAtlas. This subset, along with all datasets
generated and used during the study, can be downloaded from https://
doi.org/10.6084/m9.figshare.22893632. Source data are provided
with this paper.

Code availability
The scripts used for dataset generation and analysis can be accessed
at https://github.com/marydmit/eco_evolutionary_factors_and_hgt.
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Extended Data Fig. 1| Genes participating in HGT display lower gene
distances and originate from more distant species when compared to
non-transferred genes. Each transfer eventis represented by one randomly-
chosen gene pair. (a) Two-dimensional histogram depicting distributions
ofthe distance between genes in a pair (y-axis, right marginal histogram)
against the distance between their corresponding species (x-axis, top marginal
histogram), comparing gene pairs with (green, n = 2,385,585) and without
transfers (brown, n =3,042,429). Bins containing fewer than ten observations
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from each group are coloured in grey. (b) After normalizing for differences in
gene distance distributions, the species distance distribution of gene pairs with
transfers (green) is significantly different to that of gene pairs without transfers
(brown) (two-sided Mann-Whitney U test, P < 2.2x107'¢, n = 2,175,683). (c) After
normalizing for differences in species distance distributions, the gene distance
distribution of gene pairs with transfers (green) is significantly different to

that of gene pairs without transfers (brown) (two-sided Mann-Whitney U test,
P<2.2x107",n=2,040,229).
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Extended Data Fig. 2| Analysis of factors contributing to interspecies
variability in rates of HGT. (a) The fraction of genes with a transfer event
detected does not significantly correlate with the number of genomes used for
generating the pangenome (two-sided Pearson’s product correlation coefficient
0.01,P=0.17,n=8,776 species). The solid purple line represents the regression
line (least squares linear regression in the original space, which results inanon-
linear relationship in the displayed log-linear plot). The shaded arearepresents a
95% confidence interval, estimated based on1,000 bootstraps. (b) The fraction
of genes with a transfer event detected correlates with the average number of
genes in the genome of the corresponding species (two-sided Pearson’s product
correlation coefficient 0.18, P=7x10"%, n = 8,776 species). The solid purple line
represents the least squares linear regression line. The shaded arearepresents a
95% confidence interval, estimated based on1,000 bootstraps. (c) The fraction
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of genes with arecent transfer event (thatisinvolving gene pairs with >98%
nucleotide identity) detected compared across species’ preferred environments,
with**indicating a significant difference in the fraction of genes with arecent
transfer event (two-sided Mann-Whitney U test P< 0.001, n = 2,080 animal, 3,047
aquatic, 2,415 plant, 1,153 soil species). (d) The fraction of genes with a transfer
event detected compared across species’ preferred environments, with ***
indicating a significant differencein the fraction of genes with a transfer event
(two-sided Mann-Whitney U test P < 0.001, n = 2,080 animal, 3,047 aquatic,

2,415 plant, 1,153 soil species). In all depicted boxplots, the line inside the box
corresponds to the median. The lower and upper bounds of the box denote the
first and the third quartile respectively. Whiskers extend to at most 1.5 times the
interquartile range (IQR).
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within boxes (two-sided binomial test after multiple testing correction using the
Holm-Sidak method: ***- P<0.001, **- P<0.01, *- P<0.05, ns - not significant).
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Extended Data Table 1| FDR-corrected p-values from one-sided Wilcoxon rank-sum tests on the curves depicted in Fig. 5a

Animal Aquatic Plant Soil
High-High | High-Low 0.0067 0.0067 0.0067 0.0150
High-High | Low-Low 0.0067 0.0298 0.0067 0.0150
High-Low Low-Low 0.0067 0.0742 0.0067 0.0216

The two curves being compared are indicated in the first two columns.
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