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Unveiling global species abundance 
distributions

Corey T. Callaghan1,2,3 , Luís Borda-de-Água    4,5,6, Roel van Klink    1,7, 
Roberto Rozzi    1,8,9 & Henrique M. Pereira    1,2,4

Whether most species are rare or have some intermediate abundance is 
a long-standing question in ecology. Here, we use more than one billion 
observations from the Global Biodiversity Information Facility to assess 
global species abundance distributions (gSADs) of 39 taxonomic classes of 
eukaryotic organisms from 1900 to 2019. We show that, as sampling effort 
increases through time, the shape of the gSAD is unveiled; that is, the shape 
of the sampled gSAD changes, revealing the underlying gSAD. The fraction 
of species unveiled for each class decreases with the total number of species 
in that class and increases with the number of individuals sampled, with 
some groups, such as birds, being fully unveiled. The best statistical fit 
for almost all classes was the Poisson log-normal distribution. This strong 
evidence for a universal pattern of gSADs across classes suggests that there 
may be general ecological or evolutionary mechanisms governing the 
commonness and rarity of life on Earth.

That some species are rare and others are common is one of the oldest 
observations in ecology. But the exact shape of the distribution of com-
monness and rarity among species on Earth has remained elusive. Some 
have argued that nature shows a bias towards rare species1, while others  
have proposed that most species have intermediate abundances2. 
Accordingly, different statistical distributions have been proposed 
as a model of the distribution of species abundances, including the 
log-series distribution1 (corresponding to a monotonic decrease of 
the number of species with increasing species abundance) and the 
log-normal distribution3 (corresponding to a unimodal distribution of 
the number of species along the abundance axis in log-scale). In addi-
tion, Preston proposed that, at low sampling efforts, the log-normal 
distribution seems like a monotonically decreasing function because 
of the presence of a ‘veil line’3, since most species will occur at densities 
below the detection threshold. The existence of such a veil line, or its 

generality, has been questioned4,5, while others have suggested it does 
exist6,7. Regardless, these different models, and their corresponding 
conclusions, have important consequences for biodiversity research 
and conservation8 as well as for estimating the number of species on 
the planet9. Understanding if a universal shape of species abundance 
distributions (SADs) exists may help illuminate how life on Earth is 
maintained.

Who can explain why one species ranges widely and is very 
numerous and why another allied species has a narrow range 
and is rare? — Darwin, On the Origin of Species p. 21 (1859)10

Both the log-series and the log-normal models were mostly  
phenomenological or, at best, tried to capture a statistical sampling 
process. More recently, ecological and evolutionary mechanisms  
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(Methods), by aggregating the number of occurrences in GBIF for each 
species belonging to that taxonomic class. This approach assumes that 
the number of observations in GBIF is a proxy for the relative abundance 
of a species in the world (sensu ref. 24; Methods), which we have verified 
to be a good approximation at least for birds (Supplementary Figs. 2 
and 3). In our work, rarity is presumed as a function of the number of 
occurrences available in GBIF. On a linear scale, most species are still 
rare as they are represented by only few occurrences.

Results and discussion
Our analysis shows that as global biodiversity sampling increases 
through time (Supplementary Fig. 4) the shape of the gSAD is unveiled, 
that is, the qualitative shape of the sampled gSAD changes revealing the 
underlying gSAD. This is most evident for some well-sampled taxa such 
as birds (Fig. 2), where by about the year 2000 the entire distribution is 
uncovered showing a unimodal distribution of abundances with log-left 
skew25. For other classes, the entire distribution is not yet uncovered but 
similar patterns of ‘unveiling’ can be seen for Amphibia, Cycadopsida 
and Mammalia. In contrast, for some classes (for example, Insecta) 
we see that the veil is not uncovered and the qualitative shape of the 
gSAD remains monotonically decreasing (Supplementary Videos for 
all 39 classes). Even when sampling is not aggregated across multiple 
years and each year is treated independently, the veil is lifted for birds 
(Supplementary Fig. 5), indicating that in each individual year, the 
complete gSAD for birds is currently being sampled. In other words, 
nearly all species of birds are being sampled annually.

