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A vertebrate-wide catalogue of T1R receptors 
reveals diversity in taste perception

Hidenori Nishihara1,2,9 , Yasuka Toda3,9, Tae Kuramoto1,4, Kota Kamohara3, 
Azusa Goto3, Kyoko Hoshino3, Shinji Okada    5, Shigehiro Kuraku    6,7, 
Masataka Okabe    8 & Yoshiro Ishimaru    3 

Taste is a vital chemical sense for feeding behaviour. In mammals, 
the umami and sweet taste receptors comprise three members of the 
taste receptor type 1 (T1R/TAS1R) family: T1R1, T1R2 and T1R3. Because 
their functional homologues exist in teleosts, only three TAS1R genes 
generated by gene duplication are believed to have been inherited from 
the common ancestor of bony vertebrates. Here, we report five previously 
uncharacterized TAS1R members in vertebrates, TAS1R4, TAS1R5, TAS1R6, 
TAS1R7 and TAS1R8, based on genome-wide survey of diverse taxa. We show 
that mammalian and teleost fish TAS1R2 and TAS1R3 genes are paralogues. 
Our phylogenetic analysis suggests that the bony vertebrate ancestor had 
nine TAS1Rs resulting from multiple gene duplications. Some TAS1Rs were 
lost independently in descendent lineages resulting in retention of only 
three TAS1Rs in mammals and teleosts. Combining functional assays and 
expression analysis of non-teleost fishes we show that the novel T1Rs form 
heterodimers in taste-receptor cells and recognize a broad range of ligands 
such as essential amino acids, including branched-chain amino acids, which 
have not been previously considered as T1R ligands. This study reveals 
diversity of taste sensations in both modern vertebrates and their ancestors, 
which might have enabled vertebrates to adapt to diverse habitats on Earth.

Taste is one of the most important senses that govern the feeding behav-
iour of animals. It is widely accepted that mammals have five basic 
tastes: umami (savoury), sweet, bitter, salty and sour1,2. Taste receptor 
type 1 (T1R, encoded by TAS1R), a G protein-coupled receptor family, 
consists of three members, namely T1R1, T1R2 and T1R3, which are 
encoded by the genes TAS1R1, TAS1R2 and TAS1R3, respectively, and act 
as umami or sweet receptors3,4. The T1R1/T1R3 heterodimer functions 
as an umami taste receptor in mammals and detects l-amino acids and 
5′-ribonucleotides5–7. The mammalian T1R2/T1R3 heterodimer acts as a 
sweet sensor6,8. Likewise, homologues of TAS1R family genes have been 

identified in teleost fishes9, and each of the heterodimers T1R1/T1R3 
and T1R2/T1R3 can sense several amino acids in teleosts10.

A previous phylogenetic analysis revealed that all mammalian 
and teleost TAS1Rs can be grouped into the TAS1R1, TAS1R2 and TAS1R3 
clades11, suggesting that their common ancestor had only three T1R 
members derived from gene duplications that have been retained in 
present-day species. Lineage-specific duplications and losses of TAS1R 
genes have occurred within each of the TAS1R1, TAS1R2 and TAS1R3 
clades, as exemplified by multiple TAS1R2 genes in zebrafish and fugu, 
and loss of TAS1R2 in birds12. A few genomic studies of vertebrates such 
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TAS1R2 and TAS1R3. These previously undocumented TAS1Rs were found 
in lizards, amphibians, lungfishes, coelacanth, bichir and cartilaginous 
fishes (Fig. 1a and Extended Data Figs. 1–3). The novel TAS1Rs could be 
classified into five new clades. One clade, which is the sister clade of 
TAS1R3, was named TAS1R4 and contains genes from all jawed vertebrates 
investigated except mammals, birds, crocodilians, turtles, frog, sterlets 
or neopterygians (Fig. 1b and Extended Data Fig. 4). Another novel TAS1R, 
named TAS1R5, exists in axolotl, lungfishes and coelacanth and is close 
to the clade comprising TAS1R1 and TAS1R2 (Fig. 1a).

The sister clade to TAS1R1 + TAS1R2 + TAS1R5, which was named 
TAS1R6, was identified exclusively in cartilaginous fishes. TAS1R6 could 
be further divided into three subclades, namely TAS1R6-1, TAS1R6-2 and 
TAS1R6-3, all of which were found to be present in elephant fish (also 
called elephant shark), belonging to the taxon Holocephali of cartilagi-
nous fishes (Extended Data Figs. 1–3). Therefore, the three TAS1R6 sub-
clades probably emerged in the common ancestor of extant cartilaginous 
fishes. A thorough search of the genomes and transcriptomes of the four 
cartilaginous fish species identified only TAS1R3, TAS1R4 and TAS1R6, but 
no orthologues of TAS1R1, TAS1R2 or TAS1R5 (Fig. 1b and Extended Data 
Fig. 4), suggesting that the TAS1R1, TAS1R2 and TAS1R5 genes in bony 
vertebrates are co-orthologues of the TAS1R6 genes in cartilaginous fish.

Another novel TAS1R clade, TAS1R7, was found exclusively in axo-
lotl and lizards. Yet another new clade, TAS1R8, was identified only in 
bichir and lungfishes, and its monophyly was robustly supported (Fig. 1  
and Extended Data Figs. 1–3), suggesting that TAS1R8 emerged in the 
common ancestor of bichir and lungfishes. Indeed, the likelihood of an 
alternative relationship, in which TAS1R7 and TAS1R8 form an exclusive 
cluster and represent a species tree, was rejected statistically based 
on the approximately unbiased test (P < 10–4; Extended Data Fig. 5), 

as squamates, coelacanth and sharks have suggested the existence 
of taxonomically unplaced TAS1Rs that may not be included in the 
aforementioned three clades13–15. However, the lack of comprehensive 
characterization and systematic classification has limited our under-
standing of the evolutionary history of TAS1R genes, the functional 
diversity of T1Rs, and the molecular basis of taste sense in vertebrates.

