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Most emerging and re-emerging infectious diseases stem from viruses

that naturally circulate in non-human vertebrates. When these viruses
cross over into humans, they can cause disease outbreaks, epidemics and
pandemics. While zoonotic host jumps have been extensively studied from
anecological perspective, little attention has gone into characterizing the
evolutionary drivers and correlates underlying these events. To address
this gap, we harnessed the entirety of publicly available viral genomic data,
employing acomprehensive suite of network and phylogenetic analyses to
investigate the evolutionary mechanisms underpinning recent viral host
jumps. Surprisingly, we find that humans are as much a source as a sink for
viral spillover events, insofar as we infer more viral host jumps from humans
to other animals than from animals to humans. Moreover, we demonstrate
heightened evolutionin viral lineages that involve putative host jumps.

We further observe that the extent of adaptation associated with a host
jumpislower for viruses with broader host ranges. Finally, we show that the
genomic targets of natural selection associated with host jumps vary across
different viral families, with either structural or auxiliary genes being the
prime targets of selection. Collectively, our results illuminate some of the

evolutionary drivers underlying viral host jumps that may contribute to
mitigating viral threats across species boundaries.

The majority of emerging and re-emerging infectious diseases in
humans are caused by viruses that have jumped from wild and domestic
animal populationsinto humans (thatis, zoonoses)'. Zoonotic viruses
have caused countless disease outbreaks ranging fromisolated cases
to pandemics and have taken a major toll on human health through-
out history. There is a pressing need to develop better approaches to
pre-empt the emergence of viralinfectious diseases and mitigate their
effects. As such, there is animmense interest in understanding the
correlates and mechanisms of zoonotic host jumps' .

Most studies thus far have primarily investigated the ecological
and phenotypic risk factors contributing to viral host range through
the use of host-virus association databases constructed mainly on
the basis of systematic literature reviews and online compendiums,
including VIRION" and CLOVER™. For example, ‘generalist’ viruses that
can infect a broader range of hosts have typically been shown to be

associated with greater zoonotic potential>*®. Inaddition, factors such
asincreasing human population density', alterations in human-related
land use*, ability to replicate in the cytoplasm or being vector-borne®
are positively associated with zoonotic risk. However, despite global
efforts to understand how viral infectious diseases emerge as a result
of hostjumps, our current understanding remains insufficient to effec-
tively predict, prevent and manage imminent and future infectious
disease threats. This may partly stem from the lack of integration of
genomicsinto these ecological and phenotypic analyses.

One challenge for predicting viral disease emergenceis that only
asmall fraction of the viral diversity circulating in wild and domestic
vertebrates hasbeen characterized so far. Due toresource and logistical
constraints, surveillance studies of novel pathogens in animals often
have sparse geographical and/or temporal coverage™'* and focus on
selected host and pathogen taxa. Further, many of these studies do not
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perform downstream characterization of the novel viruses recovered
and may lack sensitivity due to the use of PCR pre-screening to prior-
itize samples for sequencing”. As such, our knowledge of which viruses
can, or are likely to emerge and in which settings, is poor. In addition,
while genomic analyses are important for investigating the drivers of
viral host jumps'®, most studies do not incorporate genomic datainto
their analyses. Those that did have mostly focused on measures of
host?or viral® diversity as predictors of zoonotic risk. As such, despite
the limited characterization of global viral diversity thus far, existing
genomic databases remainarich, largely untapped resource to better
understand the evolutionary processes surrounding viral host jumps.

Further, humansare just one node inalarge and complex network
of hostsinwhich viruses are endlessly exchanged, with viral zoonoses
representing probably only rare outcomes of this wider ecological
network. While research efforts have rightfully focused on zoonoses,
viral hostjumps between non-human animals remainrelatively under-
studied. Anotherimportant process that has received less attentionis
human-to-animal (thatis, anthroponotic) spillover, which may impede
biodiversity conservation efforts and could also negatively impact food
security. For example, human-sourced metapneumovirus has caused
fatal respiratory outbreaks in captive chimpanzees”. Anthroponotic
events may also lead to the establishment of wild animal reservoirs that
may reseed infections inthe human population, potentially following
the acquisition of animal-specific adaptations that could increase the
transmissibility or pathogenicity of a virus in humans'. Uncovering
the broader evolutionary processes surrounding host jumps across
vertebrate species may therefore enhance our ability to pre-empt
and mitigate the effects of infectious diseases on both human and
animal health.

A major challenge for understanding macroevolutionary pro-
cesses through large-scale genomic analysesis the traditional reliance
on physical and biological properties of viruses to define viral taxa,
which is largely a vestige of the pre-genomic era'®. As a result, taxon
names may not always accurately reflect the evolutionary related-
ness of viruses, precluding robust comparative analyses involving
diverse viral taxa. Notably, the International Committee on Taxonomy
of Viruses (ICTV) has been strongly advocating for taxon names to also
reflect the evolutionary history of viruses'®'. However, the increasing
use of metagenomic sequencing technologies has resulted in a large
influx of newly discovered viruses that have not yet been incorpo-
rated into the ICTV taxonomy. Furthermore, it remains challenging
to formally assess genetic relatedness through multiple sequence
alignments of thousands of sequences comprising diverse viral taxa,
particularly for those that experience a high frequency of recombina-
tion or reassortment.

Inthis study, we leverage the ~12 million viral sequences and asso-
ciated host metadata hosted on NCBI to assess the current state of
global viral genomic surveillance. We additionally analyse ~59,000
viral sequencesisolated fromvarious vertebrate hosts using abespoke
approach that is agnostic to viral taxonomy to understand the evo-
lutionary processes surrounding host jumps. We ascertain overall
trends in the directionality of viral host jumps between human and
non-human vertebrates and quantify the amount of detectable adap-
tation associated with putative host jumps. Finally, we examine, for a
subset of viruses, signatures of adaptive evolution detected in specific
categories of viral proteins associated with facilitating or sustaining
host jumps. Together, we provide a comprehensive assessment of
potential genomic correlates underpinning host jumps in viruses
across humans and other non-human vertebrates.