A more important biological question is: what is the underlying 
shape of a gSAD? To answer this question, maximum likelihood estima-
tion can be used to tease apart the difference between the observed 
shape of a gSAD and the underlying distribution from which that 
gSAD was sampled14,26. By assessing the statistical distribution of the 
underlying gSADs we can draw inferences about if, and to what extent, 
taxonomic classes have similar ecological and evolutionary processes 
that underlie the pattern of SADs. We tested the statistical fit of the 
empirical distributions (Fig. 2; Methods) and found that, for 38 out of 
39 classes, the statistically best fit of the three distributions was the 
Poisson log-normal (Supplementary Fig. 6). This suggests that there 
may be universality in the shape of a gSAD across taxonomic groups. 
Importantly, the evidence base shifts temporally, where early in the 
time series there is more uncertainty as to which distribution provides 
the best fit, but it is clear that Poisson log-normal provides the best 
fit by the end of the time series for nearly all classes analysed (Fig. 3 
and Supplementary Fig. 6). The evidence for better fit of the Poisson 
log-normal was greater in better sampled groups where the mode of 
the distribution had been unveiled. But even for groups where we are 
far from unveiling the mode, such as insects, the Poisson log-normal 
still fits the data best using maximum likelihood estimation. In addi-
tion, when one examines within Insecta, the two best-sampled and 
relatively well-known groups—dragonflies and butterflies—the gSAD 
shape qualitatively appears more log-normal-like than for Insecta as 
a whole (Supplementary Figs. 7 and 8). Additionally, some of the most 
speciose insect orders (Diptera and Coleoptera) showed strong statisti-
cal support for a Poisson log-normal distribution, despite presumed 
differences in speciation rates (Supplementary Figs. 9 and 10).

The relative position of the veil provides an assessment of how well 
the species richness of that group has been described. The fraction of 
species unveiled can be expected to depend on the total number of  
species in the group and the number of individuals sampled19. As we 
do not know the true number of species in most groups, we used the 
observed species richness to examine its influence on the position of 
the veil. We found that the percentage of the gSAD that is unveiled is 
strongly dependent on observed species richness, where more spe-
ciose classes are less well-sampled (parameter estimate = −0.04, 95% 
highest-density interval (HDI) = −0.11, 0.03; Fig. 4 and Supplemen-
tary Fig. 11), as well as sampling effort, where an increased number 

(such as species’ interactions, migration and speciation) that may drive 
SADs have been examined using theory11,12. For instance, it has been 
shown that a simple birth–death process results in a negative-binomial 
distribution that approaches the log-series distribution under certain 
conditions and under other conditions it approaches the unimodal 
shape of the log-normal distribution9. Other mechanisms that have 
been suggested to lead to a log-normal SAD include random multipli-
cative interactions between species13 and niche partitioning models14.

Species in a biological sample (compared with those from fully 
quantified communities) are the result of statistical sampling of an 
underlying SAD and this sampling process can be used to unify three 
proposed statistical distributions. The negative-binomial distri-
bution corresponds to Poisson sampling of an underlying gamma 
distribution15, with the log-series corresponding to a particular case of  
the gamma distribution where the shape parameter tends to zero. A 
Poisson log-normal distribution results from sampling an underlying 
log-normal distribution14. For smaller samples, a phenomenon similar 
to a veil line occurs, whether the underlying SAD follows a log-normal 
or a negative-binomial distribution (Fig. 1). The log-normal and gamma 
distributions are two of the top candidates to understand the SAD as 
there is empirical and theoretical support for both distributions9,14,15 
and the gamma distribution is particularly flexible, encompassing 
both unimodal distributions with varying skewness and monotoni-
cally decreasing distributions. Importantly, the sampled SAD may 
qualitatively differ from the underlying SAD.

Despite decades of research and dozens of proposed statistical 
fits to describe SADs16, there remains little conclusive evidence for the 
shape of SADs (compare refs. 6,17–19). The debate surrounding the 
shape of SADs may be partly driven by the fact that the empirical data 
on which these distributions are fitted has historically been focused 
on local-scale biodiversity samples20. Local communities are often 
investigated as natural assemblages but are subject to many idiosyn-
crasies, such as species that are common in some parts of their range 
but rare in other parts of their range21, species that move in and out of 
a location throughout the year (for example, migratory birds22) or spe-
cies detected that are vagrant individuals from adjacent ecosystems. 
Such idiosyncrasies can influence the shape of a SAD22. This problem 
may be overcome by using synthesis approaches, looking at many 
different datasets at once (for example, refs. 16,23) or by using data at 
the global scale24,25, since in such a ‘closed’ system, local-scale immigra-
tion and emigration effects can be excluded. Hence, at a global scale, 
the SAD may not represent assemblages of ecologically co-occurring 
species but may be able to reveal evolutionary processes such as the 
dynamics of speciation. Nevertheless, there remain many challenges 
with using global-scale data to quantify a SAD, as fully sampling the 
global flora or fauna is a massive undertaking24. Quantifying a global 
species abundance distribution (gSAD) could advance the understand-
ing of rarity but at the global scale, minimizing potential problems of 
measuring rarity at local scales. Further, assessing SADs can potentially 
(1) advance the testing of ideas about the processes underlying the 
generation of rare species, (2) assess universality in mechanisms of 
speciation across different taxonomic groups (for example, classes) 
and (3) provide insights to better understand how anthropogenic 
changes (for example, climate change), which often occur at large 
scales, can influence rarity.