Here, we present an evolutionary analysis of diverse TAS1Rs in 
jawed vertebrates, with an exhaustive taxon sampling encompassing all 
major ‘fish’ lineages. In addition to clades TAS1R1, TAS1R2 and TAS1R3, 
we identified five novel TAS1R clades. The results suggest that the ver-
tebrate ancestor possessed more T1Rs than most modern vertebrates, 
challenging the paradigm that only three T1R family members have 
been retained during evolution. Functional analyses suggest that the 
novel T1Rs have shaped the diversity of taste sense. We propose that 
the T1R family has undergone an ancient birth-and-death evolution that 
accelerated their functional differentiation, which may have led to the 
diversification of feeding habitats among vertebrates.

Results
Identification of novel TAS1R family members
We identified homologues of TAS1R genes that are included in public 
genome/transcriptome databases for diverse taxa of jawed vertebrates 
(Supplementary Table 1). Except for jawed vertebrates, TAS1R genes were 
not identified in any Deuterostomia reference genomes (lampreys, hag-
fishes, tunicates, lancelets, sea urchins, starfish, hemichordate, etc.) or 
the nr database, suggesting that the TAS1R/T1R family exists only in jawed 
vertebrates. All phylogenetic trees, as estimated using different methods 
and datasets, consistently revealed the existence of many TAS1Rs that 
had not been categorized into any of the three known clades: TAS1R1, 
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Fig. 1 | Phylogenetic tree and the revised classification of TAS1R members. 
a, Maximum-likelihood tree for amino acid sequences inferred from TAS1Rs for 
21 jawed vertebrates constructed with the JTT + G (CAT approximation) model 
in RAxML. Coloured circles in each node represent bootstrap values calculated 
with 1,000 replications, whereas those with low bootstrap support (<60) have 
no circles. Species classification is represented with coloured highlighting at 
the tips of the tree. GPRC6A was used as an outgroup (not shown), Afr, African; 
Aust, Australian. b, Distribution of TAS1R members among chordates. The 

colour of circles corresponds to the coloured highlighting in a and indicates the 
presence of TAS1R members in the genome assemblies of the various chordates. 
Phylogenetic relationships among species and among TAS1Rs are shown on the 
left and top, respectively. TAS1R6 of cartilaginous fishes is the orthologue of the 
TAS1R1/2A/2B/5 clade and is shown as a circle with assorted colours. Similarly, 
TAS1R3C of cartilaginous fishes is shown with two shades of green that represent 
TAS1R3A and TAS1R3B. Circles with asterisks denote putative pseudogenes.
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suggesting that TAS1R7 and TAS1R8 are distinct groups. Among the verte-
brates we investigated, the axolotl was found to possess TAS1Rs from the 
greatest number (seven) of clades (Fig. 1b and Supplementary Table 2).

Each of TAS1R3 and TAS1R2 consists of two paralogous clades
Remarkably, the phylogenetic analysis also revealed that TAS1R3 of 
bony vertebrates could be divided into two clades, named TAS1R3A 
and TAS1R3B, with high branch support (Fig. 1 and Extended Data Figs. 
1–3). TAS1R3A was found to be present in tetrapods and lungfishes but 
not other vertebrates, whereas TAS1R3B was identified only in amphib-
ians, lungfishes, coelacanth and ray-finned fishes. The sister clade to 
TAS1R3A + TAS1R3B was identified exclusively in cartilaginous fishes 
and named TAS1R3C. This distribution suggested that an ancestral 
TAS1R3 gene was duplicated in the common ancestor of bony verte-
brates, with subsequent independent loss of TAS1R3A in certain lineages 
such as coelacanth and ray-finned fishes, whereas TAS1R3B was lost in 
Amniota (mammals and sauropsids). Therefore, the TAS1R3 genes in 
mammals and teleost fishes are paralogues. Axolotl and Australian 
lungfish retained both TAS1R3A and TAS1R3B although the lungfish 
TAS1R3B has been pseudogenized. Furthermore, the amphibians pos-
sess two groups of TAS1R3B, named TAS1R3B1 and TAS1R3B2 (Fig. 1a), 
suggesting that TAS1R3B was again duplicated—at the latest—before 
the common ancestor of amphibians.

A distinguishing feature of TAS1R3B in ray-finned fishes is the pres-
ence of additional introns. In contrast to other TAS1Rs, which consist 
of six exons, exon 3 of TAS1R3B in ray-finned fishes has been altered 
during evolution such that it now comprises two exons, suggesting the 
acquisition of an intron in the common ancestor of ray-finned fishes 
(Extended Data Fig. 6). Furthermore, exon 6 of TAS1R3B in non-bichir 
ray-finned fishes acquired an additional intron, resulting in a total of 
eight exons of the gene. Thus, this intron is likely to have been inserted 
after the divergence of bichir. Except for these two instances, the exon–
intron structure is conserved among the TAS1R genes we investigated.

