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Hagfish genome elucidates vertebrate 
whole-genome duplication events and their 
evolutionary consequences

Polyploidy or whole-genome duplication (WGD) is a major event that 
drastically reshapes genome architecture and is often assumed to be 
causally associated with organismal innovations and radiations. The 2R 
hypothesis suggests that two WGD events (1R and 2R) occurred during  
early vertebrate evolution. However, the timing of the 2R event relative 
to the divergence of gnathostomes ( jawed vertebrates) and cyclostomes 
( jawless hagfishes and lampreys) is unresolved and whether these WGD 
events underlie vertebrate phenotypic diversification remains elusive.  
Here we present the genome of the inshore hagfish, Eptatretus burgeri. 
Through comparative analysis with lamprey and gnathostome genomes,  
we reconstruct the early events in cyclostome genome evolution, leveraging 
insights into the ancestral vertebrate genome. Genome-wide synteny 
and phylogenetic analyses support a scenario in which 1R occurred in the 
vertebrate stem-lineage during the early Cambrian, and 2R occurred in 
the gnathostome stem-lineage, maximally in the late Cambrian–earliest 
Ordovician, after its divergence from cyclostomes. We find that the genome 
of stem-cyclostomes experienced an additional independent genome 
triplication. Functional genomic and morphospace analyses demonstrate 
that WGD events generally contribute to developmental evolution with 
similar changes in the regulatory genome of both vertebrate groups. 
However, appreciable morphological diversification occurred only in the 
gnathostome but not in the cyclostome lineage, calling into question the 
general expectation that WGDs lead to leaps of bodyplan complexity.

Polyploidy or whole-genome duplication (WGD) is a dramatic genomic 
event commonly invoked causally in organismal evolution1. The gen-
erally accepted ‘2R hypothesis’2,3 suggests that two rounds of WGD 
occurred during early vertebrate evolution (referred to as 1R and 2R); 
however, their timing and macroevolutionary consequences remain 
unclear4–6. Most studies agree that 1R occurred before the divergence 
of living vertebrates, but debate centres on whether 2R predated7,8 
or postdated9–12 the divergence between cyclostomes and gnathos-
tomes (Fig. 1c). Reconstruction of the ancestral vertebrate karyotype 

is fundamental to unravel the timing of 2R8,12–15, but this goal has been 
stymied by a dearth of cyclostome genomes. The recently described 
genome of the sea lamprey (Petromyzon marinus) has been interpreted 
to support 2R occurring before8 or after12 the gnathostome–cyclos-
tome split, or not at all (with the karyotype diversity explained as the 
result of large-scale segmental duplications16,17). Analysis of the Arctic 
lamprey (Lethenteron camtschaticum) genome has suggested that 2R 
occurred in the gnathostome lineage while independent WGD event(s) 
might have occurred in the lamprey lineage11,18, perhaps shared with 
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genomes, especially in analyses such as gene tree reconstruction and 
comparative genomics.

Hagfish phylogenomics and gene family 
evolution
Whether hagfish form a clade with lampreys (Cyclostomata) or repre-
sent the sister group to all other vertebrates (including lampreys) has 
depended on whether molecular or morphological evidence are con-
sidered (Fig. 1c). Morphological studies historically supported cyclos-
tome paraphyly but more recent analyses have recovered cyclostome 
monophyly (reviewed in ref. 28). Phylogenies inferred from molecular 
evidence have almost exclusively recovered cyclostome monophyly 
(reviewed in ref. 25). We used Bayesian inference to reconstruct the 
phylogeny of vertebrates from an alignment of 190 single-copy genes 
in all taxa analysed (84,017 sites), strongly supporting a monophyletic 
Cyclostomata (Fig. 2 and Extended Data Fig. 2a). We calculated the 
likelihood of gene duplication and loss patterns under the compet-
ing phylogenetic hypotheses29 (see Methods), finding that patterns 
of gene gains and losses better fit cyclostome monophyly. To further 
compare the two alternative hypotheses of hagfish relationships, an 
approximately unbiased (AU) test30 was performed, which strongly 
rejected cyclostome paraphyly (log likelihood difference = 7,947.7, 
AU = 0.004, multiscale bootstrap probability < 0.001). These results 
corroborate previous molecular analyses and recent morphological 
studies28, supporting the view that cyclostomes are monophyletic.

To better understand the genomic changes accompanying major 
transitions in chordate evolution, we used a phylogeny-aware compara-
tive genomic approach31–33 to infer ancestral gene complements and 
gene family gains and losses across the vertebrate tree (Fig. 2, Extended 
Data Fig. 3 and Supplementary Tables 23–26). We observed two peaks 
of gene novelty in both the vertebrate and gnathostome stem-lineages 
(novel genes: +560 and +771, respectively), also characterized by a 
very low amount of gene losses (−341 and −382, respectively) when 
compared with other deuterostome and chordate nodes (Fig. 2 and 
Extended Data Fig. 3a). Furthermore, the fraction of highly retained 
novel gene families (also known as novel core genes, that is, genes 
that are not lost in descendant lineages and by convention indicated 
by ++) is the highest in the last common ancestors of vertebrates, 
gnathostomes and cyclostomes (novel core genes: ++81, ++86 and 
++98, respectively; Fig. 2 and Extended Data Fig. 3a). These are notably 
larger than those observed in other major evolutionary episodes in 
metazoan evolution31,33, but generally similar to a recent study using 
more chondrichthyan but only two invertebrate genomes34, suggest-
ing that the emergence of new gene families played important roles 
in the origin and diversification of early vertebrates. Gene Ontology 
(GO) enrichment analyses demonstrate that the origin of vertebrates 
was characterized by the appearance of genes involved in signal-
ling pathways, cell communication and transcriptional regulation 
(Supplementary Tables 24 and 25), while novel core genes involved 
in immunity played an important role in the origin of gnathostomes 
(Supplementary Tables 24 and 26). Consistently, gnathostomes and 
cyclostomes convergently evolved independent adaptive immune 
systems, based on immunoglobulins in the former, and in variable 
lymphocyte receptors in cyclostomes35 (Supplementary Fig. 6 and 
Supplementary Table 27). The largest fraction of gene losses occurred 
in the ancestral cyclostome lineage (Fig. 2), suggesting that a strong 
asymmetric reduction of gene complements accompanied the early 
evolution of the group. For instance, the hagfish genome lacks several 
vision and circadian rhythm-related genes, probably associated with 
its vestigial eyes (Supplementary Fig. 7 and Supplementary Table 28). 
Inferred rates of gene duplication (irrespective of the duplication 
mechanism) across Metazoa identify widespread duplications asso-
ciated with the vertebrate and teleost stem-lineages (Extended Data 
Fig. 2b,c), probably reflecting the 1R, 2R and teleost 3R WGD events36. 
We also inferred high duplication rates in each of the lineages leading 

the hagfish11,19 (Fig. 1c). However, the lack of a hagfish genome assem-
bly, the only major vertebrate group without a reference genome, has 
challenged attempts to constrain the number and phylogenetic timing 
of ploidy events in early vertebrate evolution. Here we describe the 
outcome of sequencing and comparative analysis of the genome of 
the inshore hagfish, Eptatretus burgeri (Fig. 1a,b).

Chromosome-scale assembly and genome 
annotation
Similar to the lamprey20, the hagfish genome undergoes somatic 
programmed DNA rearrangement in the way of chromosome elimi-
nation21, making it crucial to obtain a reference assembly from a 
germline source. We sequenced DNA extracted from the testis of a 
single sexually mature male of E. burgeri and generated a preliminary 
draft assembly using ~240X of short-read Illumina data assisted by 
a Chicago in vitro proximity ligation assay at Dovetail Genomics22 
(Supplementary Table 5). We estimated the genome of E. burgeri at 
3.12 Gb on the basis of k-mer frequency distribution (Extended Data 
Fig. 1a and Supplementary Table 4) in line with other hagfish species  
(~2.2–4.5 Gb)23. Chromosome conformation capture (Hi-C) data 
obtained from the testis DNA of a second individual were used to fur-
ther scaffold the genome into a final assembly (v.4.0) containing 19 
contact clusters, which we consider as chromosomes for subsequent 
analyses (Fig. 1d), and 9,295 unplaced scaffolds and contigs (Methods 
and Supplementary Tables 6–10). The genome was annotated follow-
ing the Ensembl annotation pipeline24, assisted by RNA-seq from 9 
different adult tissues, and previous embryonic and juvenile transcrip-
tomics data19 (Supplementary Table 11 and Methods). We generated 
a final gene dataset of 16,513 protein-coding genes (with 27,960 tran-
scripts), 446 long intergenic non-coding (linc)RNAs and a minority of 
other classes of non-coding RNA genes (Extended Data Fig. 1b). A total 
of 180 microRNA (miRNA) genes were found in the E. burgeri genome 
conserved with the hagfish Myxine glutinosa25 belonging to 77 miRNA 
families and catalogued at MirGeneDB.org26. The germline haploid 
number of E. burgeri is 26. However, chromosome elimination occurs 
in somatic tissues of the hagfish, by which, in the case of E. burgeri, 8 
pairs of microchromosomes are eliminated during development21 
(somatic n = 18). Cluster 19 and unplaced contigs/scaffolds probably 
correspond to these difficult-to-assemble microchromosomes, which 
presumably consist mainly of highly repetitive sequences and contain 
almost no protein-coding genes21. Consistently, 98.3% (16,240/16,513) 
of annotated genes are located in clusters 1–18.