Here, we leverage the largest biodiversity aggregator of global 
biodiversity records—the Global Biodiversity Information Facility 
(GBIF)—to assess the shape of the gSAD and how it varies among taxo-
nomic groups. GBIF has aggregated data at a vastly broader geographic, 
taxonomic and temporal scale than previously available and has done 
so at an accelerating rate. We downloaded data from GBIF from the 
period 1900 to 2019, representing a total of ~1.38 billion occurrences 
of species across 39 taxonomic classes (Supplementary Fig. 1), to quan-
tify the shape of the gSAD. For each taxonomic class, we calculated a 
gSAD using a 20-year rolling window for each year from 1900 to 2000 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | October 2023 | 1600–1609 1602

Article https://doi.org/10.1038/s41559-023-02173-y

of occurrences allows for a higher likelihood of having the class fully 
sampled (parameter estimate = 0.04, 95% HDI = −0.01, 0.09; Fig. 4 
and Supplementary Fig. 12). The position of the veil was also strongly 
negatively related with the proportional species sampling, obtained by 
dividing the observed number of species by the number of occurrence 
records (parameter estimate = −0.17, 95% HDI = −0.24, −0.10; Fig. 4  
and Supplementary Fig. 12). This analysis also suggests that, while 
most species of groups such as birds and cycads have been described 
and mobilized to GBIF, at least half of the species of other groups such 
as arachnids and insects remain to be discovered and/or mobilized to 
GBIF. It is important to highlight that this is probably an underestimate 
of how many species remain to be discovered and mobilized, as the  
species richness estimates based on the veil of the log-normal 

distribution can underestimate the real number of species15. Future 
work should look to further refine methods to estimate species richness 
on the basis of the position of the veil of the log-normal distribution. 
As some of the taxonomic groups with the least unveiling of their gSAD 
are also the most speciose taxa, it seems that to take stock of the total 
diversity of species on the planet, we need to increase both the rate of 
species description and the mobilization of data.

Our results illustrate two key points about our empirical under-
standing of SADs. First, we show that there is indeed a veil line in SADs 
(compare ref. 17), in agreement with previous theoretical results6. 
Second, our ability to see this veil is dependent on sampling effort7 
and, using time as a proxy for sampling effort, we show that the veil 
line is ‘lifted’ as we continuously increase our knowledge of global 
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Fig. 1 | Conceptual scheme illustrating the Poisson sampling of a community 
with species abundances described by a gamma or a log-normal distribution. 
Two types of gSAD—gamma (left) and log-normal distribution (right) are shown 
at the top. Each distribution represents the probability f of a species having a 
given abundance λ, with the gamma distribution having parameters k (shape) 
and θ (scale) and the log-normal distribution having parameters μ (mean) and σ 
(standard deviation), and Γ() representing the gamma function. In the middle, 
sampling of the gSAD with the probability of each species having a given number 

of individuals sampled described by a Poisson distribution is illustrated.  
The mean abundance of each species sampled is randomly taken from  
the SAD. We exemplify two samples of different sizes, where different symbols 
denote individuals of different species. The bottom graphs show that:  
if the global abundances have a log-normal distribution, the mixture distribution 
of abundances in the sample is a Poisson log-normal; if the global abundances 
follow a gamma distribution the resulting mixture distribution is a negative 
binomial but in the limit k→0, we obtain the Fisher log-series.
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biodiversity through time. This suggests that care must be taken in 
extrapolating the overall shape of a SAD just from a sample of indi-
viduals. There are now many approaches for upscaling SADs from 
small samples to the full community of interest5,9,27–29. However, they 
usually require knowledge about the shape of the SAD of the full com-
munity, which is not always known and often needs to be inferred from 
the sampled SAD. This may lead to erroneous conclusions when the 
sample is small, as the power to discriminate the fit of the observed 
distribution to different probability distributions increases with sample  
size (Fig. 3b).