Also, TAS1R2 does not form a single clade in the tree (Fig. 1). The 
TAS1R2 genes in ray-finned fishes form a clade with TAS1R1, and the other 
TAS1R2 group from tetrapods, lungfish, coelacanth, bowfin and bichir 
forms a sister group to the clade comprising TAS1R1 and the ray-finned 
fish TAS1R2. The paraphyletic relationship of the two TAS1R2 groups is 
concordant with previous reports13. Hereafter, we refer to the major 

vertebrate group as TAS1R2A and the ray-finned fish group as TAS1R2B 
(Fig. 1). Notably, we found that the anciently diverged ray-finned fishes 
such as bowfin and bichir retained both TAS1R2A and TAS1R2B as well as 
TAS1R1. We assessed the likelihood of other phylogenetic relationships 
in which TAS1R2s have a single origin, and the hypotheses were signifi-
cantly rejected (P < 10–6, approximately unbiased test; Extended Data 
Fig. 5). These results suggested that the TAS1R2 genes in mammals and 
teleost fishes are paralogues. Thus, the TAS1R phylogenetic tree com-
prised a total of 11 TAS1R clades: TAS1R1, TAS1R2A, TAS1R2B, TAS1R3A, 
TAS1R3B, TAS1R3C, TAS1R4, TAS1R5, TAS1R6, TAS1R7 and TAS1R8. This 
unexpected gene diversity challenges conventional conceptions about 
the evolution of the genetic basis for umami and sweet receptors.

Birth-and-death evolution of the TAS1R family
Some of the higher-level relationships among the TAS1R clades were 
supported with relatively high branch support, as exemplified by the 
exclusive cluster of TAS1R3 + TAS1R4, the clade of the other TAS1Rs, the 
clade of TAS1R1 + TAS1R2B + TAS1R2A + TAS1R5, and the sister relation-
ship of this latter clade to TAS1R6 (Fig. 1). Based on the phylogenetic 
relationships and the distribution of all TAS1R members (Fig. 1b), the 
most parsimonious evolutionary scenario could be deduced as follows 
(Fig. 2). The first TAS1R gene emerged in the ancestral lineage of jawed 
vertebrates during the period 615–473 million years ago (Ma) according 
to TimeTree16. This ancestral TAS1R underwent multiple duplications 
to produce at least five TAS1R genes: TAS1R3C (the ancestral gene of 
TAS1R3A and TAS1R3B), TAS1R4, TAS1R7, TAS1R8 and TAS1R6 (the ances-
tral gene of TAS1R1, TAS1R2B, TAS1R2A and TAS1R5). Owing to speciation 
between cartilaginous fishes and bony vertebrates ~473 Ma, TAS1R6 
and the ancestral gene of clade TAS1R1 + TAS1R2B + TAS1R2A + TAS1R5 
diverged. This speciation probably also led to the split between TAS1R3C 
and clade TAS1R3A + TAS1R3B. In the stem lineage of bony vertebrates 
(473–435 Ma), TAS1R1, TAS1R2A, TAS1R2B and TAS1R5 were generated 
via additional gene duplication events. Simultaneously, TAS1R3A and 
TAS1R3B were generated by gene duplication, resulting in a total of 
nine TAS1Rs in the common ancestor of bony vertebrates (Fig. 2). After 
the divergence of ray-finned and lobe-finned fishes ~435 Ma, a portion 
of the expanded TAS1Rs began to be differentially lost during verte-
brate evolution. For example, TAS1R8 was lost in the tetrapod ancestor, 
TAS1R3B and TAS1R5 were lost in the amniote ancestor, and TAS1R4 
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and TAS1R7 were lost in the mammalian ancestor (Fig. 2). Thus, gene 
expansion before the common ancestor of bony vertebrates as well 
as the subsequent loss of a subset of genes have resulted in the rather 
dispersed distribution of TAS1Rs in extant species (Fig. 1b).

TAS1R gene cluster revealed by scanning understudied 
genomes
The simplest model for gene amplification is a tandem duplication that 
produces multiple genes located side-by-side17,18. However, TAS1R1, 
TAS1R2 and TAS1R3 are located far from each other in both mammalian 
and teleost genomes. In human chromosome 1, for example, TAS1R1 
is 12 Mb distant from TAS1R2A and 5 Mb distant from TAS1R3A, with 
many intervening genes in each case. In zebrafish, each of TAS1R1 and 
TAS1R3B is located on a different chromosome from the two copies 
of TAS1R2B, prompting us to hypothesize that TAS1R members may 
have undergone expansion by tandem duplications in the ancestral 
genome, followed by subsequent translocation to distant regions 
during evolution. To address this possibility, the synteny of TAS1R3 
and TAS1R4 was investigated among vertebrates, particularly those 
having the novel TAS1Rs (Fig. 3 and Extended Data Fig. 7). Indeed, the 
novel TAS1Rs were found to be located side-by-side in anole lizard, 
axolotl, lungfish, coelacanth and elephant fish (Fig. 3a). Even TAS1R2A 
and TAS1R3B are located next to each other in axolotl and bichir. This 
result suggested that a TAS1R gene cluster had formed in the common 
ancestor of jawed vertebrates.

A comparison of neighbouring genes revealed that the TAS1R clus-
ter is flanked by two genes, namely DVL1 and MXRA8, in the genomes of 
human, chicken, axolotl, lungfish, coelacanth, bichir and elephant fish 
(Fig. 3a), suggesting that these two genes were adjacent to the TAS1R 
cluster in the common ancestor of jawed vertebrates. On the oppo-
site end of the TAS1R cluster, the gene order of ACAP3–PUSl1–LPAR6–
INTS11–CPTP may have been established in the sarcopterygian ancestor 
based on conservation among coelacanth, axolotl, chicken and partly 
in lizard. Furthermore, the presence of other TAS1R-proximal genes is 
also conserved even across distant chromosomal regions (Extended 
Data Fig. 7). This suggested that a chromosomal region containing 

both TAS1R and multiple neighbouring genes—rather than the TAS1R 
gene alone—had translocated to a different region in each lineage. 
Based on the inferred ancestral gene order, the unique distribution of 
TAS1Rs among present-day mammals and teleost fishes may have been 
a consequence of a combination of several events (Fig. 3b): (1) tandem 
duplication that produced a TAS1R cluster in the ancestor of jawed ver-
tebrates; (2) local translocation of a subset of TAS1Rs within a chromo-
some, as seen in multiple clusters observed in axolotl and coelacanth 
(Extended Data Fig. 7); (3) translocation of entire TAS1R-containing 
regions to different chromosomes, as observed in zebrafish; and (4) 
gene loss(es) in each lineage, as partly observed as the presence of 
pseudogenes (Fig. 1a). Moreover, lineage-specific duplication events 
have occurred such as TAS1R2B in zebrafish and fugu and TAS1R2A in 
coelacanth (Fig. 1a and Extended Data Fig. 7)12,13. Finally, we found that 
some of the TAS1Rs identified have been pseudogenized; for exam-
ple, the whale shark TAS1R3C and the lungfish TAS1R3B (Fig. 1). These 
observations also support the evolutionary model of the TAS1R family 
presented in Fig. 3b.

