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Whether most species are rare or have some intermediate abundance is
along-standing questionin ecology. Here, we use more than one billion
observations from the Global Biodiversity Information Facility to assess
global species abundance distributions (gSADs) of 39 taxonomic classes of
eukaryotic organisms from 1900 to 2019. We show that, as sampling effort
increases through time, the shape of the gSAD is unveiled; that is, the shape
of the sampled gSAD changes, revealing the underlying gSAD. The fraction
of species unveiled for each class decreases with the total number of species

inthat class and increases with the number of individuals sampled, with
some groups, such as birds, being fully unveiled. The best statistical fit

for almost all classes was the Poisson log-normal distribution. This strong
evidence for a universal pattern of gSADs across classes suggests that there
may be general ecological or evolutionary mechanisms governing the
commonness and rarity of life on Earth.

Thatsome species arerare and others are commonis one of the oldest
observationsin ecology. But the exact shape of the distribution of com-
monness and rarity among species on Earth has remained elusive. Some
have argued that nature shows a bias towards rare species', while others
have proposed that most species have intermediate abundances’.
Accordingly, different statistical distributions have been proposed
as amodel of the distribution of species abundances, including the
log-series distribution’ (corresponding to a monotonic decrease of
the number of species with increasing species abundance) and the
log-normal distribution® (corresponding to aunimodal distribution of
the number of species along the abundance axis inlog-scale). In addi-
tion, Preston proposed that, at low sampling efforts, the log-normal
distribution seems like a monotonically decreasing function because
of the presence of a“veil line”, since most species will occur at densities
below the detection threshold. The existence of such a veil line, or its

generality, hasbeen questioned*?, while others have suggested it does
exist®’. Regardless, these different models, and their corresponding
conclusions, have important consequences for biodiversity research
and conservation® as well as for estimating the number of species on
the planet’. Understanding if a universal shape of species abundance
distributions (SADs) exists may help illuminate how life on Earth is
maintained.

Who can explain why one species ranges widely and is very
numerous and why another allied species has a narrow range
andisrare? — Darwin, On the Origin of Species p. 21 (1859)™°

Both the log-series and the log-normal models were mostly
phenomenological or, at best, tried to capture a statistical sampling
process. More recently, ecological and evolutionary mechanisms
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(suchasspecies’interactions, migration and speciation) that may drive
SADs have been examined using theory™". For instance, it has been
shownthatasimplebirth-death process results in anegative-binomial
distribution that approaches the log-series distribution under certain
conditions and under other conditions it approaches the unimodal
shape of the log-normal distribution’. Other mechanisms that have
beensuggested to lead to alog-normal SAD include random multipli-
cative interactions between species® and niche partitioning models'.

Species in a biological sample (compared with those from fully
quantified communities) are the result of statistical sampling of an
underlying SAD and this sampling process can be used to unify three
proposed statistical distributions. The negative-binomial distri-
bution corresponds to Poisson sampling of an underlying gamma
distribution, with the log-series corresponding to a particular case of
the gamma distribution where the shape parameter tends to zero. A
Poisson log-normal distribution results from sampling an underlying
log-normaldistribution®. For smaller samples, aphenomenonsimilar
toaveilline occurs, whether the underlying SAD follows alog-normal
oranegative-binomial distribution (Fig.1). The log-normal and gamma
distributions are two of the top candidates to understand the SAD as
there is empirical and theoretical support for both distributions®**
and the gamma distribution is particularly flexible, encompassing
both unimodal distributions with varying skewness and monotoni-
cally decreasing distributions. Importantly, the sampled SAD may
qualitatively differ from the underlying SAD.

Despite decades of research and dozens of proposed statistical
fitsto describe SADs', there remains little conclusive evidence for the
shape of SADs (compare refs. 6,17-19). The debate surrounding the
shape of SADs may be partly driven by the fact that the empirical data
on which these distributions are fitted has historically been focused
on local-scale biodiversity samples®. Local communities are often
investigated as natural assemblages but are subject to many idiosyn-
crasies, such as species that are common in some parts of their range
butrarein other parts of their range?, species that move inand out of
alocation throughout the year (for example, migratory birds*) or spe-
cies detected that are vagrant individuals from adjacent ecosystems.
Such idiosyncrasies can influence the shape of a SAD?. This problem
may be overcome by using synthesis approaches, looking at many
different datasets at once (for example, refs.16,23) or by using dataat
theglobal scale’**, since insucha‘closed’ system, local-scale immigra-
tion and emigration effects can be excluded. Hence, at a global scale,
the SAD may not represent assemblages of ecologically co-occurring
species but may be able to reveal evolutionary processes such as the
dynamics of speciation. Nevertheless, there remain many challenges
with using global-scale data to quantify a SAD, as fully sampling the
global flora or fauna is a massive undertaking®. Quantifying a global
species abundance distribution (gSAD) could advance the understand-
ing of rarity but at the global scale, minimizing potential problems of
measuringrarity atlocal scales. Further, assessing SADs can potentially
(1) advance the testing of ideas about the processes underlying the
generation of rare species, (2) assess universality in mechanisms of
speciation across different taxonomic groups (for example, classes)
and (3) provide insights to better understand how anthropogenic
changes (for example, climate change), which often occur at large
scales, caninfluence rarity.