Results

Anincomplete picture of global vertebrate viral diversity
Global genomic surveillance of viruses from different hosts is key to
preparing for emerging and re-emerging infectious diseases in humans
and animals™'. To identify the scope of viral genomic data collected

thus far, we downloaded the metadata of all viral sequences hosted
on NCBI Virus (n=11,645,803; accessed 22 July 2023; Supplementary
Data 1). Most (68%) of these sequences were associated with
SARS-CoV-2, reflecting the intense sequencing efforts during the
COVID-19pandemic.Inaddition,ofthesesequences,93.6%,3.3%,1.5%,1.1%
and 0.6% were of viruses with single-stranded (ss)RNA, double-stranded
(ds)DNA, dsRNA, ssDNA and unspecified genome compositions,
respectively. The dominance of ssRNA virusesis not entirely explained
by the high number of SARS-CoV-2 genomes, as sSRNA viruses still
represent 80% of all viral genomes if SARS-CoV-2 is discounted.
Vertebrate-associated viral sequences represent 93% of
this dataset, of which 93% were human associated. The next four
most-sequenced viruses are associated with domestic animals (Sus,
Gallus, Bos and Anas) and, after excluding SARS-CoV-2, represent 15%
of vertebrate viral sequences, while virusesisolated from the remaining
vertebrate generaoccupy amere 9% (Fig.1aand Extended Data Fig. 1a),
highlighting the human-centric nature of viral genomic surveillance.
Further, only alimited number of non-human vertebrate families have
at least ten associated viral genome sequences deposited (Fig. 1b),
reinforcing the fact that a substantial proportion of viral diversity
in vertebrates remains uncharacterized. Viral sequences obtained
fromnon-human vertebrates thus far also display a strong geographic
bias, with most samples collected from the United States of America
and China, whereas countries in Africa, Central Asia, South America
and Eastern Europe are highly underrepresented (Fig. 1c). This geo-
graphical bias varies among the four most-sequenced non-human host
genera Sus, Gallus, Anas and Bos (Extended Data Fig. 1b). Finally, the
user-submitted host metadata associated with viral sequences, which
is key to understanding global trends in the evolution and spread of
viruses in wildlife, remains poor, with45% and 37% of non-human viral
sequences having no associated host information provided at the genus
level, or sample collectionyear, respectively. The proportion of missing
metadata also varies extensively between viral families and between
countries (Extended Data Fig. 2). Overall, these results highlight the
massive gapsin the genomic surveillance of viruses in wildlife globally
and the need for more conscientious reporting of sample metadata.

Humans give more viruses to animals than they do to us

To investigate the relative frequency of anthroponotic and zoonotic
host jumps, we retrieved 58,657 quality-controlled viral genomes span-
ning 32 viral families, associated with 62 vertebrate host orders and
representing 24% of all vertebrate viral species on NCBI Virus (https://
www.ncbi.nlm.nih.gov/labs/virus/vssi/#/) (Fig.1d). We found that the
user-submitted species identifiers of these viral genomes are poorly
ascribed, with only 37% of species names consistent with those in the
ICTVviral taxonomy?®. In addition, the genetic diversity represented by
different viral species is highly variable since they are conventionally
defined on the basis of the genetic, phenotypic and ecological attrib-
utes of viruses'. Thus, we implemented a species-agnostic approach
based on network theory to define ‘viral cliques’ that represent discrete
taxonomic units with similar degrees of genetic diversity, similar to
the concept of operational taxonomic units® (Fig. 2a and Methods).
A similar approach was previously shown to effectively partition the
genomic diversity of plasmids in a biologically relevant manner®.
Using this approach, we identified 5,128 viral cliques across the 32
viral families that were highly concordant with ICTV-defined species
(median adjusted Rand index, ARI = 83%; adjusted mutual informa-
tion, AMI = 75%) and of which 95% were monophyletic (Fig. 2a). Some
clique assignments aggregated multiple viral species identifiers, while
others disaggregated species into multiple cliques (Fig. 2b; clique
assignments for Coronaviridaeillustrated in Extended Data Fig. 3).
Despite the human-centric nature of genomic surveillance, viral cliques
involving only animals represent 62% of all cliques, highlighting the
extensive diversity of animal virusesin the global viral-sharing network
(Extended Data Fig. 4a).

Nature Ecology & Evolution


http://www.nature.com/natecolevol
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

Article

https://doi.org/10.1038/s41559-024-02353-4

a b .
Fish | 9% > ]
Host genus lj . > ]
__________________________________ .
(2}
Humans ‘g Amphibians - 13% m ]
Sus (pigs) < S
. jo
Gallus (chickens) s Reptiles | I:[ 18% é !
|
Bos (cattle) 8 R T L S R L R L LR LR L L e LR L L Lt i
[ ) h
Anas (ducks) g Birds 29% ’ |
|
Others T
|
Missing Mammals — 48% ﬂ |
T : T
0] 25 50 75 100
Families with 210 viral sequences (%)
@ 1,500 4 M Genomes analysed
3
= M Total
>
o
O 1000
£
122}
0
(6]
b 500 I
. I I I
[
£ o I I | | Illl II.--- ——
> I L L L L L T T T
R R R R R R R o R R R R o] R R 2882 E
peicheReRepcheReRepchoheRepeheheReRohcheeRepcheRRepehefeReRekeR]
R LR 228 SS2=E
SSSSS SSSSSSSSSSSS SSSS SSS$58
29893 23282R82028832¢88¢8 8988 322
585555050528 aT s ETS50058285 5SS
) SE=208" 3528 Es5<0 5y OLF g@xxT g
log,o(non-human viral sequences) .:l gz T FO83 nT 3838 32 £
aQ a Q ca @«
01 2 3 45 S}
Viral family

Fig.1| Currentstate of the global genomic surveillance of vertebrate viruses.
a, Proportion of non-SARS-CoV-2, vertebrate-associated viral sequences
deposited in public sequence databases (n = 2,874,732), stratified by host. Viral
sequences associated with humans and the next four most-sampled vertebrate
hosts are shown. Sequences with no host metadata resolved at the genus

level are denoted as ‘missing’. b, Proportion of host families represented by at
least 10 associated viral sequences for the five major vertebrate host groups.

¢, Global heat map of sequencing effort, generated fromall viral sequences
deposited in public sequence databases that are not associated with human
hosts (n=1,599,672).d, Number of vertebrate viral species on NCBI Virus used for
the genomic analyses in this study, stratified by viral family. The 32 vertebrate-
associated viral families considered in this study are shown and the remaining 21
families that were not considered are denoted as ‘others’.

We thenidentified putative host jumps within these viral cliques
by producing curated whole-genome alignments to which we applied
maximum-likelihood phylogenetic reconstruction. For segmented
viruses, we instead used single-gene alignments as the high frequency
of reassortment® precludes robust phylogenetic reconstruction
using whole genomes. Phylogenetic trees were rooted with suit-
able outgroupsidentified using metrics of alignment-free distances
(see Methods). We subsequently reconstructed the host states of
all ancestral nodes in each tree, allowing us to determine the most
probable direction of ahost jump for each viral sequence (approach
illustrated in Fig. 3a). To minimize the uncertainty in the ancestral
reconstructions, we considered only host jumps where the likeli-
hood of the ancestral host state was twofold higher than alternative
host states (Fig. 3a and Supplementary Methods). Varying the strin-
gency of this likelihood threshold yielded highly consistent results
(Extended Data Fig. 5a), indicating that the inferred host jumps are
robust to our choice of threshold. In total, we identified 12,676 viral
lineages comprising 2,904 putative vertebrate host jumps across 174
of these viral cliques.