We provide strong evidence that the shape of the gSAD seems 
to be well approximated by a Poisson log-normal distribution across 
many taxa. Our results are consistent with recent findings at the global 
scale for land plants24 and birds25. This contrasts with a recent review 
at a non-global scale that has found that the log-series was the best 
fit across many different SAD datasets, albeit support for Poisson 
log-normal and negative binomial was also high16. Other studies find 
that support for log-normal may increase with spatial scale and that 
log-series only fits observed SADs at the local scale20,30. One taxo-
nomic group where log-series31 or negative binomial15 were thought 
to be the best fitting distribution, at least at the regional scale of the 
Amazon, is trees31. However, a specific test for this group (Methods) 
showed strong support for a Poisson log-normal at the global scale 
(Supplementary Fig. 14). Therefore, despite interest on invariance 
of SADs across spatial scales9,28, it may well be that subglobal SADs 

differ from global SADs beyond the sampling mechanism modelled 
by Poisson sampling. The dominant ecological processes operating 
at different spatial scales are distinct27,30 and modelling the spatial 
scaling of the SAD may require the understanding of the ecological 
processes that determine the spatial aggregation of species and their 
interactions5.

Our results are largely descriptive and empirically focused and our 
study was not designed to disentangle the mechanistic and stochastic 
processes that can lead to a SAD. But nevertheless, our finding of the 
ubiquitous Poisson log-normal SAD shape across taxonomic classes 
invites some speculation. According to neutral theory, point mutation 
leads to a log-series SAD while random fission leads to a unimodal SAD12, 
while a log-normal SAD is recovered under a ‘broken stick model’ where 
a part of a ‘stick’ is broken independently of its size14,32. The random 
fission model is often associated with allopatric speciation. In addi-
tion, it has been shown that even point mutation can lead to unimodal 
SADs when new species are not recognized for some generations, that 
is, protracted speciation33. Therefore, we speculate that allopatric 
speciation and/or protracted speciation could be a dominant mode of 
speciation at the global scale and across taxonomic groups. However, 
a log-normal gSAD can result from many different mechanistic or sto-
chastic processes. For instance, it has been argued that the log-normal 
distribution at large spatial scales may result from splicing SADs from 
contiguous plots in a statistical convergent process analogous to the 
central limit theorem29. Further testing would be needed to uncover if, 
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and to what extent, our results indicate that there is a dominant mode 
of speciation at the global scale.

Future avenues of exploration
The results presented here illustrate the importance of considering 
SADs in a global context but also highlight the importance of future 
work to better understand the shape of gSADs. In this analysis, we  
contrasted taxonomic classes but we recognize that these are somewhat 
arbitrary units and that there is a substantial amount of ecological and 
evolutionary variation within and between classes. Species could be 
contrasted in different ways (see refs. 23,34,35), for example, by specia-
tion rate, body size, feeding types or at lower phylogenetic branching 
levels than class—all of which could form future work when data from 

GBIF are integrated with external datasets. Also, the species concept 
on which our analysis, and indeed all of GBIF, is based could be debated 
and has probably changed over time as our technological and empiri-
cal capacity to separate species has grown36,37. Our analysis assumed 
a Poisson sampling process with uniform spatial sampling of random 
(non-aggregated) species distributions5. We know that both assump-
tions are not necessarily upheld in our data, as species are aggregated 
and GBIF data are not globally uniform (for example, there are biases 
towards temperate and built-up regions of the world38) but we believe 
our work offers a starting point to investigate how potential aggrega-
tions of species distribution can influence the shape of a gSAD. We 
also focus on a ‘log-normal-like’ shape of a distribution, not neces-
sarily investigating the intricacies of the shape of the gSAD such as 
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log-left skew18,25. Our assumption of proportionality in the number of 
observations in GBIF in relation to the species global abundance is not 
sufficiently exact to assess this level of detail in the shape of the gSAD 
and this is an issue that certainly merits more research.