Conservation of a possible Oct-binding site in TAS1R4
Because TAS1R4 is shared among a wide variety of vertebrates in con-
trast to the other novel TAS1Rs, we expected that a transcriptional 
regulatory mechanism might be conserved among the species. To 
explore the existence of a possible regulatory element, sequences 
upstream of the open reading frames of TAS1R4 from various species 
were aligned, and MEME19 was used to search for transcription-factor 
binding motifs conserved among the species. The most significant hit 
was the binding motif for the Oct family (P < 10–12 for Oct-4, P < 10–7 for 
Oct-1). At least one sequence of the known Oct-binding motif ‘ATG-
CAAAT’ is conserved among cartilaginous fishes, coelacanth, bichir 
and lizards in the region upstream of TAS1R4 (Fig. 3c,d). Although 
little is known about the transcriptional regulatory network in 
taste-receptor cells (TRCs), one known transcription factor responsi-
ble for TRC differentiation is Skn-1a, which is an Oct factor also known 
as Oct-11, Epoc-1 or Pou2f3 (ref. 20). In mammals, Skn-1a is exclusively 
expressed in umami, sweet and bitter TRCs, and loss of Skn-1a results 
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Fig. 3 | Synteny around TAS1Rs and conserved Oct-like motifs in the 
TAS1R4 upstream regions across vertebrates. a, Synteny around each TAS1R 
gene cluster is partly conserved across representative vertebrates. TAS1Rs 
are represented by black polygons, and those with asterisks are putative 
pseudogenes. Coloured polygons indicate genes shared among species, and grey 
colour represents genes not shared among the species or unknown. The species 
tree is shown on the left. The deduced gene orders in common ancestors of 
Sarcopterygii and jawed vertebrates are shown at the bottom. b, Proposed model 
for the expansion of TAS1R genes across distant chromosomal regions during 

evolution. c, Conserved motifs located upstream of TAS1R4. Sequence alignment 
of the upstream region of the TAS1R4 open reading frame revealed two conserved 
Oct-like transcription-factor binding motifs (blue shading). Numbers represent 
nucleotide positions from the TAS1R4 start codon site. The asterisk indicates  
one of the motifs that significantly resembles the Oct factor binding motif.  
d, Sequence logo for the conserved motif denoted with the asterisk in c. Known 
binding motifs of Oct-1 (retrieved from TRANSFAC) and Oct-11/Pou2f3/Skn-1a/
Epoc-1 (retrieved from JASPAR) are compared.
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in the complete absence of these TRCs20,21. This finding suggested that 
TAS1R4 expression is governed by a conserved regulatory mecha-
nism involving an Oct transcription factor, possibly Skn-1a. Although 
Oct-binding sites were not observed in the other novel TAS1Rs, these 
findings may help to elucidate the molecular mechanisms underlying 
the conserved and/or lineage-specific expression of a variety of TAS1Rs 
in TRCs, which will enhance our understanding of the evolutionary 
origin of TRCs.

T1R diversity expands the range of taste sensation
Because receptor responses cannot be predicted from sequence 
analysis alone, functional tests using cultured cells heterologously 
expressing the target receptor are useful. We previously established 
a high-throughput screening system for the T1R receptors using a 
luminescence-based assay22 and have used it to identify ligands for 
both mammalian7,23 and non-mammalian24–26 T1R receptors. To exam-
ine which T1R receptors can form heterodimers and which ligands 
they respond to, we performed the functional analysis for the T1Rs of 
bichir, which possesses two newly discovered T1R groups (T1R4 and 
T1R8) and four known T1R groups (T1R1, T1R2A, T1R2B and T1R3B). 
Because TAS1R4 is the sister clade of TAS1R3 and is present in all ver-
tebrates that harbour the other novel TAS1Rs (Fig. 1b), T1R4 could 
be assumed to form a heterodimer with another T1R. We combined 
either T1R3B or T1R4 with another T1R (T1R1, T1R2A, T1R2B or T1R8) 
in the functional analysis (Fig. 4a). Among these receptor pairs, strong 
responses to amino acids were detected for T1R1/T1R3B, T1R2B/T1R3B 
and T1R8/ T1R4 (Fig. 4b and Extended Data Fig. 8). For bichir T1R2A, 

its combination with T1R3B or T1R4 did not yield a response to any of 
the tastants examined (Extended Data Fig. 8a). Responses were not 
observed when T1R4 or T1R8 alone was used (Extended Data Fig. 8a),  
suggesting that these newly discovered T1Rs function as obligate het-
erodimers in bichir.

The bichir T1R8/T1R4 responded strongly to Phe and to 
branched-chain amino acids (BCAA; Ile, Val and Leu), whereas T1R1/
T1R3B and T1R2B/T1R3B responded strongly to basic amino acids (Arg 
and His) (Fig. 4b,c). Fishes have 12 nutritionally essential amino acids 
(Cys, His, Ile, Leu, Lys, Met, Phe, Arg, Thr, Trp, Tyr and Val)27, 9 of which 
are included in the 17 amino acids that were tested in the T1R functional 
analysis. Notably, all six amino acids to which the bichir T1Rs responded 
are essential amino acids (P < 0.05; one-sided Fisher’s exact test), sug-
gesting that the bichir T1Rs may sense essential amino acids in foods by 
taking advantage of the ability to perceive BCAA via the T1R4-related 
receptor.