BUSCO analyses show high levels of completeness of the hag-
fish genome (96.0 and 94.2% of single orthologues are present in the 
assembly and annotation, respectively; Fig. 1e and Extended Data  
Fig. 1c). GC-content distribution pattern analysis of the hagfish and 
other chordate genomes shows that the E. burgeri genome represents 
an intermediate condition between the lamprey and other chordates 
(Extended Data Fig. 1d), although having an overall GC content similar 
to that of the lamprey (46.7% and 48.1% for the hagfish and lamprey, 
respectively). While lamprey protein-coding gene sequences have been 
demonstrated to pose difficult challenges for comparative analyses 
due to their high GC content27 (64.0%), the lower content in hagfish 
coding sequences (50.4%) is within the typical range of most gnathos-
tomes and non-vertebrate chordates (42.5%–53.4%; Extended Data 
Fig. 1e,f and Supplementary Table 12). Lamprey represents an outlier 
in terms of both codon usage bias and amino acid composition, while 
the hagfish is more similar to other vertebrates (Fig. 1f,g). The hagfish 
genome contains, on average, significantly longer introns and inter-
genic regions than other vertebrates (P < 2.2 × 10−16, two-sided Wilcoxon 
rank-sum test), while the average length of coding sequences is similar 
to that of other chordates (Extended Data Fig. 1g, Supplementary  
Fig. 4 and Supplementary Tables 18–22). This might explain why hagfish 
genomes are larger than lamprey genomes23. Altogether, the hagfish 
genome provides essential, complementary information to lamprey 
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towards crown-gnathostomes and lampreys (Extended Data Fig. 2b,c) 
which might suggest large-scale duplications associated with these 
groups, consistent with the WGD events proposed recently12,18. This 
type of analysis, however, cannot discriminate between WGD and other 
large-scale gene duplication mechanisms.

Conserved Hox cluster evolution in cyclostomes
The number of Hox clusters and ancestral WGD events are usually 
correlated; hence, the former has been used as a genomic marker of 
the latter. The presence of 6 Hox clusters in lamprey genomes17,18 has 
been interpreted to indicate the possibility that more than two WGD 
events occurred in this lineage18. We have extended previous observa-
tions in E. burgeri19 to confirm the presence of 40 Hox genes arranged 
in 6 complete Hox clusters (Fig. 3). Two of the hagfish clusters are 
located in the same chromosome (cluster 3), separated by >80 Mb, 
probably the result of chromosomal shuffling due to the intense 

reorganization of the hagfish genome from ancestral chromosomes 
(ACs; see below). Phylogenetic analyses of Hox coding sequences have 
long proven inconclusive to determine the orthology relationship 
between lamprey and hagfish Hox counterparts19. We thus applied a 
microsynteny conservation approach using extended Hox loci which, 
together with phylogenetic analyses of selected non-Hox syntenic 
genes, allowed us to establish clear one-to-one orthologous corre-
spondences between hagfish and lamprey Hox clusters, named α to ζ 
after the lamprey clusters18 (Fig. 3, Extended Data Fig. 4a–d, Supple-
mentary Fig. 8 and Supplementary Tables 29 and 30). This suggests 
that the crown-cyclostome already possessed 6 Hox clusters, distinct 
from the ancestral crown-gnathostome, which possessed 4 clusters 
(Supplementary Fig. 9). This observation provides further evidence 
of cyclostome monophyly, by suggesting that lampreys and hagfish 
share a genome history exclusive of gnathostomes. This implies that 
the events suggested from the different analyses of the Arctic lamprey 
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Fig. 1 | Genome of the inshore hagfish, E. burgeri. a, Dorsal view of a young 
adult of the inshore hagfish E. burgeri, with the head to the top right. The teeth 
apparatus (and not a jaw) can be observed in a magnification of the head region 
of a fixed adult individual (a’). b, Fertilized egg of E. burgeri with a developing 
embryo at stage Dean 53 (ref. 48). Blood vessels can be observed from the 
exterior. c, Two competing hypotheses of vertebrate phylogeny. WGD events 
corresponding to the 2R hypothesis (lilac), to an alternative vertebrate 2R 
hypothesis (orange) and to those recently proposed in the lamprey lineage 
(light blue) are marked. Whether the lamprey-specific events actually occurred 
in a stem cyclostome remains elusive. d, Hi-C contact heatmap of the corrected 
hagfish genome assembly ordered by cluster (chromosome) length. Dashed 

boxes indicate the cluster boundaries. e, Completeness assessment of the 
genome assembly of the inshore hagfish E. burgeri genome (red), three lamprey 
species (blue) and two jawed vertebrates (green). Number of conserved 
metazoan orthologues (metazoa_odb10 dataset, containing 954 BUSCOs) is 
indicated for each case. F. E., Far Eastern. f, Correspondence analysis (CoA) on 
RSCU values was performed using the nucleotide sequences of all predicted 
genes concatenated for individual species. The percentage of variance is 
indicated for each axis. g, CoA of amino acid composition, with the percentage 
of variance indicated for each axis. In f and g: red, hagfish; blue, lamprey; green, 
jawed vertebrates; black, invertebrates.
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genome, two extra WGDs18 or a triplication11, might have occurred in 
early cyclostome evolution, probably before the lamprey and hagfish 
divergence11,19.

Ancestral vertebrate karyotype
The reconstruction of the pre-WGD vertebrate proto-karyotype by 
means of macrosynteny analysis stands as the most robust approach 
to test the 2R event and its phylogenetic position37. Earlier attempts 
at reconstructing the ancestral vertebrate karyotype have yielded 
widely disparate outcomes, indicating 10–13 (refs. 14,16) or 17–18  
(refs. 8,11–13,38) ancestral pre-duplicative chromosomes. These recon-
structions have also unveiled a perplexing scenario where lampreys’ 
divergence from gnathostomes occurred either before or following 
the 2R event8,11,12,18. To shed new light on early vertebrate genome evo-
lution, we performed a macrosynteny conservation analysis between 
gnathostomes, cyclostomes and selected invertebrate deuterostomes. 
First, to minimize noise from lineage-specific fusion and fission events, 
we reconstructed ancestral chicken39 and spotted gar40 genomes using 
elephant shark41 as an outgroup, obtaining an almost perfect one-to-one 
chromosome orthology (Supplementary Table 31). Next, to infer the 
ancestral vertebrate karyotype, we elaborated a map of homology 
relationships between the genes of these slow-evolving gnathostome 
genomes with the chromosome-level genome assembly of the sea 
cucumber Apostichopus japonicus (echinoderm) as a pre-duplicative 
outgroup species42. With this, we inferred a proto-vertebrate karyotype 
of 17 ACs (Supplementary Fig. 15 and Supplementary Table 32).

We mapped genes from the Belcher’s lancelet (Branchiostoma 
belcheri) genome43 to each AC (Methods and Supplementary Fig. 21) 
using very stringent criteria, requiring homology relationships of an 
amphioxus gene with both a sea cucumber gene and several chicken 
and/or spotted gar genes, and all anchored to the same AC. In total, we 
mapped 5,065 Belcher’s lancelet genes to AC1–17 (ranging from 115 to 
534 genes in AC1–AC16; AC17 consisted of only 20 genes and was thus 
excluded from several subsequent analyses; Supplementary Table 34). 
With these in hand, we corroborated our ancestral vertebrate karyotype 
reconstruction through comparisons with the chromosome-scale 
genome of the amphioxus Branchiostoma floridae12 (Supplementary 
Tables 35 and 36).

Our inference of an ancestral karyotype with 17 ACs matches a 
previous study8, has minor differences with other 17-chromosome 
inferences12,13 and depicts one less chromosome than more recent 
studies11,38 (Supplementary Tables 37 and 38). In our model, 4 of the 17 
ACs (AC1, AC2, AC3 and AC6) each correspond to 2 or 3 linkage groups 
(putative chromosomes) of the sea cucumber genome (Supplementary 
Fig. 15 and Supplementary Table 32) as well as to distinct homologous 
chromosomes in B. floridae (Supplementary Table 36), suggesting 
that these 4 ACs probably originated via fusions of ancestral chordate 
chromosomes in the vertebrate lineage before 1R38. The difference 
from previous 18-chromosome models is that while we consider that 
the vertebrate AC3 is a single chromosome resulting from a pre-1R 
fusion event of two ancestral chordate chromosomes (Supplemen-
tary Fig. 23a), others11,12,38 consider that these two chromosomes 
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remained separate through 1R (Nakatani’s Pvc8 and 9, or Simakov’s 
CLGQ and CLGI, respectively). While Pvc8/CLGQ and Pvc9/CLGI are 
consistently co-located in gnathostome chromosomes, they remain 
separate in invertebrate karyotypes11,12,38. We did not find any signals 
of linkage between Pvc8/CLGQ and Pvc9/CLGI in the lamprey and the 
hagfish genomes (Supplementary Figs. 25 and 26). Therefore, there 
exist two alternative scenarios: (1) the 18-chromosome model implies 
that two independent pairwise fusions occurred after 1R in a stem 
gnathostome, mimicking a single pre-1R fusion event (Supplementary  
Fig. 23a); and (2) our 17-chromosome model requires symmetric 
fissions of two AC3-derived post-1R chromosomes occurring in an 
ancestral cyclostome (Supplementary Fig. 23b). Although in silico 
simulations show that a scenario of pairwise post-1R fusions would not 
be extremely rare (30% of cases expected by chance; Supplementary 
Table 40 and Methods), we believe the pairwise fissions to be more 
plausible given the higher level of reorganization found in cyclostome 
karyotypes (see next section). Altogether, while we propose a scenario 
involving 17 ancestral vertebrate chromosomes, a scenario with 18 
chromosomes11,38 is also possible.