GBIF is increasingly aggregating larger amounts of data, driven in 
part by contributing citizen science participants. Nevertheless, there 
exist biases in data representation of GBIF38. Such biases probably 
have the potential to influence the relative position of the veil, for 
example by leaving insects further away from being unveiled given that 
insects are most diverse in the tropics where they are unlikely to be fully  
sampled. However, we believe GBIF offers a rich source of future analy-
ses investigating SADs and/or gSADs. For example, future analyses 
could look at different regional samples, where other ecological (for 
example, dispersal) and evolutionary processes (for example, specia-
tion rates) are potentially driving patterns in the SAD. Yet, one limita-
tion, at present, is that GBIF is dominated by presence-only data, which 
is why we used the number of occurrences as a proxy for abundance 
(sensu ref. 24). How, and the extent to which, the number of occur-
rences in GBIF correlates with true abundance is an important field 

of study in the future as GBIF data are increasingly used to answer 
ecological questions (Methods).

Conclusions
Our work used global biodiversity data from GBIF to empirically and 
statistically illustrate the gSAD. We show that there is undoubtedly 
a veil that is lifted when sampling effort increases. Importantly, 
with sufficient sampling, as is the case for birds, there may be the 
possibility to use large-scale datasets such as GBIF to track global 
biodiversity change through time. Our results also suggest that there 
may be some universality in the shape of the gSAD. Worryingly, the 
way that humans are changing the abundance of different species, 
for instance by making common species less common and homo-
genizing species across the planet, may have implications for gSADs 
in the future. It is our hope that as the global community continues 
to increase our knowledge of biodiversity (for example, through the 
mobilization of data), so too will we continue to unveil the diver-
sity of our planet and understand how anthropogenic changes are  
altering those patterns.
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Methods
Overview
We used data from the GBIF to calculate gSADs for each class of eukaryotic  
organisms (n = 39) included in the analysis. First, we downloaded all 
data on GBIF and aggregated the total number of observations (occur-
rence records) for each species included in GBIF. We then empirically 
summarized these aggregations and how these changed through time, 
providing a time series of the gSAD. We used a temporal component in 
our analysis as it represents the evolution of the global understanding 
of biodiversity, using the best-available dataset to do so—GBIF. As the 
number of records increases with time, this allowed us to approximate 
the potential knowledge about the shape of the gSAD. We acknowledge 
that time is only one way to investigate the evolution of a gSAD but 
time was chosen in part to make the analysis computationally trac-
table, avoiding pure resampling analyses that could quickly become 
computationally expensive. We feel it is useful in this case to advance 
understanding of the shape of the gSAD. We used SAD sampling theory 
to assess whether the statistical shape of the observed gSAD corres-
ponded to one of three potential distributions: log-series, negative 
binomial or Poisson log-normal. We then used models to quantify the 
influence of species richness and the number of individuals on the rela-
tive position of the sampling veil (sensu ref. 3), that is, the percentage 
of species in the gSAD that have been sampled.

GBIF data
GBIF is the world’s largest biodiversity aggregator, housing >2 billion 
biodiversity records with a 12-fold increase in available data since 
200739 (Supplementary Fig. 4). We downloaded GBIF data on 4 February 
202140. Data were downloaded as a .avro file and processed using SQL in 
Google BigQuery. All GBIF records were aggregated by year and by spe-
cies, providing a list of ‘abundance’ for each species in each year. This 
approach assumes that the total number of observations (occurrences) 
in GBIF is a proxy for the actual abundance of a species in the world24. 
To test this assumption we used birds, the only taxonomic group for 
which for the most species abundance estimates exist and correlated 
the number of GBIF records for each species with the estimated global 
abundance of birds from ref. 25 (n = 9,047 species) and from BirdLife 
International (n = 3,216 species). In both instances, correlation was rela-
tively strong (Supplementary Figs. 2 and 3) suggesting that, indeed, the 
number of occurrences in a global database may serve as a proxy for the 
actual abundance in the world. See section on ‘Assessing the sensitivity 
of using the number of occurrences as a proxy of abundance’ for more.

Our analysis was performed at the class level and after download-
ing GBIF we used some minimum criteria to select those classes for 
potential inclusion in our analyses. To be included, a class needed to 
have at least 10 observations per year, at least 200 total species and, on 
average, 50 observations per species. We analysed a total of 39 classes 
for which SADs were assessed (Supplementary Fig. 1).