Among the putative host jumpsinferred toinvolve human hosts
(599/2,904; 21%), we found a much higher frequency of anthro-
ponotic compared with zoonotic host jumps (64% vs 36%, respec-
tively; Fig. 3b). This finding was statistically significant as assessed
via a bootstrap paired t-test (¢ =227, d.f. =999, P<0.0001) and a
permutation test (P = 0.035; see Methods). In addition, this result
was robust to our choice of likelihood thresholds used during
ancestral reconstruction (Extended Data Fig. 5b), the tree depth
at which the host jump was identified (Extended Data Fig. 5¢), and
to sampling bias (Supplementary Notes and Fig. 1). The highest

number of anthroponotic jumps was contributed by the cliques
representing SARS-CoV-2 (132/383; 34%), MERS-CoV (39/383;
10%) and influenza A (37/383; 10%). This is concordant with the
repeated independent anthroponotic spillovers into farmed, cap-
tive and wild animals described for SARS-CoV-2 (refs.13,24-27) and
influenza A>*?°, Meanwhile, there has only been circumstantial evi-
dence for human-to-camel transmission of MERS-CoV*°2, Noting
the disproportionate number of anthroponotic jumps contributed
by these viral cliques, we reperformed the analysis without them
and found a significantly higher frequency of anthroponotic than
zoonotic jumps (53.5% vs 46.5%; bootstrap paired t-test, t = 40,
d.f.=999, P<0.0001), suggesting that our results are not driven
solely by these cliques. Further, 16/21 of the viral families were
involved in more anthroponotic than zoonotic jumps (Extended
DataFig. 5d), indicating that this findingis generalizable across most
viruses. Overall, our results highlight the high but largely underappre-
ciated frequency of anthroponotic jumps among vertebrate viruses.

Host jumps of multihost viruses require fewer adaptations
Before jumpingtoanew host, avirusinits natural reservoir may fortui-
tously acquire pre-adaptive mutations that facilitateits transitiontoa
new host. This may be followed by the further acquisition of adaptive
mutations as the virus adapts to its new host environment*.

For each host jump inferred, we estimated the extent of both
pre-jump and post-jump adaptations through the sum of branch
lengths from the observed tip to the ancestral node where the host
transition occurred (Fig. 3a). However, in practice, the degree of adap-
tation inferred may vary on the basis of different factors, including
samplingintensity and the time interval between when the host jump
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Fig.2| Taxonomy-agnostic approach for identifying equivalent units of viral
diversity. a, Workflow for taxonomy-agnostic clique assignments. Briefly, the
alignment-free Mash* distances between complete viral genomes in each viral
family are computed and dense networks where nodes and edges representing
viralgenomes and the pairwise Mash distances, respectively, are constructed.
From these networks, edges representing Mash distances >0.15 are removed

to produce sparse networks, on which the community-detection algorithm,
Infomap®*, is applied to identify viral cliques. Concordance with the ICTV
taxonomy was assessed using ARIand AML. b, Sparse networks of representative

© @ Distinct viral cliques

Species aggregation Species disaggregation

viral cliques identified within the Coronaviridae (ssRNA), Picobirnaviridae
(dsRNA), Genomoviridae (ssDNA) and Adenoviridae (dsDNA). Some viral clique
assignments aggregated multiple viral species, while others disaggregated
species into multiple cliques. Nodes, node shapes and edges represent individual
genomes, their associated host and their pairwise Mash distances, respectively.
Thelist of viral families considered in our analysis are shown on the bottom-left
corner of each panel. Silhouettes were sourced from Flaticon.com and Adobe
Stock Images (https://stock.adobe.com) with astandard licence.

occurred and when the virus was isolated from its new host. As such,
for each viral clique, we considered only the minimum mutational
distance associated with a host jump.

We first examined whether the minimum mutational distance
associated with a host jump for each viral clique was higher than the
minimum for arandom selection of viral lineages not involved in host
jumps (Fig.3aand Methods). Indeed, the minimum mutational distance
for a putative host jump within each clique was significantly higher
than that for non-hostjumps (Fig. 4a; two-tailed Mann-Whitney U-test,
U=6,767, P<0.0001). Noting that both sampling intensity and the

different mutation rates of viral families may confound these results,
we corrected for these confounders using alogistic regression model
butfoundasimilar effect (odds ratio, ORyqjump = 1.31; two-tailed Z-test
forslope=0,7=6.58,d.f.=289, P<0.0001).

We then considered the commonly used measure of directional
selection acting on genomes, the ratio of non-synonymous mutations
per non-synonymous site (dN) to the number of synonymous muta-
tions per synonymous site (dS). Comparing the minimum dN/dS for
host jumps within each clique, we observed that minimum dN/dS was
alsosignificantly higher for hostjumps compared withnon-host jumps

Nature Ecology & Evolution


http://www.nature.com/natecolevol
https://stock.adobe.com

Article

https://doi.org/10.1038/s41559-024-02353-4

Mutational distance

Relative likelihoods >2x

N

Putative host jump
'WSt jump

i} Reconstructed node [l Host A
QO Observed tip I Host B

Fig.3|Humans give more viruses to animals than they give to us. a, Illustration
of ancestral host reconstruction approach used to infer the directionality of
putative host jumps. Putative host jumps are identified if the ancestral host state
has atwofold higher likelihood than alternative host states. The mutational
distance (substitutions per site) represents the sum of the branch lengths
between the tip sequence and the ancestral node for which the first host state
transition occurred ina tip-to-root traverse. b, Number of distinct putative host
jumpsinvolving humans across all viral families considered (n = 32). Black dots

b Bootstrap paired t-test: t = 227, d.f. = 999, P < 0.0001
I ]

400 -

& 350

€

=

-

S 300

°

/U\ — -

2 250 4

a
200 |

T T
Anthroponotic Zoonotic

Event type

represent the observed point estimates for each type of host jump. The violin
plots show the bootstrap distributions of these estimates, where the host jumps
within eachviral clique were resampled with replacement for 1,000 iterations.
Black lines show the 95% confidence intervals associated with these bootstrap
distributions. Silhouettes were sourced from Flaticon.com and Adobe Stock
Images (https://stock.adobe.com) with astandard licence. A two-tailed paired
t-test was performed to test for a difference in the zoonotic and anthroponotic
bootstrap distributions.

(Fig. 4b; ORyogtjump = 2.39; Z=4.84, d.f. =263, P< 0.0001). Finally, after
correcting for viral clique membership, there were no significant differ-
encesinlog-transformed mutational distance (F, 5,5, =2.23, P= 0.136) or
dN/dS estimates (F 335 = 1.66, P= 0.198) between zoonotic and anthro-
ponotic jumps, or between forward and reverse cross-species jumps
(mutational distance: F; ;555 = 0.538, P= 0.463; dN/dS: F{; 115 = 0.0311,
P=0.860), indicating that there are no direction-specific biases in
these measures of adaptation. Overall, these results are consistent
withthe hypothesized heightened selection following achangein host
environmentand additionally provide confidence in our ancestral-state
reconstruction method for assigning host jump status.