Importantly, all ACs correspond to sets of four (11/17) or three 
(6/17) paralogous chromosomes in the gnathostomes chicken and gar, 

a strong genome-wide pattern consistent with 2R2,11–13. We stringently 
selected 701 sets of orthologous genes (Methods and Supplementary 
Table 39) between the sea cucumber, chicken, spotted gar and an AC 
gene (from B. belcheri), and built robust chromosome-level phylog-
enies with a median of 38 concatenated gene sets across each of the 
ACs (Extended Data Fig. 5a and Supplementary Table 39). The highly 
supported, clear-cut topologies further support the existence of 
2R in gnathostomes and depict the exact evolutionary trajectory 
from each AC to their modern chicken and spotted gar descend-
ants (Extended Data Fig. 5a,b). Our reconstruction of gnathostome 
karyotype evolution involved 8 fusion events that took place after 
1R but before 2R (Extended Data Fig. 5b), similarly to what has been 
previously found by others8,11,12 (Supplementary Table 41). Further-
more, we found a significant gene retention asymmetry after 2R, with 
a median of 1:2.28 genes per ohnologous (duplicates that originate 
through WGD, after ref. 3) chromosome pair, but not after 1R (median 
1.16; P = 3.4 × 10−7, Wilcoxon rank-sum test; Extended Data Fig. 5b). 
This pattern is consistent with previous studies suggesting that 1R 
was an autotetraploidization event and 2R an allotetraploidization 
event11,12 (but see ref. 44 on asymmetric gene retention after teleost 
3R autotetraploidy).
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Gnathostomes and cyclostomes share 1R but  
not 2R
We next tested hypotheses of WGD timing relative to cyclostome 
divergence. We assessed the phylogenetic signal of hagfish and lam-
prey genes anchored to 661 orthologous gene sets (Supplementary  
Table 42), including elephant shark orthologues as a control for the 
2R signal and amphioxus genes as outgroups. Approximately 73.2%, 
79.1% and 75.7% of trees including hagfish, lamprey or both hagfish 
and lamprey orthologous genes, respectively, are compatible with 
shared 1R (Fig. 4a). However, while 99.5% of elephant shark gene tree 
topologies are 2R-compatible, only 19.1% of hagfish, 10.6% of lamprey 
and 8.2% of cyclostome (including both lamprey and hagfish) gene 
trees are compatible with a 2R history (Fig. 4a and Supplementary 
Files 5–8). Thus, we find strong support only for 1R as shared among 
cyclostomes and gnathostomes.

To further confirm the timing of the 1R event, we investigated 
whether signals of the inferred four pre-1R and eight post-1R fusion 
events are present in cyclostomes. When assessing how hagfish and 
lamprey chromosomes descended from the 17 ACs, we found that the 
hagfish genome displays a large amount of rearrangement (at least 52 
fusions detected), making any signal of hypothetically shared events 
unreliable (Extended Data Fig. 6b). However, most lamprey chromo-
somes are descendants of single ACs12 (Extended Data Fig. 6a), making 
the lamprey a better model to investigate these rare genomic changes. 
We found that the sea lamprey genome17,45 bears signals of three  
(AC1, AC2 and AC6) and the hagfish genome of two (AC1 and AC2) of the 
four pre-1R fusions (Supplementary Figs. 25 and 26). On the other hand, 
similar to previous studies11,12 we did not find any reliable signal of the 
eight post-1R fusions detected in gnathostomes, suggesting that the 
lamprey and hagfish diverged after the 1R but before all eight post-1R/
pre-2R fusions11,12. Taken together, our comprehensive phylogenetic 
analysis and the constraints given by pre- and post-1R chromosomal 
fusions provide strong evidence in favour of a pan-vertebrate 1R event, 
but constrains 2R to the gnathostome lineage as recently suggested in 
similar analyses11,12.

Cyclostome-specific whole-genome triplication
It has been suggested that the lamprey genome has been shaped by 
either three duplicative events18 or a hexaploidization11. The presence 
of six orthologous Hox clusters in both the lamprey and the hagfish 
(Fig. 3) implies that this is the ancestral condition for cyclostomes 
and supports the triplication event11,19. Although we find that multiple 
chromosomes and large chromosomal sections are descendant copies 
of each AC in both cyclostome groups, the extensive rearrangements 
observed in the hagfish and the large haploid number in the lamprey 
impede chromosome-level macrosynteny conservation analysis to 
distinguish intraspecific ohnologous and interspecific orthologous 
relationships. To confidently infer karyotype evolution in cyclostomes, 
we developed a new metric, the ‘overlapping ratio’ (OR), to measure the 
similarity of gene retention profiles of any two chromosomes hypo-
thetically descending from a common AC (Fig. 4b and Supplementary  
Fig. 29; gene-poor AC17 was excluded from this analysis, which required 
at least 20 genes retained in each descendant chromosome). A retention 
profile is defined by a vector listing the presence or absence of genes 
on a modern vertebrate chromosome from their corresponding AC. 
Therefore, we expect the OR of chromosomes deriving from a duplica-
tion event to be significantly higher than that of chromosomes deriving 
from an ancestral fission followed by gene translocations. As proof of 
concept, we applied this metric to gnathostomes: knowing that their 
genomes have been shaped by the 2R event, we found that the median 
OR of ohnologous chromosome pairs in chicken or spotted gar was 
0.49 (interquartile range, IQR: 0.44–0.56) and 0.54 (IQR: 0.47–0.65), 
respectively (Fig. 4c), while OR value for simulated fission-derived chro-
mosome pairs was never larger than 0.15, indicating that ohnologous 
chromosomes indeed share more retained genes (Fig. 4c and Methods).

We then applied the OR metric to the sea lamprey (after correcting 
misassemblies, assisted by a meiotic map of the Pacific lamprey Ento-
sphenus tridentatus17 and confirmed by the recent chromosome-level 
genome assembly45) (Supplementary Table 50 and Supplementary  
Fig. 24) and the hagfish, defining ohnologous chromosome pairs as 
those with OR > 0.15. We found that the median OR between putative 
ohnologous chromosomes was 0.30 (IQR: 0.23–0.36) and 0.29 (IQR: 
0.23–0.37) for the lamprey and hagfish, respectively (Fig. 4d, Extended 
Data Fig. 7a,b and Supplementary File 9). Using this approach, we found 
that most ACs analysed (12/16 or 75%) have descended into three or 
more mutually ohnologous chromosomes in both the lamprey and 
hagfish (Fig. 4f), suggesting that at least a second WGD might have 
occurred in cyclostomes. In both genomes, at least five chromosomal 
regions are direct descendants of each of the same five ACs (1, 2, 6, 10 
and 14), with 3 ACs contributing to 6 chromosomes each in the lamprey 
(Fig. 4f). We do not find more than 6 descendant copies from any AC, 
supporting a whole-genome triplication in the cyclostome lineage 
as previously proposed in the analysis of the lamprey genome11. The 
distribution of multiplicity across ACs is highly correlated across the 
two species (Spearman ρ = 0.91), suggesting that this triplication event 
is conserved between the lamprey and hagfish and thus occurred 
in an ancestral cyclostome. It is expected that OR will decrease with 
each WGD (Supplementary Fig. 29), hence the lower value in cyclos-
tomes is consistent with the occurrence of this larger polyploidy 
event. While our data do not definitively rule out the possibility of two 
cyclostome-specific WGD events followed by extensive chromosome 
losses, this scenario is less plausible than a single triplication event, 
particularly given the absence of instances with eight copies of any 
chromosomal region in the lamprey or the hagfish.

To further confirm that this proposed triplication event is shared 
by hagfish and lamprey, we extended the use of the OR to detect puta-
tive orthologous chromosomes. During the process of diploidization 
after a polyploidy, two descendant chromosomes diverge and fix their 
mutations independently, hence it is expected that interspecific orthol-
ogous chromosomes will have more similar gene retention profiles than 
intraspecific ohnologous chromosomes (as long as rediploidization 
precedes speciation46). Accordingly, orthologous chromosomes of 
chicken and spotted gar have a median OR = 0.96 (IQR 0.95–0.98; Fig. 
4e and Supplementary Table 44) and clustering-based analysis based 
on gene retention profiles places chicken and gar orthologous chro-
mosomes closer to each other, completely reflecting the phylogenetic 
signal (Extended Data Fig. 7c and Supplementary File 10). When we 
applied this approach to cyclostome genomes, we found the median 
OR = 0.84 (IQR: 0.74–0.91; Fig. 4e and Supplementary Table 45) for 
52 (~87%) chromosome pairings between lamprey and hagfish that 
putatively represent 1:1 orthologues (higher than that of ohnologous 
chromosomes; Supplementary Table 45) and only 8 (~13%) one-to-two 
or two-to-one ambiguous relationships, probably due to secondary 
independent chromosome losses in either group. Clustering analysis 
of retention profiles recovers orthologous relationships between lam-
prey and hagfish (Fig. 4g and Supplementary File 11). Overall, intra- and 
interspecific gene retention profile analyses indicate that a triplication 
event took place in the cyclostome stem-lineage; we refer to this as CR, 
to avoid confusion with the gnathostome-specific 2R event.