Bichir T1R1/T1R3B also responded to sucralose, a structural ana-
logue of sucrose. Although only T1R2A/T1R3A is responsible for sugar 
perception in mammals and lizards26, we previously demonstrated 
that T1R1/T1R3A of birds has gained the ability to detect sugars24,25. 
Also, T1R2B/T1R3B of two teleost fishes, namely carp28 and gilthead 
seabream29, can detect sugars at high concentrations (100–200 mM). 
Our assay was unable to analyse sugars at concentrations greater than 
100 mM because of non-specific responses caused by changes in osmo-
larity. Although the sucrose response at 100 mM was not significantly 
higher than the thresholds we set in this study (>10,000 relative light 
units (RLU) with a false discovery rate (q) of <0.01), combined with 
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Fig. 4 | Functional analysis of T1Rs from bichir and elephant fish. a, T1R 
repertoire in bichir and their combinations used for the functional analysis. 
ND, not detected for any ligands tested. b, Responses of three combinations 
of T1R1/T1R3B (upper), T1R2B/T1R3B (middle) and T1R8/T1R4 (lower) to 
each of 17 amino acids (50 mM), nucleic acids (10 mM), sugars and sucralose 
(100 mM). Values represent the mean ± s.e.m. of six independent experiments 
performed with duplicate samples. **, >10,000 RLU with q < 0.01; ***, >10,000 
RLU with q < 0.001 by one-sided t-test (T1R1/T1R3B Arg, P = 0.0012; sucralose, 
P = 0.000094; T1R2B/T1R3B His, P = 0.00015; T1R8/T1R4 Phe, P = 0.00063; Val, 
P = 0.00030; Leu, P = 0.00057; Ile, P = 0.000013; GMP, P = 0.00047).  

Amino acids that are essential in fishes are highlighted in yellow. AUC, 
area under the curve. c, Dose–response curves for T1R1/T1R3B (upper), 
T1R2B/T1R3B (middle) and T1R8/T1R4 (lower) to three basic amino acids 
(Arg, His and Lys; blue), two BCAAs (Ile and Val; light blue) and an artificial 
sweetener (sucralose; orange). Values represent the mean ± s.e.m. of six 
independent experiments performed with duplicate samples. d–f, Same as 
a–c, respectively, for elephant fish and the functional analysis of T1R6-2/T1R4 
(Ala, P = 0.00015; Arg, P = 0.00013; Lys, P = 0.000094; Val, P = 0.000011; Leu, 
P = 0.000045; Ala + IMP, P = 0.000069).
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the fact that its structural analogue, sucralose, could elicit a clear 
response, higher concentrations of sucrose may be able to activate 
bichir T1R1/T1R3B. In addition, we found that bichir T1R8/T1R4 could 
respond to GMP, although a previous study reported that neither T1R1/
T1R3B nor T1R2B/T1R3B of medaka fish nor T1R2B/T1R3B of zebrafish 
could be activated by 5′-ribonucleotides10. Therefore, the origin and 
evolution of sugar and nucleotide taste perception may need to be 
reconsidered based on results from future genetic and functional 
analyses of T1Rs.

We also performed a functional analysis of elephant fish T1Rs. 
Three genes of the T1R6 clade, namely T1R6-1, T1R6-2 and T1R6-3, were 
tested in combination with T1R3C and T1R4, and only the response of 
the T1R6-2/T1R4 pair could be detected (Fig. 4d–f and Extended Data 
Fig. 8b). This combination responded to a relatively broad range of 
amino acids, including both BCAA (Val, Leu) and basic amino acids (Arg, 
Lys). The T1Rs of mammals and teleosts have little or no response to 
BCAA but can respond to basic amino acids5,10,23. The observed strong 
response of bichir T1R8/T1R4 and elephant fish T1R6-2/T1R4 to BCAA 
may reflect functional characteristics of the novel T1Rs involving T1R4 
and possibly that of ancient T1Rs in the vertebrate ancestor.

Expression of the novel T1Rs in TRCs
To investigate whether the novel T1Rs are indeed expressed in TRCs, we 
performed in situ hybridization with sections of the lips and gill rakers of 
bichir (Fig. 5a). T1R1, T1R2A, T1R2B, T1R3B, T1R4 and T1R8 were expressed 
in subsets of TRCs. Genes encoding downstream signal-transduction 
molecules, such as TRPM5, Gαia1 and Gα14, were also highly expressed 
in subsets of TRCs in the lips and gill rakers. The signal frequencies for 
TRPM5, Gαia1 and Gα14 were higher than those for T1Rs.

To examine the localization of T1Rs in TRCs, we next performed 
double-label fluorescence in situ hybridization. This analysis confirmed 
the overlap of the signal for T1R1 with that of T1R3B, T1R2B with T1R3B 
and T1R8 with T1R4 (Fig. 5b). These results suggested that T1R1/T1R3B, 
T1R2B/T1R3B and T1R8/T1R4 function as heterodimers, in accordance 
with the results of our functional assays.