However, the extent of adaptive change required for a viral host
jump may vary. For instance, some zoonotic viruses may require
minimal adaptation to infect new hosts while in other cases, more
substantial genetic changes might be necessary for the virus to over-
come barriers that prevent efficient infection or transmission in the
new host. We therefore tested the hypothesis that the strength of
selection associated with a host jump decreases for viruses that tend
to have broader host ranges. To do so, we compared the minimum
mutational distance between ancestral and observed host states to the
number of host genera sampled for each viral clique. We found that
the observed host range for each viral clique is positively associated
with greater sequencingintensity (thatis, the number of viralgenomes
in each clique; Pearson’s r = 0.486; two-tailed t-test for r=0, t =34.9,
d.f.=3,932, P<0.0001), in line with the strong positive correlation
between per-host viral diversity and surveillance effort reported
in previous studies>*®, After correcting for both sequencing effort
and viral family membership, we found that the mutational distance
for host jumps tends to decrease with broader host ranges (Poisson
regression, slope = -0.113; two-tailed Z-test for slope = 0, Z=-9.40,
d.f.=129,P<0.0001).Incontrast, therelationship between mutational
distance and host range for viral lineages that have not experienced
host jumps is only weakly positive (slope = 0.0843; Z=7.16, d.f. =127,
P<0.0001) (Fig. 4c). Similarly, the minimum dN/dS for a host jump
decreases more substantially for viral cliques with broader host ranges
(slope =-0.427;7=-9.18,d.f. =116, P < 0.0001) than for non-host jump
controls (slope = 0.143; Z=3.08, d.f. =116, P< 0.01) (Fig. 4d). These
trends in mutational distance and dN/dS were consistent when the
same analysis was performed for ssDNA, dsDNA, +ssSRNA and ~ssRNA

viruses separately (Extended Data Fig. 6). These resultsindicate that,
onaverage, ‘generalist’ multihost viruses experience lower degrees of
adaptation when jumping into new vertebrate hosts.

Host jump adaptations are gene and family specific

We next examined whether genes with different established func-
tions displayed distinctive patterns of adaptive evolution linked to
host jump events. Since gene function remains poorly characterized
in the large and complex genomes of dsDNA viruses, we focused on
the shorter ssRNA and ssDNA viral families. We selected for analysis
the four non-segmented viral families with the greatest number of
host jump lineages in our dataset: Coronaviridae (+ssRNA; n=2,537),
Rhabdoviridae (—ssRNA; n=1,097), Paramyxoviridae (—ssRNA; n=787)
and Circoviridae (ssDNA; n = 695). For these viral families, we extracted
allannotated protein-coding regions from their genomes and catego-
rized them as either being associated with cell entry (termed ‘entry’),
viral replication (‘replication-associated’) or virion formation (‘struc-
tural’), and classifying the remaining genes as ‘auxiliary’ genes.

For the Coronaviridae, Paramyxoviridae and Rhabdoviridae, the
entry genes encode surface glycoproteins that could also be consid-
ered structural but were not categorized as such given theirimportant
rolein mediating cell entry. The capsid gene of circoviruses, however,
encodes thesole structural protein thatis also the key mediator of cell
entry and was therefore categorized as structural. To estimate putative
signatures of adaptationinrelationto lineages that have experienced
host jumps for the different gene categories, we modelled the changein
log,,(dN/dS) in host jumps versus non-host jumps using alinear model,
while correcting for the effects of clique membership (see Methods).
Contraryto our expectation that entry genes would generally be under
the strongest adaptive pressures during a host jump, we found that
the strength of adaptation signals for each gene category varied by
family. Indeed, the strongest signals were observed for structural pro-
teinsincoronaviruses (effect = 0.375, two-tailed ¢-test for differencein
parameter estimates, t =4.35,d.f. =10,121, P < 0.0001) and auxiliary pro-
teinsin paramyxoviruses (effect = 0.439, t = 2.15,d.f. =4,225,P=0.02)
(Fig. 5). Meanwhile, no significant adaptive signals were observed in
the entry genes of all families (minimum P = 0.3), except for the capsid
gene in circoviruses (effect = 0.325, t=2.68, d.f. =1,367, P= 0.004)
(Fig. 5). These findings suggest that selective pressures acting on
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minimum distance or minimum dN/dS across all host jump or randomly selected
non-hostjump lineagesin a single clique. Boxplot elements are defined as
follows: centre line, median; box limits, upper and lower quartiles; whiskers,
1.5xinterquartile range.

viralgenomesinrelationto host jumpsare likely to differ by gene func-
tion and viral family.

Given the lack of adaptive signals in the entry proteins, we further
hypothesized that within each gene, adaptative changes are likely
to be localized to regions of functional importance and/or that are
under relatively stronger selective pressures exerted by host immu-
nity. To test this, we focused on the spike gene (entry) of viral cliques
within the Coronaviridae since the key region involved in viral entry is
well characterized (that s, the receptor-binding domain (RBD))*. We
found that dN/dS estimates consistent with adaptive evolution were
indeedlocalized to the RBDs, butalso to the N-terminal domains (NTD),
of SARS-CoV-2 (genus Betacoronavirus), avian infectious bronchitis
virus (IBV; Gammacoronavirus) and MERS (genus Alphacoronavirus)
(Extended Data Fig. 7). This is consistent with the strong immune
pressures exerted on these regions of the spike protein*** and the
central role of the RBD in host-cell recognition and entry** %, Overall,
our results indicate that the extent of adaptation associated with a
host jump likely varies by gene function, gene region and viral family.

Discussion

The post-genomic erahas opened opportunities to advance our under-
standing of the diversity of viruses in circulation and the macroevo-
lutionary principles of viral host range. Leveraging ~59,000 publicly
available viral sequences isolated from vertebrate hosts, we inferred
that humans give more viruses to other vertebrates than they give to
us across the 32 viral families we considered. We further demonstrated
that host jumps are associated with heightened signals of adaptive
evolution that tend to decrease in viruses with broader host ranges.

Thisindicates that there may be aminimum mutational threshold nec-
essary for viruses to expand their host range. Finally, we showed that
adaptive evolution linked to host jumps may vary by gene function and
may be localized to specific gene regions of functional importance.
To bypass the limitations of existing viral taxonomies, we used
ataxonomy-agnostic approach to define roughly equivalent units of
viral diversity, which formed the basis for most of the analyses pre-
sented inthis study. The use of operational taxonomic units rather than
traditional taxonomic species names further allowed us to perform
like-for-like analyses across the entire diversity of viruses. Our approach
identified cliques that were largely concordant with traditional viral
species nomenclature but also highlighted inconsistencies, where
in some cases, single viral species appear to form distinct taxonomic
groups while other groups of species seem to form a single group solely
based on their genetic relatedness (Fig. 2 and Extended Data Fig. 3).
However, we do not claimthat our approach should supersede existing
taxonomic classification systems, especially since arobust and mean-
ingful species definition requires the integration of viral properties
with finer-scale evolutionary analyses that was not necessary for our
purposes. Nevertheless, we anticipate that the development and use of
similar network-based approaches may pave the way for the develop-
ment of efficient classification frameworks that can rapidly incorporate
novel, metagenomically derived viruses into existing taxonomies.
Harnessing cliques as a mechanism of identifying clusters of
related viruses for phylogenetic inspection allowed us to quantify
the number and sources of recent host jump events. One important
caveat tothisapproachis that the viral cliquesinvolved in putative host
jumps represent only a fraction of the viral diversity sequenced thus
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Fig. 5| Signals of adaptation are gene and family specific. The strength of
adaptation signals in genes associated with host jump and non-host jump
lineages were estimated using linear models for Coronaviridae (n=10,129),
Paramyxoviridae (n = 4,233), Rhabdoviridae (n = 3,321), and Circoviridae
(n=1,373). We modelled the effects of gene type and host jump status on
log(dN/dS) while correcting for viral clique membership and, for each gene

type, inferred the strength of adaptive signal (denoted ‘effect’) as the difference
in parameter estimates for host jumps versus non-host jumps. Points and lines
represent the parameter estimates and their standard errors, respectively.
Differences in parameter estimates were tested against zero using a one-tailed
t-test. Subpanels for each gene type were ordered from left to right with
increasing effect estimates.