Here, we leverage the largest biodiversity aggregator of global
biodiversity records—the Global Biodiversity Information Facility
(GBIF)—to assess the shape of the gSAD and how it varies among taxo-
nomicgroups. GBIF has aggregated data at a vastly broader geographic,
taxonomic and temporal scale than previously available and has done
so at an accelerating rate. We downloaded data from GBIF from the
period 1900 to 2019, representing a total of ~1.38 billion occurrences
of species across 39 taxonomic classes (Supplementary Fig.1), to quan-
tify the shape of the gSAD. For each taxonomic class, we calculated a
gSAD using a20-year rolling window for each year from1900 to 2000

(Methods), by aggregating the number of occurrences in GBIF for each
species belonging to that taxonomic class. This approach assumes that
the number of observationsin GBIF isa proxy for the relative abundance
ofaspeciesinthe world (sensuref. 24; Methods), which we have verified
to be a good approximation at least for birds (Supplementary Figs. 2
and 3). In our work, rarity is presumed as a function of the number of
occurrences available in GBIF. On a linear scale, most species are still
rare asthey are represented by only few occurrences.

Results and discussion

Our analysis shows that as global biodiversity sampling increases
throughtime (Supplementary Fig. 4) the shape of the gSADisunveiled,
thatis, the qualitative shape of the sampled gSAD changes revealing the
underlying gSAD. Thisis most evident for some well-sampled taxa such
asbirds (Fig.2), where by about the year 2000 the entire distributionis
uncovered showing a unimodal distribution of abundances with log-left
skew”. For other classes, the entire distribution is not yet uncovered but
similar patterns of ‘unveiling’ can be seen for Amphibia, Cycadopsida
and Mammalia. In contrast, for some classes (for example, Insecta)
we see that the veil is not uncovered and the qualitative shape of the
gSAD remains monotonically decreasing (Supplementary Videos for
all 39 classes). Even when sampling is not aggregated across multiple
years and eachyearis treated independently, the veil is lifted for birds
(Supplementary Fig. 5), indicating that in each individual year, the
complete gSAD for birds is currently being sampled. In other words,
nearly all species of birds are being sampled annually.

A more important biological question is: what is the underlying
shape of agSAD? To answer this question, maximum likelihood estima-
tion can be used to tease apart the difference between the observed
shape of a gSAD and the underlying distribution from which that
gSAD was sampled'**. By assessing the statistical distribution of the
underlying gSADs we can draw inferences about if, and to what extent,
taxonomic classes have similar ecological and evolutionary processes
that underlie the pattern of SADs. We tested the statistical fit of the
empirical distributions (Fig. 2; Methods) and found that, for 38 out of
39 classes, the statistically best fit of the three distributions was the
Poisson log-normal (Supplementary Fig. 6). This suggests that there
may be universality in the shape of a gSAD across taxonomic groups.
Importantly, the evidence base shifts temporally, where early in the
time series thereis more uncertainty as to which distribution provides
the best fit, but it is clear that Poisson log-normal provides the best
fit by the end of the time series for nearly all classes analysed (Fig. 3
and Supplementary Fig. 6). The evidence for better fit of the Poisson
log-normal was greater in better sampled groups where the mode of
the distribution had been unveiled. But even for groups where we are
far from unveiling the mode, such as insects, the Poisson log-normal
still fits the data best using maximum likelihood estimation. In addi-
tion, when one examines within Insecta, the two best-sampled and
relatively well-known groups—dragonflies and butterflies—the gSAD
shape qualitatively appears more log-normal-like than for Insecta as
awhole (Supplementary Figs.7 and 8). Additionally, some of the most
specioseinsectorders (Dipteraand Coleoptera) showed strong statisti-
cal support for a Poisson log-normal distribution, despite presumed
differences in speciation rates (Supplementary Figs. 9 and 10).