Discussion
The complex evolutionary history of the T1R/TAS1R family includes 
ancient gene expansions followed by independent lineage-specific 
losses, which contrasts with conventional wisdom that essentially only 
three members were retained during evolution11,30. The evolution of 
certain other chemoreceptors, such as the T2R (or TAS2R) bitter-taste 
receptor family and olfactory receptors, followed a birth-and-death 
process31. In this mode of evolution, tens or hundreds of the receptor 
family/superfamily genes have undergone extensive lineage-specific 
duplication followed by frequent gene loss by deletion/inactivation30. 
Our results suggest that a similar process—although less extensive than 
what occurred for other chemoreceptors—contributed to the phyloge-
netic and functional expansion of the T1R family early during vertebrate 
evolution. TAS1Rs were not subjected to extensive birth-and-death 
evolution, possibly because T1R ligands are limited to amino acids, 
sugars and nucleotides in contrast to T2Rs and olfactory receptors 
that respond to a wider range of ligands/stimulants. In line with our 
discovery, many chemoreceptors, including TAS1Rs in teleost fishes, 
have recently been reported to have undergone dynamic evolution 
including lineage-specific expansion and gene losses32. It is also pos-
sible that the ancient expansion might have contributed to an alternate 
use of T1Rs in tissues other than the sensory organs because certain G 
protein-coupled receptors (including T1Rs) are expressed in the gut 
of mammals and teleost fishes33,34 although their functions remain 
unresolved.

The functional combinations of the bichir T1R8/T1R4 and the 
elephant fish T1R6-2/T1R4 suggest that T1R4 may have a similar role to 
T1R3 by forming a functional heterodimer with another novel T1R such 
as T1R5, T1R6, T1R7 or T1R8. This model is supported by the fact that 
species with either TAS1R5, TAS1R6, TAS1R7 or TAS1R8 also have TAS1R4 
(Fig. 1b) and that TAS1R4 is phylogenetically the sister group of TAS1R3 
(Fig. 1a). Therefore, the common ancestor of bony vertebrates, which 
had at least nine T1Rs, probably had two types of heterodimeric T1R 
receptors, namely T1R3- and T1R4-dependent receptors. This relatively 
wide variety of possible T1R combinations involving two duplicated 

T1R1 T1R3B Merge

T1R2B T1R3B Merge

T1R8 T1R4 Merge

T1R1

T1R3B T1R4 T1R8

Trpm5 Gαia1 Gα14

T1R2BT1R2A
a b

Fig. 5 | In situ hybridization of T1Rs in TRCs of bichir. a, Expression of six T1Rs 
and three marker genes in sagittal sections of the lips. Yellow arrowheads indicate 
TRCs that expressed the various genes. Scale bar, 50 μm. The experiments were 
repeated at least three times. b, Double-label fluorescence in situ hybridization 

for the combinations of T1R1/T1R3B (upper), T1R2B/T1R3B (middle) and T1R8/
T1R4 (lower) in the sections. White arrowheads indicate co-expressing cells. Scale 
bar, 50 μm. The experiments were repeated at least twice.
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genes of T1R2 (A and B) and T1R3 (A and B) might have contributed to 
the diversification of taste sensation.

Our findings provoke new questions, one of which is why many 
TAS1R genes—particularly the T1R4-related receptors—have become 
unnecessary in each lineage independently, and many species have 
come to rely predominantly on T1R3-dependent receptors (Fig. 2). 
One possible explanation is that dietary changes could have rendered 
one or more T1Rs unnecessary, and therefore, gene loss might have 
had little or no effect on survival. This is plausible because previous 
studies reported losses of TAS1Rs and TAS2Rs in many land vertebrates, 
presumably in association with specific dietary shifts32,35–37. Also, the 
behaviour of swallowing foods whole, without mastication, could have 
diminished the essentiality of taste sense in certain vertebrates, as pre-
viously discussed with respect to mammals36,38 and squamates39. Alter-
natively, it is possible that T1R3-dependent receptors have acquired 
greater functional flexibility and/or evolvability than other T1Rs; vari-
ous tastants might have been detected via the evolutionary tuning of 
sequences and structures of the T1R3-dependent receptors rather than 
additional gene duplication. Such cases are indeed known for land 
vertebrates such as primates7 and birds24,25. To address these issues, it 
will be essential to carry out functional analyses of the newly discovered 
T1Rs in addition to the known T1R1/T1R3 and T1R2/T1R3 for a broad 
range of vertebrates, as our current results demonstrate. For example, 
the response to BCAA is a previously unreported characteristic shared 
between the bichir T1R8/T1R4 and elephant fish T1R6-2/T1R4 (Fig. 4). 
This type of result provides insight into the sensory characteristics of 
an ancestor of vertebrates. We also found that bichir T1Rs responded 
to other essential amino acids, a sucrose analogue and a nucleotide. 
Future analysis will resolve whether the functions indeed reflect the 
characteristics of the ancestral species.

Thus, by demonstrating the unexpected diversity and unique 
evolutionary process of the T1R family, our results set the stage for 
understanding the evolutionary-scale changes in taste sense in verte-
brates. The remarkably broad range of tastants detected by the T1Rs 
reflects the latent diversity of taste senses in vertebrates, and this may 
explain their successful expansion across diverse feeding habitats on 
Earth. Our understanding of taste sense will be further enhanced by 
clarifying T1R repertoires in each species, their tissue-specific expres-
sion, transcriptional regulatory mechanisms and protein structures. 
Revealing the functional and structural diversity of the novel T1Rs will 
also help us elucidate the molecular mechanisms by which human T1Rs 
recognize palatable tastes.

Methods
Identification of TAS1R genes from genome and RNA sequenc-
ing data
We used genome and transcriptome data as well as related raw sequence 
reads for a broad range of vertebrates (Supplementary Table 1).  
First, a tblastn search was conducted against the 33 genomes using 
amino acid sequences of exon 6 of the TAS1Rs of human, chicken and 
zebrafish as queries. Hit sequences meeting the E value threshold of 
1,110–40 were used to construct a phylogenetic tree using RAxML v.8.2.12 
with the JTT + G (CAT approximation) model. The G protein-coupled 
receptor family C group 6 member A (GPRC6A) genes, which are the 
closest relative of T1Rs40, were used as the outgroup. Identified valid 
TAS1R sequences were used for subsequent iterations of the tblastn 
search. RNA sequencing data were assembled using Bridger v.r2014-
12-01 with default parameters and were used as a database for the 
tblastn search41.