Visualization of gSADs
We empirically summarized the observed gSAD for each year for each 
taxonomic class and visualized these as animated gifs to understand 
how the qualitative shape of the gSAD changes through time. We used 
histograms with logarithmic classes of base 2 (octaves), delimited as fol-
lows: one individual, two to three individuals, four to seven individuals 
and so on. There are other ways of delimiting the octaves (for example,  
ref. 41) but the one we adopted here has several advantages. For 
instance, the boundaries in a logarithmic scale ([log2(1) = 0, log2(2) = 1[, 
[log2(2) = 1, log2(4) = 2[, [log2(4) = 2, log2(8) = 3[et seq.) are equally 
spaced and, importantly, it guarantees that the log-series distribution 
is always a monotonically decreasing curve.

For each class we aggregated our abundance data to create a gSAD 
in four different methods: (1) aggregation of individual years, where 
each year is treated as an independent sample; (2) cumulative aggre-
gation across years, where observations are aggregated across years 

cumulatively starting with year 1900; (3) a 10-year rolling window, 
where observations are aggregated in 10-year periods using a rolling 
window; and (4) a 20-year rolling window where observations are 
aggregated in 20-year periods using a rolling window. The evidence 
for Poisson log-normal was robust across the different aggregations. 
We used these different aggregations to examine the advantages of 
increasing the number of observations in each time window versus 
the problems that arise when combining data collected many years 
apart with potentially different sampling and classification methods. 
Exploratory analyses showed that the number of singletons was arti-
ficially high in the early periods and while some of these may be due 
to real biology (that is, rare species), in general these may also be due 
to ‘mistakes’ such as misspellings, species names that do not match, 
changing taxonomy or similar errors that GBIF data is prone to42. When 
using method 2 above, which maximizes the number of observations 
used in any year by cumulatively including all previous years, this 
singleton problem is exacerbated. Method 1 is less vulnerable to this 
problem but uses a limited set of data for each year (only the observa-
tions of that year), while methods 3 and 4 combine data from several 
years (10 and 20 years, respectively) but avoid combining data from 
years that are too far apart.

Exploratory analysis also showed that when minimizing the num-
ber of species to those that taxonomically match accepted taxonomic 
status for birds (Supplementary Fig. 15) and mammals (Supplementary 
Fig. 16) similar qualitative and quantitative results are found, with the 
Poisson log-normal remaining the best statistical fit. In fact, when 
trimming the species in GBIF to only those that match with an approved 
taxonomy, the Mammalia distribution appears qualitatively even 
more log-normal-like. To perform these approved taxonomy-based 
analyses, we used the Clements taxonomy (https://www.birds.cor-
nell.edu/clementschecklist/download/) and the American Society of  
Mammalogists Database (https://www.mammaldiversity.org/). This 
trims the number of species to a lesser number GBIF. We performed 
this analysis for the last 20-year rolling window only. And we chose 
Aves and Mammalia as they have two of the most comprehensive and 
accessible up-to-date taxonomies. To illustrate the potential hazards of 
GBIF name changes, in the GBIF data we downloaded, in an exploratory 
analysis of all entities labelled as ‘species’ (~1.5 million), about 1,614 had 
more than three words (that is, more than simply genus and species), 
which could include known hybrids and other varieties.

gSAD distribution fitting
For each observed gSAD (year × class combination) we fit probability 
distributions for abundances of species in the assemblage using maxi-
mum likelihood estimation. Models were fit using the sads package  
in R43. Models were fit on the raw data (that is, the vector of ‘abundances’ 
where abundances were the number of occurrences in GBIF) and bin-
ning was only done for visualization purposes (see earlier for details on 
visualizations). For each observed gSAD and aggregation as described 
above we fit three probability distributions: (1) log-series; (2) negative 
binomial; and (3) Poisson log-normal (Fig. 1). For details and procedures 
of the statistical fits, see the reference material located in ref. 37, avail-
able at https://cran.r-project.org/web/packages/sads/sads.pdf. The 
negative-binomial distribution was fit using a truncation at zero. Start-
ing values were necessary for the maximum likelihood estimation of the 
negative-binomial distribution. For this, we used the mean number of 
observations across species and an estimate of the shape parameter of 
the corresponding gamma distribution based on the mean and variance 
of observations across species (k = mean2/(variance − mean)). We tested 
the sensitivity of the starting parameters of the negative-binomial dis-
tribution by using many starting parameters, creating a vector of 100 
values from ±20% for the mean and ±20% for k. For illustrative purposes 
we did this for both the individual years (method 1 above) and cumula-
tive (method 2 above) aggregation types for the years 1925, 1950, 1975, 
2000 and 2018 for Aves, Amphibia, Arachnida and Mammalia. Visual 
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inspection shows that the predicted fits were similar regardless of the 
starting parameter values (Supplementary Figs. 17–20).