Therelative position of the veil provides an assessment of how well
the speciesrichness of that group has been described. The fraction of
species unveiled can be expected to depend on the total number of
species in the group and the number of individuals sampled”. As we
do not know the true number of species in most groups, we used the
observed species richness to examine its influence on the position of
the veil. We found that the percentage of the gSAD that is unveiled is
strongly dependent on observed species richness, where more spe-
ciose classes are less well-sampled (parameter estimate = —0.04, 95%
highest-density interval (HDI) =-0.11, 0.03; Fig. 4 and Supplemen-
tary Fig. 11), as well as sampling effort, where an increased number
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Fig.1| Conceptual schemeillustrating the Poisson sampling of acommunity
with species abundances described by agamma or alog-normal distribution.
Two types of gSAD—gamma (left) and log-normal distribution (right) are shown
atthe top. Each distribution represents the probability fof a species having a
given abundance A, with the gamma distribution having parameters k (shape)
and 0 (scale) and the log-normal distribution having parameters u (mean) and o
(standard deviation), and I'() representing the gamma function. In the middle,
sampling of the gSAD with the probability of each species having a given number

log,(number of individuals)
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ofiindividuals sampled described by a Poisson distribution s illustrated.

The mean abundance of each species sampled is randomly taken from

the SAD. We exemplify two samples of different sizes, where different symbols
denoteindividuals of different species. The bottom graphs show that:

ifthe global abundances have alog-normal distribution, the mixture distribution
of abundancesin the sampleis a Poisson log-normal; if the global abundances
follow agamma distribution the resulting mixture distribution is a negative
binomial butin the limit k>0, we obtain the Fisher log-series.

of occurrences allows for a higher likelihood of having the class fully
sampled (parameter estimate = 0.04, 95% HDI = -0.01, 0.09; Fig. 4
and Supplementary Fig.12). The position of the veil was also strongly
negatively related with the proportional species sampling, obtained by
dividing the observed number of species by the number of occurrence
records (parameter estimate = —0.17, 95% HDI = -0.24, -0.10; Fig. 4
and Supplementary Fig. 12). This analysis also suggests that, while
most species of groups such as birds and cycads have been described
and mobilized to GBIF, at least half of the species of other groups such
asarachnids and insects remain to be discovered and/or mobilized to
GBIF.Itisimportant to highlight that this is probably an underestimate
of how many species remain to be discovered and mobilized, as the
species richness estimates based on the veil of the log-normal

distribution can underestimate the real number of species®”. Future
work shouldlook to further refine methods to estimate species richness
on the basis of the position of the veil of the log-normal distribution.
Assome of the taxonomic groups with the least unveiling of their gSAD
are also the most speciose taxa, it seems that to take stock of the total
diversity of species on the planet, we need to increase both the rate of
species description and the mobilization of data.

Our results illustrate two key points about our empirical under-
standing of SADs. First, we show that thereisindeed a veil linein SADs
(compare ref. 17), in agreement with previous theoretical results®.
Second, our ability to see this veil is dependent on sampling effort”
and, using time as a proxy for sampling effort, we show that the veil
line is ‘lifted” as we continuously increase our knowledge of global
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Fig.2| The temporal evolution of the gSAD. From top to bottom: Actinopterygii, Amphibia, Arachnida, Aves, Bivalvia, Cephalopoda, Cycadopsida, Insecta, Liliopsida
and Mammalia. For some classes, the apparent unveiling is evident, such as for Aves. Each year represents a rolling 20-year window in which GBIF observations were

aggregated.

biodiversity through time. This suggests that care must be taken in
extrapolating the overall shape of a SAD just from a sample of indi-
viduals. There are now many approaches for upscaling SADs from
small samples to the full community of interest>>” >, However, they
usually require knowledge about the shape of the SAD of the full com-
munity, whichis not always known and often needs to be inferred from
the sampled SAD. This may lead to erroneous conclusions when the
sample is small, as the power to discriminate the fit of the observed
distribution to different probability distributionsincreases with sample
size (Fig. 3b).