Increase of developmental regulatory complexity
To investigate the immediate consequences of the independent CR 
event on cyclostome genome evolution, we first asked whether retained 
duplicates (ohnologues) are especially associated with developmen-
tal functions in the hagfish as in their gnathostome counterparts13,47. 
GO enrichment analysis shows that hagfish gene ohnologues are also 
significantly enriched for functions associated with developmental 
processes (Extended Data Fig. 8a,b). Gnathostomes have increased their 
regulatory complexity (higher number of regulatory regions per gene), 
particularly of developmental ohnologues47. We identified accessible 
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Fig. 4 | Hagfish and lamprey share a whole-genome triplication.  
a, Phylogenetic support of gnathostome and cyclostome genes for 1R and 2R. 
Elephant shark, hagfish, lamprey or both cyclostomes’ genes (both hagfish and 
lamprey genes included) were analysed as test genes in the context of spotted 
gar and chicken gene phylogenies by each AC (using amphioxus genes) and 
orthologous sea cucumber genes (outgroup). Left: possible positions where test 
genes can branch, supporting or not 1R or/and 2R (see legend). Middle and right: 
statistics of supporting (blue) or not supporting (orange) gene phylogenies from 
each species’ tested genes. All phylogenetic trees are available in Supplementary 
Files 5–8. b, Formula to calculate the OR between two chromosomes. Dark cyan 
denotes genes from the AC, retained in modern chromosomes; white indicates 
gene loss. c, OR values distribution between WGD-generated paralogous 
(ohnologous) chromosomes in chicken (top left) and spotted gar (top right), 
and the artificially split chromosomes in chicken (bottom left) and spotted gar 

(bottom right). Dashed lines mark OR = 0.15. d, OR values distribution between 
putative ohnologous chromosomes in hagfish (top left) and lamprey (top right), 
and the artificially split chromosomes in hagfish (bottom left) and lamprey 
(bottom right). e, OR values distribution between chicken and spotted gar 
(top) and between hagfish and lamprey (bottom) orthologous chromosomes. 
f, Numbers of mutually ohnologous chromosomes in cyclostome genomes 
that correspond to each one of the 16 reconstructed ACs. g, Retention profile 
clustering analysis of cyclostome chromosomes deriving from AC2. Retained 
genes are denoted by dark cyan lines. Five putative orthologous chromosome 
pairs are defined. Note that AC17 was excluded from the analyses depicted in c–f 
because of the low number of genes we recovered (20 genes). Animal illustrations 
kindly provided by Tamara de Dios Fernández; chicken, spotted gar, lamprey and 
hagfish illustrations reproduced with permission from ref. 133.
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chromatin regions (ACRs) as putative non-coding regulatory elements 
in the hagfish genome with an assay for transposase-accessible chro-
matin coupled to sequencing (ATAC-seq), using a total of two embryos 
of E. burgeri, each at a different stage48 (45 and 53; Supplementary  
Fig. 32). We found a significantly higher number of ACRs per gene  

than in the cephalochordate amphioxus, similar to what has been 
observed in gnathostomes47 (Fig. 5a), particularly in distal regions 
from transcriptional start sites (Fig. 5b,c and Extended Data Fig. 8c). 
This pattern is especially evident in developmental genes (Fig. 5d and 
Extended Data Fig. 8d–f), implying that their higher retention after a 
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Fig. 5 | Impact of WGD events on the regulatory genome. a, Distributions of 
the ACR numbers within the cis-regulatory regions of each gene (see Methods). 
n = 28,497 (amphioxus), n = 23,183 (zebrafish), n = 22,184 (medaka), n = 15,213 
(chicken), n = 23,256 (mouse) and n = 16,951 (hagfish) genes. ***P < 2.2 × 10−16, 
Bonferroni-adjusted, two-sided Wilcoxon rank-sum tests. b, Numbers and 
fractions of ACRs with respect to genomic annotations in each species. 
Promoters, between 1 kb upstream and 0.5 kb downstream of annotated 
transcription start sites (TSSs); proximal, within 5 kb upstream and 1 kb 
downstream of annotated TSSs, but not overlapping promoters; exonic, within 
exons of protein-coding genes but not overlapping proximal regions; distal, 
not in aforementioned locations. c, Cumulative proportion of the distance of 
ACRs from the closest TSSs in each species. For the result with scaling based on 
the average length of intergenic regions of each species genome, see Extended 
Data Fig. 8c. d, The distribution of ACR numbers across different classes of 

genes, according to PANTHER Gene Ontology database (devel., developmental 
ohnologues; non-dev., non-developmental ohnologues; non-ohnol., 
singletons). n = 143 (devel. ohnol.), n = 816 (non-devel. ohnol.) and n = 7,303 
(non-ohnol.) genes. P values from Bonferroni-adjusted two-sided Wilcoxon 
rank-sum tests are indicated. e, Distribution of fates of ohnologous families after 
WGD. Red., potential redundancy; Subf., potential subfunctionalization; Spec., 
potential specialization. f, Number of ohnologues with strong specialization 
expressed in hagfish tissues. In a and d, boxes correspond to the median 
(centre line) and the first and third quartiles. Whiskers extend to the last point 
no further than 1.5× the interquartile range from the first and third quartiles. 
For a–d, see Supplementary Tables 52–57 for detailed statistical information, 
including P value for each pairwise comparison. Animal illustrations kindly 
provided by Tamara de Dios Fernández; chicken and hagfish illustrations 
reproduced with permission from ref. 133.
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cyclostome CR event is underlain by a more complex regulatory land-
scape of developmental genes, as in gnathostomes47.

In gnathostomes, retained duplicates can evolve via expres-
sional specialization (reduction of expression domains of one of the 
ohnologues)47, probably coupled to neofunctionalization rather than 
subfunctionalization (differential erosion of enhancers)49. Taking 
advantage of adult transcriptome data across nine organs (see Meth-
ods), we next analysed the putative fates of hagfish ohnologues after 
CR (Supplementary Fig. 31). Hagfish duplicates also tend to reduce their 
expressional domains: over 68% and 71% of gene families subfunction-
alized or specialized in the hagfish and chicken, respectively (Fig. 5e). 
Hagfish ohnologues that have potentially restricted their expression 
domains (subfunctionalization or specialization) are associated with 
a larger amount of regulatory elements and a higher sequence evolu-
tionary rate than those that have maintained the ancestral patterns 
(Extended Data Fig. 8g,h), similar to gnathostomes (Extended Data 
Fig. 8i)47. Furthermore, the largest portion of ohnologues with strong 
specialization (one or two ancestral expression domains) are expressed 
in the brain (Fig. 5f), mirroring the pattern observed in gnathostomes47 
(Extended Data Fig. 8j). In summary, our results indicate that cyclos-
tomes and gnathostomes followed parallel evolutionary pathways 
after their independent WGD events. Genes gained a larger regulatory 
complexity, mostly on distal regions and especially in duplicates with 
developmental functions, which tend to be retained more often. Fur-
thermore, specialization is a common fate of ohnologues associated 
with faster sequence evolution and the acquisition of novel regulatory 

elements that drive their tissue-specific expression. Alternatively, the 
possibility that a decrease in the number of regulatory elements took 
place in the amphioxus cannot be confidently ruled out.

Impact of WGD events on vertebrate 
morphological diversity
Hypotheses on the role of WGD events in the origin and elaboration 
of the vertebrate bodyplan range from deterministic to permissive4. 
There can be no doubt that many vertebrate and gnathostome novel-
ties are contingent on gene paralogues that are the product of the 1R 
and 2R events, although whether WGD played a causal role remains 
unclear. We employed two tests of a causal relationship: (1) absolute 
timing of the WGD events and the clades with which they are causally 
associated and (2) contrast in morphological phenotypic diversity 
before and after the WGD events. Using a dataset of 177 genes and 33 
fossil calibrations, we provide estimated times at which duplicated 
subgenomes diverged. We adopted a sequential Bayesian approach in 
which the posterior clade age estimates from our species timescale were 
used as prior on the speciation nodes in our concatenated gene tree; to 
achieve statistical consistency, this requires that the same molecular 
loci are not used in the two analyses50. A parallel analysis in which the 
concatenated gene tree was calibrated using the original fossil calibra-
tions yielded results that are less precise but otherwise not materially 
different. Interpretation of the results depends on the nature of the 
ploidy event; in the case of autopolyploidy, we estimate the minimum 
timing of rediploidization, when the two subgenomes derived from 
WGD stopped homologously recombining, a process that can be asyn-
chronous and span dozens of millions of years44,46,51–54. In the case of 
allopolyploidy, the age estimate represents the speciation event that 
isolated each of the 2 subgenomes that later came together to form an 
allopolyploid genome55. Our relaxed molecular clock analyses estimate 
the 1R event to have occurred 535.3–524.8 Ma (early Cambrian), 14.3–
29.2 Myr before the divergence of crown-vertebrates (510.5–506.1 Ma; 
middle Cambrian) (Fig. 2); the CR event is dated to 500–492 Ma (late 
Cambrian), 23.5–36.5 Myr before the divergence of crown-cyclostomes 
(468.5–463.5 Ma; Middle Ordovician) (Fig. 2); and the 2R event is dated 
to 498.4–485.2 Ma (late Cambrian–earliest Ordovician), 35.1–53.3 Myr 
before the divergence of crown-gnathostomes (450.1–445.1 Ma; Late 
Ordovician) (Fig. 2).

To characterize morphological disparity across WGD events, we 
compiled a phenotype matrix composed of 577 traits for 278 living and 
fossil chordates encompassing all aspects of morphology, which we 
subjected to pairwise distance analysis followed by ordination using 
non-metric multidimensional scaling (NMDS) (Fig. 6a). This multivari-
ate approach groups organisms with similar suites of characteristics 
while separating organisms with dissimilar traits, providing us with a 
relative measure of bodyplan diversity. The results of this analysis show 
that each genome duplication is followed by an increase in morphologi-
cal disparity through occupation of novel regions of morphospace (Fig. 
6b), but the majority of chordate disparity (88–97% of the morphospace 
encompassed by a vertebrate convex hull) emerged subsequent to the 
2R event (Fig. 6b). Thus, while 2R and CR are of comparable antiquity, 
there is a stark contrast in terms of bodyplan evolution and species 
diversity between the descendants of 2R and the other WGD events.