Goodness of fit
To quantify the statistical likelihood of a given distribution (log-series, 
negative binomial or Poisson log-normal) representing the observed 
gSAD we used Pearson correlation23. We used the observed values for 
each abundance class and compared these with the predicted values for 
each abundance class, where the predicted values were derived from 
the statistical fitting of the gSAD, described above. In the main text, we 
report the Pearson correlation value as a measure of goodness of fit 
(Fig. 3). However, we also show that other measures of goodness of fit 
(χ2 value, Kolmogorov–Smirnov D statistic and Kolmogorov–Smirnov  
P value) are strongly correlated and provide qualitatively similar results 
to those presented in our main text, using four illustrative classes  
(Supplementary Figs. 21–24). Although not a direct measure of good-
ness of fit, we also used Akaike information criteria to compare the 
three model fits for the 20-year rolling window for the last year of 
the time series (2000). This found support that, for nearly all classes,  
Poisson log-normal was the best fitting model (Supplementary Table 1).

Testing of trees
We used the above methods and applied them to tree species in the 
GBIF dataset. To subset all of GBIF data to just trees, we used the list 
of tree species downloaded from the Botanic Gardens Conservation 
International global tree list44. They use the IUCN Global Tree Specialist 
Group definition of a tree, defined as ‘a woody plant with usually a single 
stem growing to a height of at least two meters, or if multi-stemmed, 
then at least one vertical stem five centimeters in diameter at breast 
height’. We only included species names that taxonomically matched 
the global tree list (n = 39,065 species). For presentation purposes, we 
only presented the final year (2000) 20-year rolling window and the 
trend in correlation of observed and predicted values for all rolling 
window years from 1900 to 2000.

Testing of finer taxonomic groups within Insecta
Similar to above, with trees, we performed exploratory analyses by 
repeating the main analyses but at a finer taxonomic level (dragonflies, 
butterflies, Diptera and Coleoptera) within Insecta. We chose the first 
two groups as they are well known and popular taxonomic groups to 
test if Insecta could show a qualitatively more log-normal-like shape. 
For dragonflies, we filtered GBIF records to order Odonata whereas 
for butterflies we filtered GBIF records to the families Papilionidae, 
Pieridae, Lycaenidae, Riodinidae, Nymphalidae and Hesperiidae. We 
chose Coleoptera and Diptera because they have a different number 
of species but are less well known than dragonflies and butterflies, as 
well as with presumably different speciation rates. For presentation 
purposes, we only presented the final year (2000) 20-year rolling 
window and the trend in correlation of observed and predicted values 
for all rolling window years from 1900 to 2000.

Modelling the percentage of the gSAD uncovered
For each taxonomic class we estimated the position of the veil, or 
the proportion of the gSAD uncovered, by 1 − P(X = 0 | X ∼Poisson 
log-normal(μ,σ)) where μ and σ are the fitted parameters of the Poisson  
log-normal X. We used the Poisson log-normal distribution fit for this as 
this was the superior fit as evidenced above. This value, the promotion 
of the gSAD uncovered, could theoretically range from 0 to 1 where 
values close to 1 would indicate that the veil was nearly uncovered 
and values close to 0 would indicate that the veil was far from being 
uncovered.

We then used the observed species richness and the total num-
ber of observations, across the entire time period (1900–2019) for  
each taxonomic class as predictors of the percentage of the gSAD 
uncovered. We also used a proportional value where the observed 

species richness was divided by the total number of observations to 
represent a standardized species per effort in a taxonomic class. To 
quantify the relationship between these three values we fit Bayesian  
linear regression models where the response variable was the per-
centage of the gSAD uncovered and the predictor variables were 
log10-transformed. We used brms45 for model fitting and tidybayes46 
for visualization of the posterior distribution. Models were fit with a 
Gaussian error distribution, default priors, 4 chains, 4,000 iterations 
and a warmup of 1,000.