We provide strong evidence that the shape of the gSAD seems
tobe well approximated by a Poisson log-normal distribution across
many taxa. Our results are consistent with recent findings at the global
scale for land plants** and birds®. This contrasts with a recent review
at anon-global scale that has found that the log-series was the best
fit across many different SAD datasets, albeit support for Poisson
log-normal and negative binomial was also high'®. Other studies find
that support for log-normal may increase with spatial scale and that
log-series only fits observed SADs at the local scale?*°. One taxo-
nomic group where log-series® or negative binomial” were thought
tobe the best fitting distribution, at least at the regional scale of the
Amazon, is trees”. However, a specific test for this group (Methods)
showed strong support for a Poisson log-normal at the global scale
(Supplementary Fig. 14). Therefore, despite interest on invariance
of SADs across spatial scales®?®, it may well be that subglobal SADs

differ from global SADs beyond the sampling mechanism modelled
by Poisson sampling. The dominant ecological processes operating
at different spatial scales are distinct?”*° and modelling the spatial
scaling of the SAD may require the understanding of the ecological
processes that determine the spatial aggregation of species and their
interactions’.

Ourresults arelargely descriptive and empirically focused and our
study was not designed to disentangle the mechanistic and stochastic
processes that can lead to a SAD. But nevertheless, our finding of the
ubiquitous Poisson log-normal SAD shape across taxonomic classes
invites some speculation. According to neutral theory, point mutation
leads to alog-series SAD while random fission leads to aunimodal SAD",
whilealog-normal SADisrecovered under a‘brokenstick model’ where
apart of a ‘stick’ is broken independently of its size'***. The random
fission model is often associated with allopatric speciation. In addi-
tion, it has been shown that even point mutation canlead to unimodal
SADswhen new species are not recognized for some generations, that
is, protracted speciation®. Therefore, we speculate that allopatric
speciation and/or protracted speciation could be adominant mode of
speciation at the global scale and across taxonomic groups. However,
alog-normal gSAD canresult from many different mechanistic or sto-
chastic processes. Forinstance, it has been argued that the log-normal
distribution at large spatial scales may result from splicing SADs from
contiguous plots in a statistical convergent process analogous to the
central limit theorem®. Further testing would be needed to uncover if,
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and towhat extent, our results indicate that there isa dominant mode
of speciation at the global scale.

Future avenues of exploration

The results presented here illustrate the importance of considering
SADs in a global context but also highlight the importance of future
work to better understand the shape of gSADs. In this analysis, we
contrasted taxonomic classes but we recognize that these are somewhat
arbitrary units and that there is asubstantial amount of ecological and
evolutionary variation within and between classes. Species could be
contrasted indifferent ways (seerefs. 23,34,35), for example, by specia-
tionrate, body size, feeding types or at lower phylogenetic branching
levels than class—all of which could form future work when data from

GBIF are integrated with external datasets. Also, the species concept
onwhich our analysis, and indeed all of GBIF, is based could be debated
and has probably changed over time as our technological and empiri-
cal capacity to separate species has grown*”, Our analysis assumed
aPoisson sampling process with uniform spatial sampling of random
(non-aggregated) species distributions®. We know that both assump-
tions are not necessarily upheldinour data, as species are aggregated
and GBIF data are not globally uniform (for example, there are biases
towards temperate and built-up regions of the world*®) but we believe
our work offers a starting point to investigate how potential aggrega-
tions of species distribution can influence the shape of a gSAD. We
also focus on a ‘log-normal-like’ shape of a distribution, not neces-
sarily investigating the intricacies of the shape of the gSAD such as
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Fig. 4 |How the relative position of the veil corresponds to species richness
and the number of individualsin a class. a-c, The proportion of the gSAD
uncovered, assuming a Poisson log-normal distribution, and its relationship to
observed species richness/number of observations (a), number of observations

Percentage of gSAD uncovered
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log-left skew'®*. Our assumption of proportionality in the number of
observationsin GBIF inrelation to the species global abundanceis not
sufficiently exact to assess this level of detail in the shape of the gSAD
and thisis anissue that certainly merits more research.

GBIF isincreasingly aggregating larger amounts of data, drivenin
part by contributing citizen science participants. Nevertheless, there
exist biases in data representation of GBIF*®, Such biases probably
have the potential to influence the relative position of the veil, for
example by leavinginsects further away frombeing unveiled given that
insects are most diverse in the tropics where they are unlikely to be fully
sampled. However, we believe GBIF offers arich source of future analy-
ses investigating SADs and/or gSADs. For example, future analyses
could look at different regional samples, where other ecological (for
example, dispersal) and evolutionary processes (for example, specia-
tion rates) are potentially driving patterns in the SAD. Yet, one limita-
tion, at present, is that GBIF is dominated by presence-only data, which
is why we used the number of occurrences as a proxy for abundance
(sensu ref. 24). How, and the extent to which, the number of occur-
rences in GBIF correlates with true abundance is an important field

of study in the future as GBIF data are increasingly used to answer
ecological questions (Methods).