Discussion
The sequencing of a hagfish genome has enabled us to better under-
stand the evolution of early vertebrates. First, our analysis of vertebrate 
genomes, including the hagfish, now establishes a robust and accurate 
history of WGD events in early vertebrates, corroborating the idea that 
cyclostomes diverged from gnathostomes after the 1R but before the 
2R event. This is consistent with early9,10,13 and recent studies on the 
matter that included the lamprey11,12. We think that debate over the 
timing of 2R5 can now be concluded. Our hagfish genome also confirms 
an additional genome-wide duplicative event in stem-cyclostomes, 
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CR, which most probably was a triplication, as previously suggested11. 
Thus, key vertebrate innovations (for example, elaborate tripartite 
brain, neural crest cell-derived tissues among other novelties56) origi-
nated in a stem-vertebrate. However, at this point we cannot reliably 
establish whether these innovations pre- or postdate the 1R event. 
This basic vertebrate bodyplan was further elaborated independently 
in cyclostomes and gnathostomes as a result of their lineage-specific 
genome duplications, for instance, facilitating the evolution of dif-
ferent adaptive immune systems (immunoglobulin-based in jawed 
vertebrates, variable lymphocyte receptor-based in cyclostomes35), or 
the appearance of key morphological innovations, such as the jaw and 
paired appendages in gnathostomes. Interestingly, these independent 
WGD events shaped their ancestral genomes in similar ways by permit-
ting an increase in regulatory complexity, especially of genes with roles 
in development. Duplicates of developmental genes are indeed more 
likely to be retained in both lineages, highlighting the crucial role of 
development in evolution of novel complex traits.

The contrasting morphological phenotypic consequences of 
2R versus the other WGD events might suggest that there is no direct 
causal relationship or that there should be no general expectation 
of macroevolutionary consequences from WGD events despite their 
clear impact in increasing the regulatory potential of the genome. 
Another possibility is that the 2R event is different in nature from the 
1R and CR events. Indeed, a number of recent studies together with 
our own analyses (Extended Data Fig. 5b) have suggested that while 1R 
was probably an autopolyploidy event, 2R was an allopolyploidy11,12,57. 
This is significant since it impacts our interpretation of the absolute 
timing of 2R, with the age estimate reflecting the divergence of the 
two lineages that later hybridized, not the allopolyploidy event itself55. 
Thus, the event occurred later than 498.4–485.2 Ma (late Cambrian), 
potentially coinciding with or even postdating the acquisition of gna-
thostome novelties that accrued among ostracoderms4,58 before the 
divergence of crown-gnathostomes (which definitively postdated 2R) 
at 450.1–445.1 Ma (Late Ordovician). By the same token, the macro-
evolutionary consequences of allopolyploidy are expected to be more 
immediate than those of autopolyploidy, resulting in chromosomal 
rearrangements, changes in chromatin structure, DNA methylation, 
gene expression and the activation of transposable elements59–61, 
extensive and immediate changes that promote species, and ecologi-
cal diversification62,63 as well as evolutionary novelty64–67. This may go 
some way to explain why the evolutionary consequences of the 2R 
WGD are so much greater, leading to the profound diversification of 
gnathostome bodyplans that have dominated vertebrate communities 
since the early Palaeozoic.

Methods
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Animal sampling and experimentation
Adult inshore hagfish animals were captured off the coast of Shimane, 
Japan, as previously described68. Hagfish embryos (staged according 
to ref. 48) used for ATAC-seq were obtained as previously described19,68. 
The sampling and experiments were conducted according to institu-
tional and national guidelines for animal ethics, approved by the RIKEN 
Animal Experiments Committee (approvals H14-25-23 and H14-25-25).

Genome sequencing and assembly
We sequenced a mix of short-insert paired-end and long-insert mate 
pair libraries prepared from DNA extracted from the testis of a single, 
sexually mature male individual of the inshore hagfish, E. burgeri, 
resulting in ~240X of Illumina clean data (Supplementary Tables 2 and 
3). Hagfish species have large genome sizes, ranging between ~2.2 and 
4.5 Gb23. We estimated the genome of E. burgeri at 3.12 Gb on the basis 

of k-mer frequency distribution (Extended Data Fig. 1a and Supple-
mentary Table 4), in line with other hagfish species. We assembled the 
genome of E. burgeri following gradual steps using different strategies. 
First, we obtained a primary assembly using just the Illumina short-read 
data (v.2.0). To improve contiguity, this primary assembly was 
super-scaffolded using Chicago in vitro proximity ligation at Dovetail 
Genomics22, significantly increasing the scaffold N50 (scaffolds equal 
to or longer than this value contain 50% of the assembly) from 0.44 to 
2.69 Mb. This assembly was polished with all short-insert sequencing 
data using Pilon69 v.1.22, and the resulting version (3.2 in our pipeline) 
was made publicly available in both NCBI (GenBank accession no. 
GCA_900186335.2) and Ensembl70 (release 93; https://www.ensembl. 
org/Eptatretus_burgeri/). We further sequenced over 2200X of raw 
Hi-C short-read data from a second adult male individual and obtained 
~350X valid Hi-C contact data to improve scaffolding. Hi-C contacts 
were also used to correct 280 likely misjoined scaffolds (Supplemen-
tary Table 7). After a process of parameter optimization, we used 
LACHESIS71 to assemble 1,573 scaffolds into 19 Hi-C contact clusters.

RNA sequencing
Adult tissues were dissected from two adult male individuals of E. bur-
geri (brain, gills, liver, intestine, heart, skeletal muscle, kidney and testis 
from animal #20150825; blood from animal #20150917). Total RNA was 
extracted using an RNeasy Plus Universal mini kit (QIAGEN) for the brain, 
heart, skeletal muscle, kidney and testis samples, and with ISOGEN 
(Nippon Gene), a guanidinium thiocyanate-phenol-chloroform-based 
extraction protocol, for the intestine, liver and gill samples. In all cases, 
DNA was removed including a DNaseI step. RNA-seq libraries were 
prepared with the TruSeq Stranded RNA Lib Prep kit (Illumina) and 
quantified by qPCR using the KAPA Library Quantification kit for Illu-
mina Libraries (KapaBiosystems) for all samples. Library profiles were 
assessed with an Agilent 2100 Bioanalyzer. All libraries were sequenced 
at RIKEN BDR in an Illumina HiSeq 1500 platform, obtaining a total of 
~650 M 127-bp paired-end strand-specific reads, with an average of 
~54.5 M reads per tissue.

Genome annotation
Annotation of the hagfish genome assembly v.3.2 was created via the 
Ensembl gene annotation system24, assisted by RNA-seq data from 9 
adult tissues (this study) and by developmental RNA-seq data from 
three embryos (Dean stages 35, 40 and 45) generated in a previous 
study19. Coordinates of annotated features were later converted to 
the final Hi-C assembly, v.4.0. Detailed methodology and annota-
tion results can be found in Ensembl (http://www.ensembl.org/info/ 
genome/genebuild/2018_06_eptatretus_burgeri_genebuild.pdf) and 
in Supplementary Information (section 1.2). In addition to the Ensembl 
pipeline, miRNA genes were further annotated using MirMachine72 
(v.0.1.2) and MirMiner73 (v.1.0). Before performing phylogenetic analy-
ses corresponding to Fig. 4a, 1,957 gene models were manually cor-
rected, with the numbers ranging between 120 (amphioxus) and 704 
(sea lamprey).

GC content, codon usage and amino acid composition
Overall GC-content percentage was analysed for whole genomes of 
the inshore hagfish and 9 other chordate genomes (human, Homo 
sapiens; chicken, Gallus gallus; tropical clawed frog, Xenopus tropica-
lis; zebrafish, Danio rerio; spotted gar, Lepisosteus oculatus; elephant 
shark, Callorhinchus milii; sea lamprey, Petromyzon marinus; sea squirt, 
Ciona robusta; and the Floridian lancelet, Branchiostoma floridae) 
(Supplementary Table 12). GC-content distribution (Extended Data 
Fig. 1d) was calculated from non-overlapping sliding 10-kb windows. 
To calculate codon type frequency, we categorized each codon into 
GC-0/1/2/3 on the basis of the number of G or C bases in a codon. The 
summed frequency of usage for each category is the sum of the normal-
ized frequency of codon usage for all codons included in each category. 

http://www.nature.com/natecolevol
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To plot the distribution of GC content per codon position, the GC per-
centage of each codon position for each protein-coding gene (with only 
the longest coding sequence per gene) was calculated, as well as the GC 
content for each whole coding sequence (equivalent to the GC content 
of all three codon positions). RSCU calculates the relative synonymous 
codon usage on degenerative sites of third codon positions, which is 
independent from the amino acid usage. Therefore, RSCU was used as 
a robust measurement of GC bias in codons. Correspondence analysis 
of RSCU values was performed with codonW according to ref. 74.

Completeness evaluation of genome and annotation
We used BUSCO75 v.5.2.2 to assess the completeness of genomes at both 
assembly and annotation levels of hagfish (E. burgeri), three lamprey 
species (Far Eastern brook lamprey, Lethenteron reissneri76; sea lam-
prey, P. marinus45; and Arctic lamprey, L. camtschaticum11) and two 
jawed vertebrates (elephant shark, C. milii11; and chicken, G. gallus 
v.7.0, downloaded from Ensembl 109). The programme was run in both 
‘genome’ and ‘protein’ modes, with gene predictor ‘metaeuk’ against 
the core metazoan database embedded in BUSCO (metazoa_odb10 
dataset, built on 17 February 2021, with 954 BUSCOs).