Assessing the sensitivity of using the number of occurrences 
as a proxy of abundance
We used the number of occurrences in GBIF as a proxy for abundance, 
where the number of occurrences is treated as a relative measure 
of global abundance. A similar approach has been used before by 
ref. 24 and allows for different types of data to be aggregated (for 
example, abundance and presence-only estimates or citizen science 
and museum-based collections). This results in a relative abundance 
estimate that can be less biased than local plot-scale abundance data 
that does not sample a large portion of the world’s surface area24. We 
found strong correlation (r ranges from 0.69 to 0.76) between pub-
lished estimates of absolute abundance for birds and the number of 
GBIF occurrences for birds (Supplementary Figs. 2 and 3), the only 
taxonomic class for which such estimates of global abundance per spe-
cies have been attempted. Yet, we acknowledge that our findings about 
the universality of the Poisson log-normal distribution fit rely on the 
number of occurrences being a good proxy for the relative abundance 
of organisms on the planet and could potentially be affected by biases 
in the GBIF occurrence data. Since 2010, at least 80% of the data in GBIF 
have been contributed by some form of citizen science participation47. 
This could lead to a bias towards rare species given a preference for  
rarity and for citizen science participants to seek out rarity48, for example  
birdwatchers preferentially seeking out rare individuals that could 
be ‘counted’ multiple times in GBIF. Interestingly, historical museum  
collections could also exhibit such biases due to a focus of many museum 
trips in documenting unique or new species49. Alternatively, there  
could be a bias towards common species as these are easiest to  
observe and document by the public. Although empirical evidence 
suggests that most citizen science participants report all species they 
see with no preference for common or rare species50, there remains 
a detectability issue as species that are harder to identify may be 
under-reported51.

We examined the sensitivity of our analysis to such biases using 
simulations. We assume that the relationship between observed and 
real abundances can be described by a power law, λs = p × λq, where 
λs is the observed abundance, λ is the global abundance and p and q 
are parameters (Supplementary Fig. 25). Biases towards rare species 
correspond to having q < 1, while biases towards common species  
correspond to q > 1. A perfect linear response is represented by q = 1. 
The number of occurrences in GBIF is then assumed to follow a Poisson 
sampling with mean λs. We tested a range of q values from 0.1 to 2. The 
parameter p was chosen to ensure that both the biased and non-biased 
samples had approximately the same number of individuals. We 
assumed that real species abundances follow a gamma distribution and 
test whether Poisson sampling would result in the correct SAD being fit 
(a Poisson sampling of a gamma distribution should result in a negative 
binomial or log-series). We used the gamma distribution because it cap-
tures both the log-series (in the limit of k→0) and the negative-binomial 
SADs. For each value of q, we sampled 100 communities with 10,000 
species each from a gamma distribution of abundances. We then fit 
both the log-normal and the negative-binomial distributions to the 
observed SAD of each community and compared the Akaike informa-
tion criterion score of both models. Our simulations showed that 
the Poisson log-normal is the best fit when the number of occur-
rences is biased towards common species (Supplementary Fig. 26)  
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and that the negative binomial should be the best fit when there are 
strong biases towards rare species.

We found no evidence to suggest that there was a bias towards 
common species in GBIF but instead that there might be a bias towards 
rare species in GBIF, as a log–log regression of the occurrences against 
estimated abundances exhibits a q of around 0.5 (Supplementary  
Fig. 27) and, as discussed above, this will favour the negative binomial 
and not a Poisson log-normal fit. So, we conclude that it is unlikely that 
biases on occurrence data are driving our results of better fits of the 
Poisson log-normal. We acknowledge that we only tested this with birds 
as this is the only taxonomic group for which there exists the potential 
to test this. Quantifying the biases in GBIF for other taxonomic groups 
remains an important future analysis step as GBIF data are increasingly 
used in ecological and biodiversity research.

Data analysis
We used the R statistical software52 to carry out our analyses while also 
relying heavily on the Tidyverse53.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data used for our analyses are freely available from the GBIF  
(www.gbif.org). The doi representing our download is: https://doi.org/ 
10.15468/dl.4dcbgt. All other auxiliary datasets used (list of tree species,  
bird abundance estimates and mammal and bird taxonomy lists) are 
described in the Methods. The animated gifs of gSADs through time 
for all 39 taxonomic classes can be found in the Supplementary Videos.

Code availability
Code (and some processed data) to support our analyses are available 
here: https://doi.org/10.5281/zenodo.8043678.
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