Conclusions

Our work used global biodiversity data from GBIF to empirically and
statistically illustrate the gSAD. We show that there is undoubtedly
aveil thatis lifted when sampling effort increases. Importantly,
with sufficient sampling, as is the case for birds, there may be the
possibility to use large-scale datasets such as GBIF to track global
biodiversity change through time. Our results also suggest that there
may be some universality in the shape of the gSAD. Worryingly, the
way that humans are changing the abundance of different species,
for instance by making common species less common and homo-
genizing species across the planet, may have implications for gSADs
inthe future.Itis our hopethatasthe global community continues
toincrease our knowledge of biodiversity (for example, through the
mobilization of data), so too will we continue to unveil the diver-
sity of our planet and understand how anthropogenic changes are
altering those patterns.
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Methods

Overview

Weuseddatafromthe GBIF tocalculategSADsforeachclass ofeukaryotic
organisms (n =39) included in the analysis. First, we downloaded all
dataon GBIF and aggregated the total number of observations (occur-
rence records) for each species included in GBIF. We then empirically
summarized these aggregations and how these changed through time,
providing atime series of the gSAD. We used atemporal componentin
ouranalysisasitrepresentsthe evolution of the global understanding
of biodiversity, using the best-available dataset to do so—GBIF. As the
number of records increases with time, this allowed us to approximate
the potential knowledge about the shape of the gSAD. We acknowledge
that time is only one way to investigate the evolution of a gSAD but
time was chosen in part to make the analysis computationally trac-
table, avoiding pure resampling analyses that could quickly become
computationally expensive. We feel it is useful in this case to advance
understanding of the shape of the gSAD. We used SAD sampling theory
to assess whether the statistical shape of the observed gSAD corres-
ponded to one of three potential distributions: log-series, negative
binomial or Poisson log-normal. We then used models to quantify the
influence of species richness and the number of individuals on the rela-
tive position of the sampling veil (sensu ref. 3), that is, the percentage
of speciesinthe gSAD that have been sampled.

GBIF data
GBIF is the world’s largest biodiversity aggregator, housing >2 billion
biodiversity records with a 12-fold increase in available data since
2007% (Supplementary Fig.4). We downloaded GBIF dataon 4 February
2021*°. Datawere downloaded as a.avro file and processed using SQL in
Google BigQuery. All GBIF records were aggregated by year and by spe-
cies, providing alist of ‘abundance’ for each species in each year. This
approach assumesthat the total number of observations (occurrences)
in GBIF is a proxy for the actual abundance of a species in the world*.
To test this assumption we used birds, the only taxonomic group for
which for the most species abundance estimates exist and correlated
the number of GBIF records for each species with the estimated global
abundance of birds from ref. 25 (n = 9,047 species) and from BirdLife
International (n = 3,216 species). Inboth instances, correlation was rela-
tively strong (Supplementary Figs. 2 and 3) suggesting that, indeed, the
number of occurrencesin aglobal database may serve as a proxy for the
actual abundanceinthe world. See section on ‘Assessing the sensitivity
ofusingthe number of occurrences as a proxy of abundance’ for more.
Our analysis was performed at the class level and after download-
ing GBIF we used some minimum criteria to select those classes for
potential inclusion in our analyses. To be included, a class needed to
have atleast 10 observations per year, at least 200 total species and, on
average, 50 observations per species. We analysed a total of 39 classes
for which SADs were assessed (Supplementary Fig.1).

Visualization of gSADs

We empirically summarized the observed gSAD for each year for each
taxonomic class and visualized these as animated gifs to understand
how the qualitative shape of the gSAD changes through time. We used
histograms withlogarithmic classes of base 2 (octaves), delimited as fol-
lows: oneindividual, two to three individuals, four to sevenindividuals
andsoon. There are other ways of delimiting the octaves (for example,
ref. 41) but the one we adopted here has several advantages. For
instance, the boundariesinalogarithmicscale ([log,(1) = 0,log,(2) =1[,
[log,(2) =1, log,(4) = 2[, [log,(4) = 2, log,(8) = 3[et seq.) are equally
spaced and, importantly, it guarantees that the log-series distribution
isalways amonotonically decreasing curve.