far (Extended Data Fig. 4b) and the patterns we observed may change
asmoreviruses are discovered. However, we consistently found higher
frequencies of anthroponotic than zoonotic jumps across 16 of the
21 viral families (Extended Data Fig. 5d). Since each of these families
are associated with varying viral discovery effort, the consistency of
this pattern makes it highly unlikely that surveillance biases are driving
the excess of anthroponotic jumps we inferred. Another caveat is that
our clique assignment approach clusters viruses within -15% sequence
divergence, which limits our analyses to relatively recent host jump
events. However, the limited divergence of the sequences withineach
clique also allowed us to produce more robust alignments and hence
evolutionary inferences.

Of the 599 recent host jumps identified, 64% were inferred as
anthroponotic (Fig. 3b). While the relative importance of anthro-
ponotic versus zoonotic events has been speculated™?***°, we provide
aformal evaluation of the zoonotic-to-anthroponotic ratio in verte-
brates, showing that anthroponoses are equally, if not more, critical
to consider than zoonoses when assessing viral spillover dynamics.
It stands to reason that the substantial global human population size
and ubiquitous spatial distribution position us as a major source for
viral exchange. However, itis also likely that behavioural factors might
amplify the risk of anthroponotic transmission, for example, through
changesinland use, agricultural methods or heightened interactions
between humans and wildlife*. Overall, our results highlight the impor-
tance of surveying and monitoring human-to-animal transmission of
viruses, and itsimpacts on human and animal health.

We observed heightened evolution and adaptive signals in asso-
ciation with host jumps (Fig. 4). This result is largely intuitive, since a
virus jumping into a new host is likely to be under different selective

pressures exerted directly by the novel host environment andindirectly
by changes in host-to-host transmission dynamics. The evolutionary
signals we captured may include pre-requisite adaptations thatenable
avirustoinfect the new host. Inaddition, they probably also represent
the burst of adaptive mutations which may be acquired following a host
jump, which has been demonstrated for multiple viral systems?***,
Further, these signals could potentially reflect a relaxation of previ-
ous selective pressures no longer present in the novel host. We note
that these signals of heightened evolution could also, in principle, be
inflated by sampling bias, where two viruses circulating in the same
host are more often drawn from the same population. However, this
was largely controlled for in our analysis through comparisons to
representative non-host jump lineages that are expected to be affected
by the same sampling bias.

We observed lower mutational and adaptive signals associ-
ated with host jumps for viruses that infect a broader range of hosts
(Fig. 4c,d). The most likely explanation for this pattern is that some
viruses are intrinsically more capable of infecting a diverse range of
hosts, possibly by exploiting host-cell machinery that are conserved
across different hosts. For example, sarbecoviruses (the subgenus
comprising SARS-CoV-2) target the ACE2 host-cell receptor, which is
conserved across vertebrates***, and the high structural conserva-
tion of the sarbecovirus spike protein®” may explain the observation
that single mutations can enable sarbecoviruses to expand their host
tropism*. In other words, multihost viruses may have evolved to target
more conserved host machinery that reduces the mutational barrier
for them to productively infect new hosts. This may provide amecha-
nistic explanation for previous observations that viruses with broad
host range have a higher risk of emerging as zoonotic diseases>*’.
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Our approach to identifying putative host jumps hinges on
ancestral-state reconstruction (Fig. 3a), which has been shown to be
affected by sampling biases**, However, we accounted for this, at
least in part, by including sequencing effort as ameasure of sampling
biasinour statistical models, allowing us to draw inferences that were
robust to disproportionate sampling of viruses in different hosts. Our
approachalso does not consider the epidemiology or ecology of viral
transmission, as thisislargely dependent on host features such as popu-
lation size, social structure and behaviour for which comprehensive
datasets at this scale are not currently available. We anticipate that
future datasets that integrate ecology, epidemiology and genomics
may allow more granular investigations of these patterns in specific
hostand viral systems. Inaddition, the patterns we described are broad
and do not capture the idiosyncrasies of individual host-pathogen
associations. These include a variety of biological features— intrinsic
ones, suchasthe molecular adaptations required for receptor binding,
as well as more complex ones including cross-immunity and interfer-
ence with other viral pathogens circulating in a host population.

Overall, our work highlights the large scope of genomic datain the
public domainandits utility in exploring the evolutionary mechanisms
of viral host jumps. However, the large gapsin the genomic surveillance
of viruses thus far suggest that we have only just scratched the surface
of the true viral diversity in nature. In addition, despite the strong
anthropocentric bias in viral surveillance, 81% of the putative host
jumps identified in this study do not involve humans, emphasizing
the large underappreciated scale of the global viral-sharing network
(Extended Data Fig. 8). Widening our field of view beyond zoonoses
and investigating the flow of viruses within this larger network could
yield valuableinsights that may help us better prepare for and manage
infectious disease emergence at the human-animal interface.

Methods

Data acquisition, curation and quality control

The metadata of all partial and complete viral genomes were down-
loaded from NCBI Virus (https://www.ncbi.nlm.nih.gov/labs/virus/
vssi/#/) on22July 2023, with filters excluding sequencesisolated from
environmental sources, lab hosts, or associated with vaccine strains
or proviruses (n=11,645,803). Where possible, host taxa names in
the metadata were resolved in accordance with the NCBI taxonomy*
using the ‘taxizedb’ v.0.3.1 package in R. User-submitted viral species
names were compared to the ICTV master species list version ‘MSL38.
V2’ dated 6 July 2023.