Species tree inference
Orthogroups of protein-coding genes previously used in the analysis 
of the spotted gar genome40 were extended using HaMStR77 (v.13.2.6). 
The spotted gar genes from ref. 40 were used as bait sequences in HaM-
StR, which sequentially added the best matching protein sequence for 
each species, provided the bait sequence was in turn the best match 
in the spotted gar proteome (reciprocity was fulfilled). HaMStR uses 
hidden Markov model profiles to assign similarity scores. Of the 242 
alignments used in the spotted gar study, 190 remained single copy in 
all the taxa used here. These were used to reconstruct the topology of 
vertebrates. The 190 protein families were individually aligned using 
MAFFT78 (v.7.402) with default settings, concatenated to form an align-
ment of 310,527 sites and trimmed with automatic method selection 
in trimAl79 v.1.2 (-automated1). This concatenated alignment contain-
ing 84,017 sites is available in Supplementary File 13. This was used to 
infer a phylogeny (also provided in Supplementary File 13). We used 
PhyloBayes80,81 v.4.1 with the CAT82 GTR83 model with 4 discrete gamma 
categories for site rates84. The analysis can be repeated in PhyloBayes 
with: phylobayes – pb -d alignment -cat -gtr -dgam 4. Convergence was 
analysed visually in Tracer85 (v1.7.1) and using bpcomp and tracecomp 
in the PhyloBayes suite. Six chains were run for between 12,991 and 
13,836 cycles. After a burn-in of 1,500 cycles, bpcomp revealed that all 
bipartitions were present in exactly the same frequencies (maxdiff and 
meandiff = 0). Tracecomp revealed effective sample sizes of param-
eters ranging from 522 to 11,491, with relative differences of 0.018 to 
0.218. We deemed that, at least for topology construction, these chains 
had converged sufficiently, therefore, recovered topologies reflected 
the true posterior distribution.

Dating species divergences
For molecular clock analysis, we expanded the dataset to include sev-
eral non-vertebrate outgroups because many of the calibrations have 
similar maximum bounds, meaning the effective time prior would be 
older than intended if we did not include the outgroups. HaMStR was 
then used to extend the orthogroups to include the new taxa. Of the 
original 190 orthogroups, 172 were retained in single copy in all taxa; 
they were aligned and trimmed as before. This alignment (provided in 
Supplementary File 14) was used as input to MCMCtree84 (v.4.9j) using 
approximate likelihood estimation86. The analysis was run on each 
gene under the simplest possible model. The temporary control files 
were then used as input to CODEML (v.4.9j) for each gene with the fol-
lowing modifications. The substitution model was changed to the one 
that was preferred by ProtTest87 (v.3.4.2) from a subset of LG88, WAG89, 
JTT90, Dayhoff91 and BLOSUM62 (ref. 92). Fix_alpha was set to 0, alpha 

was set to 0.5 and the number of gamma categories was set to 5. The 
Hessian matrices generated were concatenated to form the .BV file, 
which was used for the approximate likelihood estimation in the full 
analysis. The time prior was constructed by applying a uniform prior 
distribution with a hard minimum bound and a soft maximum bound 
(with 2.5% probability greater than the maximum) to nodes. We used the 
autocorrelated rates clock model with a gamma prior distribution with 
shape = 2 and scale = 4.53. This was constructed by dividing a typical 
distance between two tips whose most recent common ancestor was 
at the root of the tree under LG + F + G4 (inferred with IQ-TREE93 v.1.6.3) 
by the expected time for the tree based on the root prior. This was 
multiplied by the shape parameter of 2 (leading to a fairly flat gamma 
distribution, corresponding to a relatively uninformative prior). The 
variance prior (sigma2) had shape = 1 and scale = 1, meaning that varia-
tion in rates is not highly penalized in the posterior distribution. Rates 
across sites were modelled by a gamma distribution with shape = 1 and 
scale = 1 with 5 discrete categories. After a burn-in period of 10,000 
generations, parameter values were saved every 20th generation until 
20,000 cycles were saved (400,000 generations in total). Convergence 
was investigated in Tracer85, revealing convergence had been reached 
in the six chains run (the lowest effective sample size was 194 and 
posterior distributions in all 6 chains looked almost identical). The 
alignments, control files and tree are available in Supplementary File 14.

Estimation of gene duplication rates
Orthogroups were predicted using OrthoFinder94,95 v.2.3.5; output 
from this analysis is available as Supplementary File 15. OrthoFinder 
includes a gene duplication prediction step as part of its pipeline. Gene 
duplication events presented here had >50% support. The species tree 
was fixed to the topology inferred in this study.

Rooting the vertebrate phylogeny
Orthogroups were predicted using OrthoFinder94 v.2.3.5 for only the 
vertebrate taxa (hagfish, lampreys and gnathostomes). For each gene 
family, sequences were aligned using MAFFT78 (v.7.402) with default 
settings, then trimmed using trimAl79 with heuristic choice of trimming 
parameters. IQ-TREE93 was then used to generate 1,000 bootstrapped 
trees in a maximum likelihood framework, with the model selected 
using ModelFinder96 (as part of IQ-TREE v.1.6.3). These bootstrapped 
trees were used as the input to ALEobserve (v.1.0) to create ALE objects. 
Two species trees were used as hypotheses; one with hagfish as sister to 
all other vertebrates and one with monophyletic cyclostomes. ALEml_
undated29 (v.1.0) was used with each of these species tree hypotheses 
with default settings, except for tau (the transfer rate) which was set 
to 0, meaning that transfers could not be inferred. This estimates the 
pattern of gene duplication and loss for each gene family under the 
different species tree hypotheses, as well as a likelihood under the spe-
cies tree. An approximately unbiased test30 was then performed on the 
likelihoods of each gene family under the two competing hypotheses 
using the programme CONSEL97 (v.0.2.0).

Ancestral gene family complements
A total of 45 animal genomes (Supplementary Table 1 and Extended 
Data Fig. 3) were compared using a pipeline described previously31–33. 
Briefly, the proteomes were compared using a reciprocal blastp of 
all-vs-all sequences with DIAMOND98 (v.0.9.30.131; e-value threshold of 
1 × 10−5). Markov cluster algorithm99 (v.1:14-137+ds-4) was used to infer 
homology groups (HGs) from the BLAST output with default inflation 
parameter (I = 2). GOs were assigned to the different HGs by analysing 
the human protein sequences in each HG with PANTHER GO100 (v.15.0).

Orthology relationships of Hox gene clusters
Hagfish Hox sequences were obtained from a previous study19 and used 
as queries in TBLASTN (v.2.10.1+) to find the location in the Hi-C assem-
bly and Ensembl annotation. Information about Hox syntenic genes 
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in lamprey, human and elephant shark, with the European amphioxus 
as outgroup, were obtained from previous studies17–19,101, downloaded 
from Ensembl or NCBI GenBank and used as queries to find their pres-
ence in the hagfish Hi-C assembly and Ensembl annotation in TBLASTN. 
Location of Hox and their syntenic genes, as well as their Ensembl Gene 
IDs is provided in Supplementary Table 29. For phylogenetic analysis of 
Hnrnpa, Cbx, Gbx and Agap, amino acid sequences were aligned using 
MUSCLE102 as implemented in MEGAX103 v.10.2.4. The alignment was 
trimmed by trimAl79 v.1.2rev59 using the ‘-automated1’ option and then 
formatted into a nexus file using readAl (bundled with the trimAl pack-
age). The Bayesian inference tree was constructed using MrBayes104 
v.3.2.6, under the assumption of an LG + I + G evolutionary model, 
with two independent runs and four chains. The tree was considered 
to have reached convergence when the standard deviation stabilized 
under a value of <0.01. A burn-in of 25% of the trees was performed to 
generate consensus trees. Multisequence alignments with MrBayes 
parameters and number of generations for each tree are provided in 
Supplementary Files 16–19.

Dating genome duplications in vertebrates
OrthoFinder-inferred gene families were selected that showed a clear 
signal of both the 1R and 2R duplication events and were broadly con-
gruent with current phylogenetic hypotheses. This resulted in 35 gene 
families in which each gnathostome was represented up to four times 
and each cyclostome twice. Gene families containing a signal of both 
1R, 2R and the cyclostome duplication event (CR) were rare, hence, to 
date the CR event, an additional dataset was assembled consisting of 
27 gene families in which each cyclostome species was represented by 
at least two gene copies.

For each analysis, taxon sampling towards the root of the tree 
was improved by including additional outgroup taxa Nematostella 
vectensis (Cnidaria), Trichoplax adhaerens (Placozoa), Mnemiopsis 
leidyi (Ctenophora) and Hofstenia miamia (Xenacoelomorpha); this 
served to remove the nodes of interest from the root of the tree and 
include additional relative and absolute calibration information for 
more universal clades. Individual gene families were aligned using 
MUSCLE102 (v.5) and trimmed using the ‘-automated1’ option in tri-
mAl79. The best-fitting model for each gene family was determined 
using IQ-TREE93 (v.2.1.3) and all gene families were concatenated into 
a single alignment.

The node age time priors were based on the posterior estimates 
from the associated species divergence times analysis (see ‘Dating 
species divergences’ above), using the span of the 95% highest density 
credibility intervals of node ages from that analysis to inform uniform 
time priors on the same species nodes in gene tree analysis, with a 1% 
probability tail that the maximum age could be exceeded. Calibrations 
within lineages that have undergone WGD were repeated across the 
duplicated clades with identical probability distributions. Molecu-
lar clock analyses were performed using the normal approximation 
method in MCMCtree105 (v.4.9j), with each gene treated as a separate 
partition. Four independent Markov chain Monte Carlo (MCMC) chains 
were run for 2 million generations each, with the first 20% discarded as 
burn-in. Convergence was determined using Tracer85 and by comparing 
congruence among all four runs. The alignments, MCMCtree control 
files and calibrations used are available in Supplementary File 20; the 
dates of species divergence are presented in Fig. 2; and dating of WGD 
events is shown in Fig. 2 and Supplementary Fig. 34.