For each class we aggregated our abundance datato create agSAD
in four different methods: (1) aggregation of individual years, where
each year is treated as an independent sample; (2) cumulative aggre-
gation across years, where observations are aggregated across years

cumulatively starting with year 1900; (3) a 10-year rolling window,
where observations are aggregated in 10-year periods using a rolling
window; and (4) a 20-year rolling window where observations are
aggregated in 20-year periods using a rolling window. The evidence
for Poisson log-normal was robust across the different aggregations.
We used these different aggregations to examine the advantages of
increasing the number of observations in each time window versus
the problems that arise when combining data collected many years
apart with potentially different sampling and classification methods.
Exploratory analyses showed that the number of singletons was arti-
ficially high in the early periods and while some of these may be due
toreal biology (that s, rare species), in general these may also be due
to ‘mistakes’ such as misspellings, species names that do not match,
changing taxonomy or similar errors that GBIF datais prone to*>. When
using method 2 above, which maximizes the number of observations
used in any year by cumulatively including all previous years, this
singleton problem is exacerbated. Method 1is less vulnerable to this
problembut uses alimited set of data for each year (only the observa-
tions of that year), while methods 3 and 4 combine data from several
years (10 and 20 years, respectively) but avoid combining data from
years thataretoo far apart.

Exploratory analysis also showed that when minimizing the num-
ber of speciesto those that taxonomically match accepted taxonomic
status for birds (Supplementary Fig.15) and mammals (Supplementary
Fig.16) similar qualitative and quantitative results are found, with the
Poisson log-normal remaining the best statistical fit. In fact, when
trimming the speciesin GBIF to only those that match with anapproved
taxonomy, the Mammalia distribution appears qualitatively even
more log-normal-like. To perform these approved taxonomy-based
analyses, we used the Clements taxonomy (https://www.birds.cor-
nell.edu/clementschecklist/download/) and the American Society of
Mammalogists Database (https:/www.mammaldiversity.org/). This
trims the number of species to a lesser number GBIF. We performed
this analysis for the last 20-year rolling window only. And we chose
Aves and Mammalia as they have two of the most comprehensive and
accessible up-to-date taxonomies. Toillustrate the potential hazards of
GBIF name changes, in the GBIF data we downloaded, inan exploratory
analysis of all entities labelled as ‘species’ (-1.5 million), about 1,614 had
more than three words (that is, more than simply genus and species),
which could include known hybrids and other varieties.

gSAD distribution fitting

For each observed gSAD (year x class combination) we fit probability
distributions for abundances of species in the assemblage using maxi-
mum likelihood estimation. Models were fit using the sads package
inR*. Models were fit on the raw data (thatis, the vector of ‘abundances’
where abundances were the number of occurrences in GBIF) and bin-
ning was only done for visualization purposes (see earlier for details on
visualizations). For each observed gSAD and aggregation as described
above wefit three probability distributions: (1) log-series; (2) negative
binomial; and (3) Poissonlog-normal (Fig.1). For details and procedures
ofthe statistical fits, see the reference material located in ref. 37, avail-
able at https://cran.r-project.org/web/packages/sads/sads.pdf. The
negative-binomial distribution was fit using a truncation at zero. Start-
ing values were necessary for the maximum likelihood estimation of the
negative-binomial distribution. For this, we used the mean number of
observations across species and an estimate of the shape parameter of
the corresponding gamma distributionbased on the mean and variance
of observations across species (k=mean?/(variance — mean)). We tested
the sensitivity of the starting parameters of the negative-binomial dis-
tribution by using many starting parameters, creating a vector of 100
values from +20% for the mean and +20% for k. For illustrative purposes
we did this for both the individual years (method 1above) and cumula-
tive (method 2 above) aggregation types for the years1925,1950,1975,
2000 and 2018 for Aves, Amphibia, Arachnida and Mammalia. Visual
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inspectionshows that the predicted fits were similar regardless of the
starting parameter values (Supplementary Figs. 17-20).

Goodness of fit

To quantify the statistical likelihood of agiven distribution (log-series,
negative binomial or Poisson log-normal) representing the observed
gSAD we used Pearson correlation?. We used the observed values for
eachabundance class and compared these with the predicted values for
each abundance class, where the predicted values were derived from
the statistical fitting of the gSAD, described above. In the main text, we
report the Pearson correlation value as a measure of goodness of fit
(Fig. 3). However, we also show that other measures of goodness of fit
(x*value, Kolmogorov-Smirnov D statistic and Kolmogorov-Smirnov
Pvalue) are strongly correlated and provide qualitatively similar results
to those presented in our main text, using four illustrative classes
(Supplementary Figs. 21-24). Although not a direct measure of good-
ness of fit, we also used Akaike information criteria to compare the
three model fits for the 20-year rolling window for the last year of
the time series (2000). This found support that, for nearly all classes,
Poissonlog-normalwas the best fitting model (Supplementary Table1).