We also conducted a NCBI tblastn search against all reference 
genomes of Deuterostomia excluding jawed vertebrates (Gnathosto-
mata), and did not find any TAS1R orthologues. In addition, an NCBI 
blastp search against the nr database, excluding Gnathostomata, 
yielded no hits for TAS1R orthologues. Subsequently, we performed 
comprehensive annotation of TAS1R exons in 21 organisms, including 

model organisms and species that were presumed to possess novel/
unclassified TAS1R members, as identified via the procedure above.

The exon regions were predicted using AUGUSTUS v.3.2.3 (ref. 42). 
followed by an evaluation of the exon–intron boundaries by aligning 
the genome sequences with the human and zebrafish TAS1R sequences 
and by the GT/AG rule. Because a certain degree of base errors was 
observed in the genome assembly for axolotl, sequence correction 
was needed for our TAS1R identification. We retrieved the raw reads of 
the public genome data and RNA sequencing data corresponding to 
the TAS1R exons using bowtie2 (ref. 43) and blastn and used that data 
to correct the TAS1R sequences by checking the alignment. The TAS1R 
amino acid sequences identified for axolotl, coelacanth and bichir were 
used as queries for an additional tblastn search of other vertebrates.

Phylogenetic analysis
For the full-length amino acid sequences, non-homologous resi-
dues were masked using PREQUAL44 and the sequences were aligned 
using MAFFT v.7.427 with the ginsi option45. The phylogenetic tree 
was constructed using RAxML as described above. In addition, a 
maximum-likelihood tree was constructed under the posterior mean 
site frequency approximation46 of the JTT + C20 + F + Γ model with 
1,000 bootstrap replicates using IQ-TREE v.2.2.2.6 (ref. 47). Bayesian 
tree inference was conducted with MrBayes 3.2.6 with the JTT-F + Γ4 
model48. Two simultaneous runs were carried out with 10,000,000 
generations, of which 2,500,000 were discarded as burn-in, and con-
vergence was assessed with Tracer49. Trees were visualized with iTOL50. 
Alternative tree topologies were evaluated with the approximately 
unbiased test with 100,000 replicates using CONSEL v.0.20 (ref. 51).

Synteny analysis
The synteny of genes proximal to the novel T1Rs was analysed using 
annotations available in Ensembl 97 (ref. 52) for human (GRCh38), 
chicken (GRCg6a), anole lizard (AnoCar2.0), coelacanth (LatCha1), 
zebrafish (GRCz11) and spotted gar (LepOcu1). For bichir, annota-
tions were conducted using Cufflinks on a draft assembly. The gene 
annotation for axolotl was obtained from the Axolotl-omics website 
(AmexG_v6.0-DD)53. NCBI annotation was referred to for the West 
African lungfish (PAN1.0) and elephant fish (Callorhinchus_milii-6.1.3). 
Novel TAS1Rs were added to the gene list in our synteny analysis if they 
were not accurately identified in the public annotation data.

Conserved motifs in the sequence upstream of TAS1R4
Sequences up to 300 bp upstream of the TAS1R4 open reading frames 
were collected for whale shark, bamboo shark, cloudy catshark, 
elephant fish, bichir, coelacanth, axolotl, two-lined caecilian, Japa-
nese gecko, anole lizard and central bearded dragon. The sequences 
were aligned using MAFFT45 and then used for MEME analysis19 to 
search for a maximum of three conserved sequence motifs. The motifs 
discovered by MEME were then used for comparison with known 
transcription-factor binding motifs in TRANSFAC v.11.3 using STAMP54. 
The known Oct-11/Pou2f3 motif was obtained from JASPAR55.

Experimental animals
This study was carried out in accordance with the National Institutes of 
Health guide for the care and use of laboratory animals (NIH Publication 
No. 8023, revised 1978). Both male and female bichir (Polypterus sen-
egalus), ~5–7 cm body length, were purchased from a local commercial 
source. We found no differences in the expression of genes encoding 
T1Rs or downstream signal-transduction molecules, such as TRPM5, 
Gαia1 and Gα14, between male and female bichir by in situ hybridization.

Cloning TAS1Rs of bichir and elephant fish
TAS1R1, TAS1R2A, TAS1R2B, TAS1R3B, TAS1R4 and TAS1R8 were amplified 
by PCR from the genomic DNA or cDNA of bichir. TAS1R6-1, TAS1R6-2, 
TAS1R6-3, TAS1R3C and TAS1R4 were amplified by PCR from the genomic 
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DNA of elephant fish (Callorhinchus milii). PCR and Sanger sequencing 
for the coding sequences of their TAS1R genes were performed using 
specific primers designed based on the annotation from the whole 
genome assemblies. The PCR products of the exons were assembled 
into one full-length sequence using overlapping PCR (In-fusion cloning; 
Clontech) for each TAS1R and were then subcloned into the pEAK10 
expression vector (Edge Biosystems).