Togenerate a candidate list of viral sequences for further genomic
analysis, the metadata werefiltered to include 53 viral families known
to infect vertebrate hosts on the basis of information provided in the
2022 release of the ICTV taxonomy (https://ictv.global/taxonomy)*°
and with reference to that provided by ViralZone (https://viralzone.
expasy.org/)*’. We then retained only sequences from viral families
comprising at least 100 sequences of greater than 1,000 nt in length.
Since the sequences of segmented viral families are rarely depos-
ited as whole genomes and since the high frequency of reassort-
ment® precludes robust phylogenetic reconstruction, we identified
sequences for single genes conserved within each of these families
for further analysis (Arenaviridae: L segment; Birnaviridae: ORF1/
RARP/VP1/Segment B; Peribunyaviridae: L segment; Orthomyxoviridae:
PB1; Picobirnaviridae: RARP; Sedoreoviridae: VP1/Segment 1/RdRP;
Spinareoviridae: Segment 1/RdRP/Lambda 3). These sequences were
retrieved by applying text-based pattern matching (thatis, ‘grepl’inR)
to query the GenBank sequence titles. For non-segmented genomes,
we retained all non-human-associated sequences and subsampled
the human-associated sequences as follows: we selected a random
subsample of 1,000 SARS-CoV-2 genomes of greater than 28,000 nt
from distinct countries, isolation sources and with distinct collec-
tion dates. For influenza B, we retained only human sequences with
distinct country of origins, sample types and collection dates, and

hosts of isolation. For other human-associated sequences, we retained
viruses with distinct species, country, isolation source and collection
dateinformation. We then downloaded the final candidate list of viral
sequences (n =92,973) using ‘ncbi-acc-download’ v.0.2.8 (https://
github.com/kblin/ncbi-acc-download). Further quality control of the
genomes downloaded was performed using ‘CheckV’ (v.1.0.1)*, retain-
ing sequences with more than 95% completeness (for non-segmented
viruses) and less than 5% contamination (for all sequences). This
resulted in a final genomic dataset comprising 58,657 observations
(Supplementary Table 1) composed of gene sequences for segmented
viruses and complete genomes for non-segmented viruses. For sim-
plicity, we will henceforth refer to the gene sequences and complete
genomes as ‘genomes’.

Taxonomy-agnostic identification of viral cliques

To identify viral cliques, we calculated the pairwise alignment-free
Mash distances of genomes within each viral family via‘Mash’ (v.1.1)*
with a k-mer size of 13. This k-mer size ensures that the probability of
observing ak-mer by chance, given the median genome length for each
clique,islessthan 0.01. Givenagenomelength, /,alphabet,>={A, T, G,
C}, and the desired probability of observing a k-mer by chance, g=0.01,
this was computed using the formula described previously*:

k= [log‘z‘ (l(l;q))] 0

We then constructed undirected graphs for each viral fam-
ily with nodes and edges representing genomes and Mash dis-
tances, respectively. From these networks, we removed edges with
Mash distance values greater than a certain threshold, ¢, before
we applied the community-detection algorithm, Infomap®*. This
community-detection algorithm performs well in both large
(>1,000 nodes) and small (<1,000 nodes) undirected graphs® and seeks
to identify subgraphs within these undirected graphs that minimize
the information required to constrain the movement of a random
walker**. We refer to the subgraphs identified through this algorithm
as ‘viral cliques’. Here we forced the community-detection algorithm
to identify taxonomically relevant cliques by removing edges with
Mash distance values greater than ¢, which resulted in sparser graphs
with closely related genomes (for example, from the same species)
being more densely connected than more distantly related genomes
(for example, different species). The value of ¢ was selected by maxi-
mizing the proportion of monophyletic cliques identified and the
concordance of the viral cliques identified with the viral species names
from the NCBItaxonomy, based on the commonly used clustering per-
formance metrics, AMland ARI (Supplementary Fig. 2). These metrics
were computed using the ‘AMI’and ‘ARI' functionsin‘Aricode’v.1.0.2. To
assess whether the viral cliques identified fulfil the species definition
criterion of being monophyletic'®, we reconstructed the phylogenies of
eachviral family by applying the neighbour-joining algorithm*® imple-
mented in the ‘Ape’ v.5.7.1 R package on their pairwise Mash distance
matrices. We then computed the proportion of monophyletic viral
cliques using the ‘is.monophyletic’ function in Ape v.5.7.1 across the
various values of t. Given the discordance between the NCBland ICTV
taxonomies, we applied the above optimization protocol to t using the
viral species namesin the ICTV taxonomy. Using the NCBI viral species
names, ¢ = 0.15 maximized both the median AMI and ARl across all
families (Supplementary Fig. 2a), with 94.3% of the cliques identified
being monophyletic (Supplementary Fig.2b). Using the ICTV viral spe-
ciesnames, t = 0.2 and ¢t = 0.25 maximized the median AMland median
ARl across families (Supplementary Fig. 2¢), with 93.7% and 87.8% of
the cliques being monophyletic (Supplementary Fig.2b), respectively.
Since t = 0.15 produced the highest proportion of monophyletic clades
that were approximately concordant with existing viral taxonomies,
we used this threshold to generate the final viral clique assignments
for downstream analyses (Supplementary Table 1).
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Identification of putative host jumps

We retrieved all viral cliques that were associated with at least two
distinct host generaand comprised at least 10 genomes (n = 215). We
then generated clique-level genome alignments using the ‘FFT-NS-2’
algorithm in ‘MAFFT’ (v.7.490)°"*. We masked regions of the align-
ments that were poorly aligned or prone to sequencing error by
replacing alignment sites that had more than 10% of gaps or ambigu-
ous nucleotides with Ns. Clique-level genome alignments that had
more than 20% of the median genome length masked were consid-
ered to be poorly aligned and thus removed from further analysis
(n=6; Supplementary Fig. 3). Following this procedure, we recon-
structed maximum-likelihood phylogenies for each viral clique with
‘1Q-Tree’ (v.2.1.4-beta)*, using 1,000 ultrafast bootstrap (UFBoot)®°
replicates. The optimal substitution model for each tree was automati-
cally determined using the ‘ModelFinder® utility native to IQ-Tree.
To estimate the root position for each clique tree, we reconstructed
neighbour-joining Mash trees for each viral clique, including 10
additional genomes whose minimum pairwise Mash distance to the
genomes in each tree was 0.3-0.5, as potential outgroups. The most
basal tips in these neighbour-joining Mash trees were identified and
used to root the maximum-likelihood clique trees. This approach, as
opposed to using maximum-likelihood phylogenetic reconstruction
involving the outgroups, was used as it is difficult to reliably align
clique sequences with highly divergent outgroups.

To identify putative host jumps, we performed ancestral-state
reconstruction on the resultant rooted maximum-likelihood phy-
logenies with host as a discrete trait using the ‘ace’ function in Ape
v.5.7.1. Traversing from atip to the root node, a putative hostjump s
identified if the reconstructed host state of an ancestral node is dif-
ferent from the observed tip state, has a twofold greater likelihood
compared with alternative states and is different from the host state
of the sampled tip. Where the tip and ancestral host states were of
different taxonomic ranks, we excluded putative host jumps where
the ancestral host state isnested within the tip host state, or vice versa
(for example, ‘Homo’ and ‘Hominidae’). Missing host metadata were
encoded as ‘unknown’ and included in the ancestral-state reconstruc-
tion analysis. Host jumps involving unknown or non-vertebrate host
states were excluded from further analysis. Separately, we extracted
non-host jump lineages to control for any biases in our analysis
approach. To do so, we randomly selected an ancestral node where
the reconstructed host state is the same as the observed tip state
and has atwofold greater likelihood than alternative host states, for
eachviralgenomethatis notinvolvedin any putative host jumps. For
the mutational distance and dN/dS analyses, we retained only viral
cliques where non-host jump lineages could be identified. An analysis
exploring the robustness of this host jump inference approach to
sampling biases (Supplementary Fig.1) and a more detailed descrip-
tionof theinference algorithm (Supplementary Fig. 4) are providedin
Supplementary Information.