Testing of trees

We used the above methods and applied them to tree species in the
GBIF dataset. To subset all of GBIF data to just trees, we used the list
of tree species downloaded from the Botanic Gardens Conservation
International global tree list**. They use the IUCN Global Tree Specialist
Group definitionof atree, defined as ‘awoody plant with usually asingle
stem growing to a height of at least two meters, or if multi-stemmed,
then at least one vertical stem five centimeters in diameter at breast
height’. We only included species names that taxonomically matched
theglobaltreelist (n =39,065 species). For presentation purposes, we
only presented the final year (2000) 20-year rolling window and the
trend in correlation of observed and predicted values for all rolling
window years from 1900 t0 2000.

Testing of finer taxonomic groups within Insecta

Similar to above, with trees, we performed exploratory analyses by
repeating the main analyses but at afiner taxonomic level (dragonflies,
butterflies, Dipteraand Coleoptera) within Insecta. We chose the first
two groups as they are well known and popular taxonomic groups to
test if Insecta could show a qualitatively more log-normal-like shape.
For dragonflies, we filtered GBIF records to order Odonata whereas
for butterflies we filtered GBIF records to the families Papilionidae,
Pieridae, Lycaenidae, Riodinidae, Nymphalidae and Hesperiidae. We
chose Coleoptera and Diptera because they have a different number
of species but are less well known than dragonflies and butterflies, as
well as with presumably different speciation rates. For presentation
purposes, we only presented the final year (2000) 20-year rolling
window and the trend in correlation of observed and predicted values
for all rolling window years from 1900 to 2000.

Modelling the percentage of the gSAD uncovered

For each taxonomic class we estimated the position of the veil, or
the proportion of the gSAD uncovered, by 1-P(X=0| X ~Poisson
log-normal(u,0)) where uand o are the fitted parameters of the Poisson
log-normal X. We used the Poisson log-normal distribution fit for this as
this was the superior fit asevidenced above. This value, the promotion
of the gSAD uncovered, could theoretically range from O to 1 where
values close to 1 would indicate that the veil was nearly uncovered
and values close to 0 would indicate that the veil was far from being
uncovered.

We then used the observed species richness and the total num-
ber of observations, across the entire time period (1900-2019) for
each taxonomic class as predictors of the percentage of the gSAD
uncovered. We also used a proportional value where the observed

species richness was divided by the total number of observations to
represent a standardized species per effort in a taxonomic class. To
quantify the relationship between these three values we fit Bayesian
linear regression models where the response variable was the per-
centage of the gSAD uncovered and the predictor variables were
log,o-transformed. We used brms* for model fitting and tidybayes*®
for visualization of the posterior distribution. Models were fit with a
Gaussian error distribution, default priors, 4 chains, 4,000 iterations
and awarmup of1,000.

Assessing the sensitivity of using the number of occurrences
as aproxy of abundance

We used the number of occurrences in GBIF as a proxy for abundance,
where the number of occurrences is treated as a relative measure
of global abundance. A similar approach has been used before by
ref. 24 and allows for different types of data to be aggregated (for
example, abundance and presence-only estimates or citizen science
and museum-based collections). This results in a relative abundance
estimate that can be less biased than local plot-scale abundance data
that does not sample a large portion of the world’s surface area*. We
found strong correlation (r ranges from 0.69 to 0.76) between pub-
lished estimates of absolute abundance for birds and the number of
GBIF occurrences for birds (Supplementary Figs. 2 and 3), the only
taxonomic class for which such estimates of global abundance per spe-
cies have beenattempted. Yet, we acknowledge that our findings about
the universality of the Poisson log-normal distribution fit rely on the
number of occurrences beingagood proxy for the relative abundance
of organisms onthe planetand could potentially be affected by biases
inthe GBIF occurrence data. Since 2010, at least 80% of the datain GBIF
have been contributed by some form of citizen science participation®.
This could lead to a bias towards rare species given a preference for
rarityand for citizenscience participants toseek outrarity*s, forexample
birdwatchers preferentially seeking out rare individuals that could
be ‘counted’ multiple times in GBIF. Interestingly, historical museum
collections could also exhibit such biases due to afocus of many museum
trips in documenting unique or new species*. Alternatively, there
could be a bias towards common species as these are easiest to
observe and document by the public. Although empirical evidence
suggests that most citizen science participants report all species they
see with no preference for common or rare species’, there remains
a detectability issue as species that are harder to identify may be
under-reported®’.