Functional analysis of T1Rs
Responses of the T1Rs to various taste-associated stimulants were 
measured using a cell-based luminescence assay, as described pre-
viously22,23. Briefly, HEK293T cells were transiently co-transfected 
with an expression vector for an individual T1R along with a chi-
meric rat G protein (rG15i2) and a calcium-binding photoprotein 
(mt-apoclytin-II). Cells were seeded in 96-well plates and assayed 
2 days after transfection. Cells were exposed to each taste stimu-
lant individually, and luminescence intensity was measured using a 
FlexStation 3 microplate reader (Molecular Devices). The response 
in each well was calculated based on the area under the curve and 
expressed as RLU. Data were collected from three independent experi-
ments, each carried out with duplicate samples. We adapted a strict 
definition for the positive response as >10,000 RLU along with a 
statistically significant difference against control (buffer) with a false 
discovery rate (q) of <0.01 (one-sided t-test). A limitation of this assay 
is that concentrations of amino acids and sugars were presented at 
a maximum of 50 mM or 100 mM to avoid receptor-independent 
calcium increases, caused for instance by changes in osmolarity23, 
which can prevent the accurate assessment of responses to higher 
ligand concentrations. The osmotic pressure of each of the Arg and 
His solutions was higher than those of the other amino acid solutions 
because large amounts of HCl or NaOH were required for pH adjust-
ment; this may have caused the higher response to 50 mM His of bichir 
T1R2B/T1R3B (Fig. 4c).

In situ hybridization
In situ hybridization was performed as described previously9. In brief, 
fresh-frozen sections (10 μm thick) of bichir jaw tissue were placed on 
MAS-coated glass slides (Matsunami Glass) and fixed with 4% paraform-
aldehyde in phosphate-buffered saline. Prehybridization (58 °C, 1 h),  
hybridization (58 °C, two overnight sessions), washing (58 °C, 0.2× 
saline–sodium citrate) and development (nitroblue tetrazolium/ 
5-bromo-4-chloro-3-indolyl phosphate; NBT-BCIP) were performed 
using digoxigenin-labelled probes. Images of stained sections were 
obtained using a fluorescence microscope (DM6 B; Leica) equipped 
with a cooled CCD digital camera (DFC7000 T; Leica). Double-label 
fluorescence in situ hybridization was performed using digoxigenin- 
and fluorescein-labelled RNA probes. Each labelled probe was detected 
sequentially by incubation with a peroxidase-conjugated antibody 
against digoxigenin and peroxidase-conjugated anti-fluorescein 
(Roche) followed by incubation with tyramide signal amplification 
(TSA)–Alexa Fluor 555 and TSA–Alexa Fluor 488 (Invitrogen) using the 
tyramide signal amplification method. Images of stained sections were 
obtained using a confocal laser-scanning microscope (LSM 800; ZEISS). 
The entire coding regions for the six T1Rs and two G protein α subunits 
as well as the partial coding region for Trpm5, all of which were ampli-
fied from bichir cDNA synthesized from lip tissue, were used as probes 
for in situ hybridization.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The TAS1R sequences and phylogenetic trees are provided in Supple-
mentary Data 1 and 2, respectively.

Code availability
No code was generated in this study.
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Extended Data Fig. 1 | Maximum-likelihood tree of TAS1R members  
identified for 21 vertebrates. A maximum-likelihood tree was constructed  
from the amino acid sequences encoded by TAS1Rs using RAxML with the 

 JTT + G (CAT approximation) model. Branch supports represent bootstrap 
values calculated with 1,000 replications. TAS1R clade names are shown on  
the right.
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Extended Data Fig. 2 | Maximum-likelihood tree with the mixture model for 
the TAS1R members identified for 21 vertebrates. A maximum-likelihood tree 
was constructed from the amino acid sequences encoded by TAS1Rs using IQ-tree 

under the posterior mean site frequency approximation of the JTT + C20 + F + Γ  
model. Branch supports represent bootstrap values calculated with 1,000 
replications. TAS1R clade names are shown on the right.
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Extended Data Fig. 3 | Bayesian tree of TAS1R members identified  
for 21 vertebrates. Bayesian tree inference was performed for the amino  
acid sequences encoded by TAS1Rs using MrBayes with the JTT-F + Γ4 model. 

Branch supports represent Bayesian posterior probabilities, and asterisks 
indicate a posterior probability of 1.00. TAS1R clade names are shown  
on the right.
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Extended Data Fig. 4 | Maximum-likelihood tree for exon 6 sequences 
of TAS1Rs identified for 33 vertebrates. A maximum-likelihood tree was 
constructed from the amino acid sequences of TAS1R exon 6 using RAxML with 

the JTT + G (CAT approximation) model. Branch supports represent bootstrap 
values calculated with 1,000 replications. TAS1R clade names are shown on  
the right.
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Extended Data Fig. 5 | Tree topologies examined for the approximately 
unbiased test. a, Tree topology assuming the grouping of TAS1R7 and TAS1R8 
and showing a species tree. b, Tree topologies for various relationships among 
TAS1R2A and TAS1R2B genes from amphibians, coelacanth, and ray-finned fishes. 

The p-values for the approximately unbiased test calculated with CONSEL are 
shown above each tree. Relationships within each collapsed group were fixed to 
be the same as in the maximum-likelihood tree (Fig. 1).
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Extended Data Fig. 6 | The history of intron acquisitions for the two exons of 
TAS1R3B in ray-finned fishes. Filled boxes represent exons, and lines represent 
introns. The phylogenetic relationship among TAS1R3B-containing species 
is shown on the left. The closed and open arrowheads indicates the deduced 

timing (that is, the common ancestors of Actinopterygii and Actinopteri) for 
the acquisitions of introns in exons 3 and 6 of TAS1R3B, respectively. The total 
number of exons of the TAS1R3B genes is shown in parentheses.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | No significant response of various combinations of 
T1Rs. a, Five T1R combinations, T1R4-only, and T1R8-only from the bichir were 
coexpressed in HEK293T cells, and their responses to each of the 17 amino acids 
(50 mM), nucleic acids (10 mM), sugars and sucralose (100 mM) were tested. 
Values represent the mean ± standard error of six independent experiments 

performed with duplicate samples. b, Same as (a) except using five T1R 
combinations from the elephant fish. A lack of response may be due to technical 
issues with the heterologous expression system, or there is a possibility that they 
were functional and could respond to ligands not used in this study.
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