Implementation of this algorithm yielded a list of all viral line-
ages involving a host jump (Supplementary Table 2). Since multiple
lineages may involve a host transition at the same ancestral node, we
calculated the number of unique host jump events as the number of
distinct nodes for each unique host pair. For example, the three line-
ages Nodel (host A)>Tipl (host B), Nodel (host A)>Tip2 (host B) and
Nodel (host A)>Tip3 (host C) would be considered as two distinct host
jump events, one between hosts A and B and the other between hosts
A and C. This counting approach was used for Fig. 3a and Extended
DataFig. 5. Thelist of all 2,904 distinct host jumps is provided in Sup-
plementary Table 3.

Calculating mutational distances and dN/dS

Mutational distance and dN/dS estimates may be lineage specific
and may depend on sampling intensity. In addition, there is a non-
linear relationship between dN/dS and branch length, that is, the

estimated dN/dS decreases with increasing evolutionary distance®.
Therefore, we opted to compare the minimum adaptive signal (that
is, minimum dN/dS) associated with a host jump for each clique. For
host jump lineages, mutational distances were calculated as the sum
of the branch lengths between the tip sequence and the ancestral
node for which the first host state transition occurred (in substi-
tutions per site) using the ‘get_pairwise_distances’ function in the
‘Castor’ (v.1.7.10)** R package; this was then multiplied by the align-
ment length to obtain the estimated number of substitutions
(Fig.3a). Tocalculate the dN/dS estimates, we reconstructed the ances-
tral sequences of ancestral nodes using the -asr’ flagin IQ-Tree, which
isbased on an empirical Bayesian algorithm (http://www.iqtree.org/
doc/Command-Reference). We then extracted coding regions from
the clique-level masked alignments based on the user-submitted gene
annotations on NCBI GenBank (in ‘gff” format) of each viral genome.
We then computed the dN/dS estimates using the method of ref. 64
implemented inthe ‘dnastring2kaks’ function of the ‘MSA2dist’ v.1.4.0
R package (https://github.com/kullrich/MSA2dist). We calculated
the minimum mutational distance and dN/dS across all host jump
eventsin each clique for our downstream statistical analyses, which,
in principle, represents the minimum evolutionary signal associated
with a host jump in each viral clique. For non-host jump lineages, we
similarly computed the minimum mutational distance and dN/dS
across the randomly selected lineages. Estimates where dN =0 or
dS = 0 were removed. The list of all minimum mutational distance
and minimum dN/dS estimates is provided in Supplementary Tables 4
and 5, respectively. The dN/dS estimates for the analysis shown in
Fig.5are provided in Supplementary Table 6.

For the coronavirus spike gene analysis (Extended Data Fig. 7),
spike sequences were extracted fromthe clique-level multiple sequence
alignments, with gaps trimmed to the reference sequences (avian infec-
tious bronchitis virus, EU714028.1; SARS-CoV-2, MN908947.3; MERS,
JX869059.2). The genomic coordinates for the functional domains of
the spike proteins were derived from previous studies**"°, Estimates
where dN =0 or dS = 0wereremoved. The dN/dS estimates are provided
inSupplementary Table 7.

Statistical analyses

Allstatistical analyses were performed using the ‘stats’ package native
to Rv.4.3.1. To generate the bootstrapped distributions shown in
Fig. 3b, we randomly resampled the host jumps within each clique
withreplacement (1,000 iterations) and performed two-tailed paired
t-tests using the ‘t.test’ function. Mann-Whitney U-tests, analysis of
variance (ANOVA), linear regressions, and Poisson and logistic regres-
sions wereimplemented using ‘wilcox.test’, ‘anova’, ‘Im’ and ‘glm’ func-
tions, respectively.

A permutation test was performed to assess whether the higher
proportion of anthroponotic versus zoonotic jumps was statistically
significant. We randomly permuted the host states in each clique
for 500 iterations while preserving the number of host-jump and
non-host-jump lineages (illustrated in Supplementary Fig. 5). The
Pvalue was calculated as the number of iterations where the permu-
tated anthroponotic/zoonotic ratio was greater than or equal to the
observed ratio.

To assess the relationship between host range and adaptative
signals (Fig. 4), we used Poisson regressions to model the expected
number of host genera observed in each viral clique, Ao range- We cor-
rected for the number of genomes in each clique, g, as a measure of
sampling effort, and viral family membership, v, by including them
as fixed effects in these models. These models can be formalized for
mutational distance or dN/dS, d, with some p number of viral families
andresidual error, ¢, as:

p
In (Ahostrange) = ﬁO + ﬁl (ln (g)) + Zﬁiﬂui + ﬁp+2 (ln (d)) +€ (2)
i=1
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We tested whether the parameter estimates were non-zero by
performing two-tailed Z-tests implemented within the ‘summary’
functioninR.

To estimate the strength of adaptive signals for coronaviruses,
paramyxoviruses, rhabdoviruses and circoviruses (Fig.5) by gene type,
we implemented two linear regression models for each viral family.
Since the overall adaptive signal may differ for eachviral clique, we cor-
rected for this effect by using aninitial linear model where the number
ofviral cliques, viral clique membership and residual are given by g, ¢
and ¢, respectively, as follows:

q
In (dN/dS) = Bo + 3, BiCi + Bps2 (IN (d)) + € + Emoden (3)

i=1

Subsequently, we used the corrected log(dN/dS) estimates rep-
resented by the residuals of model 1, €,,,4¢11, in @ second linear model
partitioning the effects of gene type by host jump status, j. Given r
number of gene types, this model can be formalized as follows:

r 2
Emodeit = Bo + X, 0, Bi.jCij + Emodelz “4)
i=1j=1

The estimated effects shown in Fig. 5, representative of the dif-
ference in adaptive signals associated with jump and non-host jump
lineages for each gene type, were then computed as:

Effect = Brjump _ﬁr,non—jump (%)

To test whether this effect is statistically significant, we used a
one-tailed t-test, with the ¢ statistic computed using the standard error
of the parameter estimates in model 2:

t = Effect
\/S'e'pr,jumpz + S'e'ﬁr,non-jump

(6)

2

The residuals of model 2 were confirmed to be approximately
normal by visual inspection (Supplementary Fig. 6).