Reconstruction of vertebrate ancestral chromosomes
On the basis of reciprocal best BLASTP v.2.6.0+ (e-value threshold 
of 1 × 10−6) search and a chi-squared test (multiple test correction 
with false discovery rate, q value threshold of 0.05), we identified 
homologous chromosomes within either the chicken or spotted gar 
genome that possessed significantly more between-chromosome 
homologous genes. Homologous chromosomes between either the 

chicken or spotted gar genome and sea cucumber chromosomes were 
also inferred, except that the best BLASTP search was unidirectional 
wherein the sea cucumber genes were the reference. From inferred 
within-species and between species homologies, all chicken and spot-
ted gar chromosomes were grouped into 17 groups representing the 17 
predicted ACs that contribute to extant gnathostome karyotypes. The 
gene content of these ACs was reconstructed with Belcher’s lancelet 
(B. belcheri) genes43. A Belcher’s lancelet gene was distributed to one 
vertebrate ancestral chromosome if either (1) the scaffold this gene 
is located on is a homologous scaffold to the specific sea cucumber 
linkage group, and this gene is homologous to the corresponding 
chicken and spotted gar genes; or (2) this gene is homologous to at 
least five different chicken and spotted gar genes. As a result, 5,065 
lancelet genes were anchored to the 17 inferred ACs and used as their 
gene content, ranging from 115 to 534 genes in ACs 1–16, and only 20 
genes in AC17 (Supplementary Table 34).

Phylogenetic support around 1R/2R
A homologous gene set is a group of genes that share the same best 
BLASTP hit AC gene. Multiple sequence alignments were obtained with 
PRANK106 v.150803. ModelFinder96 (embedded in IQ-TREE93 v.1.6.12) 
with BIC criteria and ‘-mtree’ parameter was used to find the best-fitting 
model. RAxML-ng v.0.9.0 and IQ-TREE were repeatedly run for 10 times 
with different seed numbers. For the 20 obtained maximum likelihood 
trees, we used RAxML-ng (v.0.9.0) to re-evaluate their likelihoods and 
chose the best tree as the final tree for each homologous gene set (Sup-
plementary Files 5–8).

Definition and calculation of overlapping ratio
For a reference chromosome and all genes on it, the existence or 
absence of a homologue on a query chromosome is denoted as binary 
mode 1 or 0. We defined it as the gene retention profile. Mathematically, 
it is a vector with values of either 1 or 0 and with fixed length that corre-
sponds to the number of genes on the query chromosome. One notable 
property of the gene retention profile is that the gene order within the 
query chromosome does not alter the gene retention profile itself. 
The OR was calculated between two gene retention profiles that cor-
respond to one same reference chromosome. It is equal to the number 
of shared homologues divided by the smaller one of two total numbers 
of homologues and has a value range between 0 and 1. Notably, the OR 
is insensitive to the size difference between two query chromosomes.

Hierarchical clustering based on the gene retention profile
For multiple chromosomes homologous to one same vertebrate 
ancestral chromosome, we inferred their gene retention profiles and 
calculated all pairwise ORs. We used 1 − OR as a measure of pairwise dis-
tance and performed hierarchical clustering with the ‘Ward.D’ method 
provided in the R platform.

GO enrichment analysis of ohnologues
We mapped hagfish and chicken ohnologues to human genes and per-
formed GO enrichment analysis with human orthologues. Functional 
enrichment was examined with the Metascape107 online tool. We used 
the 959 human orthologues of hagfish ohnologues and randomly 
sampled 2,999 genes (as Metascape has a limit of 3,000) from a total 
of 3,595 chicken orthologues. GO (biological process) enrichment 
analysis was performed against all genes of the two species. Genes were 
annotated as either developmental ohnologues, non-developmental 
ohnologuess or non-ohnologous genes according to their GO terms 
annotated by PANTHER108 v.17.0.

Chromatin accessibility profiling
ATAC-seq experiments on two hagfish embryos at stages Dean 45  
(collected in 2018) and 53 (collected in 2017) (Supplementary Fig. 31)  
were performed following previous descriptions101,109 with slight 
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variations (details are provided in Supplementary Information,  
section 5). Embryos were divided and processed into two halves to 
gain positional information to be used in a future project. Approxi-
mately 50,000 nuclei per replicate (~200,000 nuclei per embryo) 
were processed for tagmentation using Tn5 from the Illumina Nextera 
DNA Library Prep kit. Libraries were multiplexed and sequenced at 
the Beijing Genomic Institute in 4 lanes (2 per embryo) in an Illumina 
HiSeq 4000 platform.

To identify ACRs as putative gene cis-regulatory regions, we col-
lected ATAC-seq data of hagfish and other chordate embryos (amphi-
oxus, zebrafish, medaka, chicken and mouse; GSE106428 (ref. 47) 
and DRA006971 (ref. 110)) with two replicates each (Supplementary 
Table 51). For each data, ATAC-seq paired-end reads were aligned to 
the reference genome using Bowtie2 (ref. 111) (v.2.4.2). After extract-
ing nucleosome-free read pairs (the insert shorter than 120 bp), we 
performed peak-calling by using MACS2 (ref. 112) (v.2.2.7.1). Finally, 
on the basis of the replicate information, reproducible peaks were 
identified as ACRs using the IDR framework113.

Fate of ohnologues after WGD
After quantile normalization, transcripts per million >5 was used as 
a threshold to consider a gene to have either an ‘expressed’ or ‘not 
expressed’ state (Supplementary Fig. 31). Only ohnologue pairs in 
which both genes are expressed in at least one tissue were analysed. 
Fates of ohnologues were classified according to their expressional 
patterns in the tissues assayed in this study for the hagfish, or from a 
previous study in the case of chicken114. Fates were defined following 
a different strategy from that in ref. 47 due to the lack of information 
from homologous tissues of the amphioxus (outgroup). After WGD, 
ohnologues can follow one of the following fates: (1) potential redun-
dancy, if the two ohnologues are expressed in the same set of tissues;  
(2) potential subfunctionalization, if both ohnologues are each 
expressed in a tissue not shared with the other. In other words, each 
of them has tissue-specific expression domains; (3) potential spe-
cialization, if one ohnologue has a reduced set of expression domains 
contained in a larger set of tissues in which the other ohnologue is 
expressed. Gene families within ‘specialization’ can be further defined 
as having either ‘potential strong specialization’ when the ohnologue 
with the narrower expression pattern is transcribed in <40% of the 
domains than the ohnologue with the broader expression pattern; or 
‘potential mild specialization’ when the ohnologue with the narrower 
expression pattern is transcribed in ≥40% of domains than the ohno-
logue with the broader expression pattern.

Phenotypic disparity analyses
A character matrix of 578 characters and 278 taxa was assembled as 
follows. Characters were collected from direct observations and mul-
tiple literature sources115–126. Previous literature sources were modified 
to ensure that duplicated character states were removed and that 
overlapping characters from different sources were combined into 
single characters or subdivided into multiple characters to encom-
pass all variation across vertebrates. We ensured that all characters 
were coded for as many taxa as possible. Missing data are coded as ‘?’; 
inapplicable characters are coded as ‘-’. Character state observations 
were coded using primary observations and through the literature. 
Characters were coded using hierarchical contingencies127–129. The 
character matrix and descriptions are available in Supplementary File 
21 (Vertebrate_disparity_matrix.nex).

The phenotype character matrix was transformed before dispar-
ity analyses such that characters coded ‘not applicable’ were scored as 
‘0’ and each subsequent character state was increased by 1. Ancestral 
character states were estimated along a tree representative of current 
phylogenetic hypotheses using stochastic character mapping130, with 
1,000 simulations per character; the tree is available in Supplemen-
tary File 21 (Disparity.tre). Distances between taxa and reconstructed 

internal nodes were estimated using Gower’s dissimilarity metric131, 
and these distances were ordinated using NMDS, a method that seeks 
to reduce dimensionality while preserving distances between taxa. 
A pre-ordination phylomorphospace was plotted using the inferred 
ancestral states, NMDS scores and the representative phylogeny. Con-
vex hulls were fitted around taxonomic lineages and groups that have 
undergone successive rounds of WGD. All stem gnathostomes were 
adjudged to have undergone the 2R WGD because they postdate the 
timing of 2R inferred from the gene tree-based molecular clock analy-
sis (see ‘Dating genome duplications in vertebrates’ above). Disparity 
metrics were estimated using dispRity (v.1.7.0) in R (v.2.6-4) with 1,000 
bootstrap replicates132.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Eptatretus burgeri (inshore hagfish) v.4.0 genome is available 
in NCBI GenBank under accession number GCA_900186335.3. Raw 
genome sequencing data together with adult RNA-seq data have been 
deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under 
accession number PRJEB21290. ATAC-seq data have been deposited in 
Gene Expression Omnibus (GEO) under accession number GSE247552. 
Supplementary files are available at FigShare (https://figshare.com/ 
projects/Hagfish_Genome_Project/163186). Gene annotation used in 
this study is available at https://www.ensembl.org/Eptatretus_burgeri. 
A mirror of the UCSC Genome Browser containing hagfish assembly 
and annotations is available at http://ucsc.crg.eu/.
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Extended Data Fig. 1 | Features of the hagfish genome. a, 17-mer distribution 
for inshore hagfish genome size estimation using all raw reads from short insert-
size libraries. b, Counts for major classes of genes and transcripts from Ensembl 
annotation. c, Completeness assessment of the annotation of the inshore hagfish 
E. burgeri genome (red), three lamprey species (blue) and two jawed vertebrates 
(green). Numbers of conserved metazoan orthologs (metazoa_odb10 dataset,  
n = 954) are indicated for each case. F. E., Far Eastern d, GC-content distribution of 
the hagfish genome and other chordates calculated from 10-kb non-overlapping 
windows. e, All codon type frequency in given chordate genomes according  
to GC-content. GC-0/1/2/3 indicates the number of G or C bases in a codon.  
f, Distribution of GC content at each codon position or at all codon positions 
(Codon1 + 2 + 3). For each protein coding gene, we only kept the longest coding 
sequence. For each coding sequence, we calculated the GC content at separate 
codon positions. We also calculated the GC content for each coding sequence,  