We examined the sensitivity of our analysis to such biases using
simulations. We assume that the relationship between observed and
real abundances can be described by a power law, A= p x A9, where
A is the observed abundance, 1 is the global abundance and p and ¢
are parameters (Supplementary Fig. 25). Biases towards rare species
correspond to having g <1, while biases towards common species
correspond to g > 1. A perfect linear response is represented by g =1.
The number of occurrences in GBIF is then assumed to follow a Poisson
sampling with mean A,. We tested arange of g values from 0.1to 2. The
parameter pwas chosento ensure that both the biased and non-biased
samples had approximately the same number of individuals. We
assumed that real species abundances follow agamma distributionand
test whether Poisson sampling would resultin the correct SAD being fit
(aPoissonsampling of agammadistribution should resultinanegative
binomial or log-series). We used the gamma distribution because it cap-
tures both thelog-series (in the limit of k>0) and the negative-binomial
SADs. For each value of ¢, we sampled 100 communities with 10,000
species each from a gamma distribution of abundances. We then fit
both the log-normal and the negative-binomial distributions to the
observed SAD of each community and compared the Akaike informa-
tion criterion score of both models. Our simulations showed that
the Poisson log-normal is the best fit when the number of occur-
rences is biased towards common species (Supplementary Fig. 26)
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and that the negative binomial should be the best fit when there are
strong biases towards rare species.

We found no evidence to suggest that there was a bias towards
common speciesin GBIF butinstead that there might be a bias towards
rarespeciesin GBIF, asalog-logregression of the occurrences against
estimated abundances exhibits a g of around 0.5 (Supplementary
Fig.27) and, as discussed above, this will favour the negative binomial
and not a Poisson log-normal fit. So, we conclude that it is unlikely that
biases on occurrence data are driving our results of better fits of the
Poisson log-normal. We acknowledge that we only tested this with birds
asthisis the only taxonomic group for which there exists the potential
totest this. Quantifying the biases in GBIF for other taxonomic groups
remains animportant future analysis step as GBIF data are increasingly
used in ecological and biodiversity research.

Data analysis
We used the R statistical software® to carry out our analyses while also
relying heavily on the Tidyverse®.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data used for our analyses are freely available from the GBIF
(www.gbif.org). The doirepresenting our download is: https://doi.org/
10.15468/dl.4dcbgt. Allother auxiliary datasets used (list of tree species,
bird abundance estimates and mammal and bird taxonomy lists) are
described in the Methods. The animated gifs of gSADs through time
for all39 taxonomic classes can be found in the Supplementary Videos.

Code availability
Code (and some processed data) to support our analyses are available
here: https://doi.org/10.5281/zenod0.8043678.
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Data analysis All packages used are described in the methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data used for our analyses are freely available from the Global Biodiversity Information Facility (GBIF; www.gbif.org). The doi representing our download is:
https://doi.org/10.15468/dl.4dcbgt. All other auxiliary datasets used (i.e., list of tree species, bird abundance estimates, and mammal and bird taxonomy lists) are
described in the methods.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.
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Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences |X| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We use more than 1 billion observations from the Global Biodiversity Information Facility GBIF to assess the global species
abundance distributions (gSADs) of 39 taxonomic classes of organisms, from 1900 to 2019.

Research sample Our analysis was performed at the class level, and after downloading GBIF we used some minimum criteria to select those classes for
potential inclusion in our analyses. To be included, a class needed to have at least 10 observations per year, at least 200 total species,
and on average, 50 observations per species. We then analyzed a total of 39 classes (Fig. S1).

Sampling strategy Sample size was dictated by the number of observations in GBIF.
Data collection Data were downloaded from GBIF.

Timing and spatial scale  We used data from across the globe, and from 1900-2019. We used a temporal component in our analysis as it represents the
evolution of the global understanding of biodiversity, using the best available dataset to do so — GBIF. As the number of records
increases with time, this allowed us to approximate the potential knowledge about the shape of the gSAD. We acknowledge that
time is only one way to investigate the evolution of a gSAD, but time was chosen in part to make the analysis computationally
tractable, avoiding pure resampling analyses that could quickly become computationally expensive.

Data exclusions N/A
Reproducibility N/A
Randomization N/A

Blinding N/A




Did the study involve field work? [] ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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