Data analysis and visualization

All dataanalyses were performed using Rv.4.3.1. All visualizations were
performed using ggplot (v.3.4.2)° or ggtree (v.3.8.2)”. UpSet plots were
created using the R package, UpSetR (v.1.4.0)°.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The full list of accessions considered in this study is provided in Sup-
plementary Data 1. The data used for the main analyses are provided
inSupplementary Tables 2-7. All reconstructed maximume-likelihood
trees and ancestral sequences used for the analyses are hosted on
Zenodo (https://doi.org/10.5281/zenod0.10214868)%.

Code availability
All custom code used to perform the analyses reported here are hosted
on GitHub (https://github.com/cednotsed/vertebrate_host_jumps).
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Extended Data Fig. 6 | Adaptation analysis for viral groups. Analysis of
relationships between host range and estimated adaptive signals, similar to Fig. 3,
but only considering ssDNA, dsDNA, +ssRNA or -ssRNA viruses. Distributions

of minimum (a) mutational distance and (b) dN/dS for host jump and non-host
jumps onthe logarithmic scale. We corrected for the effects of sequencing effort
and viral family membership using Poisson regression models. The estimated
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effects of patristic distance on host range after these corrections are annotated.
We tested whether the estimated effects were non-zero using two-tailed Z-tests.
For all panels, each data point represents the minimum distance or dN/dS across
all host jump or randomly selected non-host jump lineages in a single clique. Line
segments represent linear regression smooths without correction.
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Extended Data Fig. 7| Adaptive signals in the Coronaviridae spike gene.
Analysis of the logl0(dN/dS) estimates associated to different functional
domains encoded by the coronavirus spike gene: N-terminal domain (NTD),
receptor-binding domain (RBD), fusion peptide (FP), heptad repeats1and 2
(HR1and HR2), central helix (CH), transmembrane (TM), C-terminal domains
(CT). Estimates with dN=0 or dS=0 were removed and the remaining number

of sequences for each domain and viral clique are annotated. Differences in
distributions were tested for using two-sided Mann-Whitney U tests and the
corresponding p-values are annotated. Boxplot elements are defined as follows:
centre line, median; box limits, upper and lower quartiles; whiskers,
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Extended Data Fig. 8 | The global viral host jump network. Directed network of the vertebrate viral-sharing network, where nodes and edges represent host genera
and the number of viral cliques shared. Edge widths and colour are indicative of the number of viral cliques shared.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

nature portfolio

Corresponding author(s): Cedric C.S. Tan

Last updated by author(s): Jan 19, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
S~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX OO0 0000 00 X

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  taxizedbv0.3.1
nchi-acc-download v0.2.8

Data analysis Rv4.3.1
CheckV v1.0.1
Mash v1.1
Ape v5.7.1
Aricode v1.0.2
MAFFT v7.490
1Q-Tree v2.1.4-beta
Castor v1.7.10
MSA2dist v1.4.0
ggtree v3.8.2
ggplot v3.4.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All custom code used to perform the analyses reported here are hosted on GitHub (https://github.com/cednotsed/vertebrate_host_jumps). The full list of
accessions considered in this study are provided in Supplementary Table 1.

Research involving human participants, their data, or biological material

>
Q
Q
c
@
O
]
=
o
=
—
®
©O
]
=
S
(e}
wv
c
3
3
Q
<

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N.A.

Reporting on race, ethnicity, or N.A.
other socially relevant

groupings

Population characteristics N.A.
Recruitment N.A.
Ethics oversight N.A.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. We used almost all publicly available genome sequences relevant to this study. Approximately 56k
genomes were used for our analyses, and at least 500 genomes per group (i.e., viral family) were used, so sample sizes are sufficient.

Data exclusions  To generate a candidate list of viral sequences for further genomic analysis, the metadata was filtered to include 53 viral families known to
infect vertebrate hosts based on information provided in the 2022 release of the ICTV taxonomy (https://ictv.global/taxonomy), and with
reference to that provided by ViralZone (https://viralzone.expasy.org/). We then retained only sequences from viral families comprising at
least 100 sequences of greater than 1000nt in length. For non-segmented genomes, we retained all non-human-associated sequences, and
subsampled the human-associated sequences as follows: we selected a random subsample of 1000 SARS-CoV-2 genomes of greater than
28000nt from distinct countries, isolation sources, and with distinct collection dates. For other human-associated sequences, we retained
viruses with distinct species, country, isolation source and collection date information. . We then downloaded the final candidate list of viral
sequences (n=88,161) using the ncbi-acc-download v0.2.8 (https://github.com/kblin/ncbi-acc-download). Further quality control of the
genomes downloaded was performed using CheckV v1.0.146, retaining sequences with more than 95% completeness (for non-segmented
viruses) and less than 5% contamination (for all sequences). This resulted in a final genomic dataset comprising 53,631 observations
(Supplementary Table 2).

For clique-level alignments, we masked regions of the alignments that were poorly aligned or prone to sequencing-error by replacing
alignment sites that had more than 10% of gaps or ambiguous nucleotides with N’s. Clique-level genome alignments that had more than 20%
of the median genome length masked were considered to be poorly alighed and removed from further analysis (n=6; Extended Data Fig. 5)

Replication No experimental findings were reported so this section is not applicable.

Randomization  Genomic datasets used for our study are retrospective and downloaded from public sequence databases so randomisation is not applicable to
our study.

Blinding Genomic datasets used for our study are retrospective and downloaded from public sequence databases so blinding is not applicable to our
study.




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data

[ ] pual use research of concern

[] Plants

>
Q
L
C
=
(D
5,
o)
=
o
=
-
@
S,
o)
=
>
@
wv
e
3
=
QO
=
A

XXNXXNXNXX s




	The evolutionary drivers and correlates of viral host jumps

	Results

	An incomplete picture of global vertebrate viral diversity

	Humans give more viruses to animals than they do to us

	Host jumps of multihost viruses require fewer adaptations

	Host jump adaptations are gene and family specific


	Discussion

	Methods

	Data acquisition, curation and quality control

	Taxonomy-agnostic identification of viral cliques

	Identification of putative host jumps

	Calculating mutational distances and dN/dS

	Statistical analyses

	Data analysis and visualization

	Reporting summary


	Acknowledgements

	Fig. 1 Current state of the global genomic surveillance of vertebrate viruses.
	Fig. 2 Taxonomy-agnostic approach for identifying equivalent units of viral diversity.
	Fig. 3 Humans give more viruses to animals than they give to us.
	Fig. 4 The strength of adaptative signals associated with host jumps decreases with broader viral host ranges.
	Fig. 5 Signals of adaptation are gene and family specific.
	Extended Data Fig. 1 Host and geographical distribution of viral sequences.
	Extended Data Fig. 2 Distribution of missing metadata for viral sequences.
	Extended Data Fig. 3 Viral cliques for Coronaviridae.
	Extended Data Fig. 4 Summary of viral cliques identified.
	Extended Data Fig. 5 Robustness of host jump inference.
	Extended Data Fig. 6 Adaptation analysis for viral groups.
	Extended Data Fig. 7 Adaptive signals in the Coronaviridae spike gene.
	Extended Data Fig. 8 The global viral host jump network.