which is equal to the GC content of all three codon positions. g, Violin plots 
of size distribution of intron (left), intergenic (middle) and gene body (right) 
lengths over a logarithmic scale of the hagfish (E. burgeri), two lamprey species 
(sea lamprey, P. marinus; Arctic lamprey, L. camtschaticum), six gnathostome 
vertebrates (human, H. sapiens; frog, X. tropicalis; coelacanth, L. chalumnae; 
chicken, G. gallus; spotted gar, L. oculatus; and the elephant shark, C. milii) 
and two invertebrate deuterostomes (sea cucumber, A. japonicus; amphioxus, 
B. belcheri). For each genomic feature and each species, the median (centre 
line) and IQR (interquartile range) length statistics are indicated with a white 
rectangle; whiskers extend to the last point no further than 1.5 times the 
interquartile range from the first and third quartiles Dashed vertical line 
indicates median size of E. burgeri features; *** P < 2.2 × 10−16, two-sided Wilcoxon 
rank sum test. Animal illustrations kindly provided by Tamara de Dios Fernández 
and reproduced with permission from REF. 133.
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Extended Data Fig. 2 | Phylogenomic analysis of chordates and gene 
duplication rates across metazoan evolution. a, Bayesian Inference tree of 31 
chordate species was built using a protein alignment (see Methods). All nodes 
were recovered with a posterior probability of 1. Cyclostome monophyly was 
unequivocally supported. Scale bar indicates 0.1 substitutions per site.  

b, c, The exact number of gene duplication events inferred using OrthoFinder2 
with greater than 50% support (b) and the number of events per million years per 
branch (c) are shown. In each case, the colour of the branch represents the value 
according to the key on the upper-left of each pane. Hagfish is highlighted in red 
font in all panels.
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Extended Data Fig. 3 | Reconstruction of ancestral gene content.  
a, Cladogram showing the phylogenetic relationships of 45 species 
representatives of all major eumetazoan taxa with species of gnathostomes and 
cyclostomes highlighted in blue and orange, respectively. Gene family gains and 
losses are indicated in selected nodes: green, novel homology groups (HG); blue, 

novel core HGs; red, lost HGs. b, Top 14 Protein Class GO hits for novel homology 
groups (HG) gained across different nodes of chordates, color coded by taxa 
(legend at the bottom right) and sorted by the Vertebrata node. The largest GO 
enriched terms are ‘transmembrante signal receptor’ and ‘intercellular signal 
molecule’ in vertebrates, and ‘defense/immunity protein’ in gnathostomes.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Phylogenetic and retention profile clustering analyses 
of Hox syntenic regions. a-d, Bayesian inference phylogenetic trees of amino 
acid sequences of 4 non-Hox syntenic genes to Hox clusters, Gbx (a), Cbx (b), 
Hnrnpa (c) and Agap (d), of the inshore hagfish (in red), the sea lamprey (in light 
blue), the Arctic lamprey (in dark blue) and selected gnathostomes. Orthologs 
from the European amphioxus Branchiostoma lanceolatum were used as 
outgroup to root the trees. Posterior probability is indicated in each node. 
Scales indicate number of substitutions per site. Phylogenetic analyses of Hox 
genes generally fail to determine orthology due their high conservation and 
short alignments. The phylogenetic trees of these non-Hox linked genes clearly 
support the orthology of Hox-α (Gbx, Cbx and Hnrnpa), Hox-δ (Gbx, Hnrnpa and 

Agap), and Hox-ζ (Hnrnpa) clusters, while β and ε genes always group together, 
as previously observed for the lamprey17. The alignments used to build the trees, 
together with the MrBayes parameters and number of generations used to 
build each tree are provided as Supplementary Files 16–19. e, clustering analysis 
of retention profiles (see main text) resolved the orthology relationships of 
Hox-β, Hox-ε, Hox-γ, as well as Hox-ζ clusters. Supported orthologies in each 
analysis are marked with color-coded rectangles. The location of each cluster is 
indicated in parenthesis in e (ssc, super scaffold; HiC cl, Hi-C contact cluster, or 
chromosome). For the clustering analysis of AC1-derived chromosomes in the 
lamprey and hagfish, we split Hi-C cluster 3 into two halves, each containing one 
Hox cluster: 3L (coordinates 0–107.78 Mb), 3R (107.78-194 Mb).
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Extended Data Fig. 5 | Emergence of gnathostome karyotypes via 2R.  
a, Chromosomal level phylogenetic trees demonstrate the occurrence of 2R 
WGD. The two rounds of WGD are color-coded. Cyan and red denote genes 
encoded by corresponding chicken chromosomes and gar LOCs, respectively. 
Bootstrap support and posterior probability values of three methods are marked 
on branches: bootstrap value from RAxML-ng/bootstrap value from IQ-Tree/

posterior probability from Astral-III. b, Evolution of gnathostome karyotype 
through 1R and 2R, with post-1R/pre-2R chromosomal fusions indicated with red 
lines, and ratios of gene retention asymmetries shown for directly ohnologous 
chromosomes after 1R and 2R. The size of each ancestral chromosome is 
proportional to the number of retained genes from ACs.
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Extended Data Fig. 6 | Contributions of vertebrate ACs to the genomes 
of hagfish and sea lamprey. a, Sea lamprey super-scaffolds17 (pseudo-
chromosomes) are generally homologous to one single AC except five 
scaffolds labeled with an arrow. Sea lamprey scaffolds scaf_00001, scaf_00002, 
scaf_00008, scaf_00010, scaf_00011 and scaf_00023, confounded by 

missassembly, are not presented here. b, The distribution of the descendant 
copies of AC genes for the 19 hagfish Hi-C clusters (putative chromosomes). 
Only significant homologous relationships between hagfish clusters and ACs are 
shown. Because hagfish cluster 19 is not homologous to any AC, it is presented as 
a blank block. Genes are color-coded according to its homologous AC.
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Extended Data Fig. 7 | Overlapping ratio and clustering analysis of 
ohnologous and orthologous chromosomes. a, b, AC1 corresponds to five 
and six mutually paralogous chromosomes in hagfish (a) and sea lamprey (b) 
genomes, respectively. Numbers in colour-coded cells (bottom left triangle) 
indicate the OR between two chromosomes. Numbers in white cells (top 
right triangle) indicate the number of shared retained genes between two 
chromosomes. Numbers on the diagonal line from top left to bottom right 
(thick-lined cells) indicate the total number of retained genes of a chromosome. 

Overlapping rations corresponding to all hagfish chromosomes and lamprey 
scaffolds are provided in Supplementary File 9. c, Retention profile clustering 
analysis of gnathostome orthologous chromosomes deriving from AC1. 
Retained genes are denoted by dark cyan lines. Four orthologous chromosome 
pairs are defined. d, The clustering found in (c) is the same as that found in the 
phylogenetic analysis (Extended Data Fig. 5a), demonstrating the reliability of 
the OR approach.
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Extended Data Fig. 8 | Fate and cis-regulatory evolution of ohnologs after 
WGD. a, b, Gene Ontology enrichment analysis of ohnologs in the hagfish (a) 
and the chicken (b). Top 20 terms are shown, majority of which are related with 
development. c, Cumulative distribution of distance of ACRs from the closest 
TSSs normalized by the average length of intergenic regions in each genome. d, 
Distribution of the distance from ACRs to closest TSS of developmental ohnologs 
(Devel.), non-developmental ohnologs (Non-dev.) and non-ohnologous (Non-
ohnol.) genes. e, Distribution of the number of ACRs per gene, normalized by the 
GREAT region length, for developmental ohnologs (Devel.), non-developmental 
ohnologs (Non-dev.) and non-ohnologous (Non-ohnol.) genes. Sample size for 
groups in (d) and (e) are identical. n = 143 (Devel.), n = 816 (Non-dev.), n = 7303 
(Non-ohnol.). f, Proportion of distal ACRs across different gene functional 
categories. Within a GREAT-defined region, proximal regulatory sequences 
were defined as those from 5 kb upstream to 1 kb downstream of a TSS, and 
the rest of the region was treated as distal. g, Distribution of the number of 
ACRs of hagfish ohnologs for each category (special., specialization). n = 344 

(Redundancy), n = 178 (Subfunction.), n = 334 (Mild special.), n = 240 (Strong 
special.). h, Distribution of pairwise protein identity for hagfish ohnologous 
pairs for each category. n = 170 (Redundancy), n = 88 (Subfunction.), n = 165 
(Mild special.), n = 120 (Strong special.). i, Distribution of pairwise protein 
identity for chicken ohnologous pairs for each category. n = 275 (Redundancy), 
n = 178 (Subfunction.), n = 318 (Mild special.), n = 167 (Strong special.). j, Number 
of ohnologues with strong specialization in chicken expressed in each tissue. 
Only the gene in a pair with narrower expression breadth is analyzed. In panels 
d, e, g-i P values correspond to two-sided Wilcoxon rank sum test between the 
indicated groups; boxes correspond to the median (centre line) and the first and 
third quartiles; whiskers extend to the last point no further than 1.5 times the 
interquartile range from the first and third quartiles. All statistical information 
for panels d, e, g-i is provided in Supplementary Tables 58–62. Animal 
illustrations kindly provided by Tamara de Dios Fernández and reproduced with 
permission from REF. 133.
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