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Time delays modulate the stability of 
complex ecosystems

Yuguang Yang1, Kevin R. Foster    2,3, Katharine Z. Coyte    4  & Aming Li    1,5 

What drives the stability, or instability, of complex ecosystems? This 
question sits at the heart of community ecology and has motivated a 
large body of theoretical work exploring how community properties 
shape ecosystem dynamics. However, the overwhelming majority of 
current theory assumes that species interactions are instantaneous, 
meaning that changes in the abundance of one species will lead to 
immediate changes in the abundances of its partners. In practice, time 
delays in how species respond to one another are widespread across 
ecological contexts, yet the impact of these delays on ecosystems remains 
unclear. Here we derive a new body of theory to comprehensively study 
the impact of time delays on ecological stability. We find that time 
delays are important for ecosystem stability. Large delays are typically 
destabilizing but, surprisingly, short delays can substantially increase 
community stability. Moreover, in stark contrast to delay-free systems, 
delays dictate that communities with more abundant species can be less 
stable than ones with less abundant species. Finally, we show that delays 
fundamentally shift how species interactions impact ecosystem stability, 
with communities of mixed interaction types becoming the most stable 
class of ecosystem. Our work demonstrates that time delays can be critical 
for the stability of complex ecosystems.

The biological world comprises complex communities containing 
many interacting species. A key property of these communities is their 
stability, which determines the ability of constituent species to recover 
following perturbations1,2. There has been an intense effort to under-
stand what determines community stability1–16. In particular, a large 
body of theory has been developed, on the basis of early work by May3, 
to study the effect of factors including the strength and sign of species 
interactions4–6,8,9,11,13, spatial structure12,15 and community interaction 
structure4,8,10,16 on the stability of complex communities.

However, the overwhelming majority of work on community 
stability so far has assumed that the growth rate of any individual 
species within a community responds immediately to changes in 
the abundances of other community members3–16. In reality, these 

responses are expected to occur only after time delays. For example, 
consider one bacterium (for example, Pseudomonas aeruginosa) that 
makes a toxin that inhibits a second bacterial species (for example, 
Staphylococcus aureus)17. If P. aeruginosa’s abundance increases, the 
amount of toxin within the environment will also increase, but only 
after a delay imposed by the time for each new cell to begin toxin 
production. Moreover, there will probably be a further delay before 
this newly produced toxin affects members of S. aureus, due to the 
time for the toxin to enter S. aureus’s cells and exert its effect. As such, 
overall, there will probably be a considerable lag before increases in  
P. aeruginosa exert an effect on the dynamics of S. aureus (see Supple-
mentary Note 7 for an illustrative mathematical model of this example).  
In general, across species, there are diverse reasons to expect delays, 
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Results
Time delays alter whether communities are stable
Following the canonical framework of May and others1–16,19,22,28,29, we 
model an ecological community composed of S interacting species as 
a continuous-time autonomous dynamical system (Fig. 1),

dXXX (t)
dt

= diag (XXX (t)) fff (XXX (t − τ)) , (1)

where XXX(t) = (X1 (t) ,X2 (t) ,⋯ ,XS (t))
T ∈ ℝS is an S-dimensional vector 

whose element Xi (t) represents the abundance of species i at time t, 
diag (XXX (t))  is a square diagonal matrix with the entries of XXX (t)  on  
the main diagonal and all other entries outside the main diagonal set 
to zero, and fff (XXX (t − τ))  encodes the underlying ecological network 
and interactions. When time delays are absent (that is, τ = 0), equation 
(1) becomes the canonical delay-free case, where species respond 
immediately to abundance changes (Fig. 1a). Importantly, in this frame-
work, whenever the τ is non-zero, species will no longer respond instan-
taneously to changes in their own or others’ abundances and instead 
respond only after a delay (Fig. 1b). If XXX∗ > 0 satisfies fff (XXX∗) = 0, it is 
defined as a feasible coexistence equilibrium29, where each species has 
a positive abundance.

Within theoretical ecology, multiple measures of the stability of 
an ecosystem exist1,2,28,30–32, but a key measure is the ability of an ecologi-
cal system to return to an equilibrium in the face of external perturba-
tions, also termed local asymptotic stability1–16,18–27. In unstable systems, 
infinitesimal perturbations can drive the system away from its feasible 

including age structure2,18, seasonality2,18 and various metabolic  
processes19,20.

Indeed, time delays have long been recognized as playing a central 
role in community dynamics1,2,18–27. Theoretical work on single-species 
and simple two- or three-species exploitative systems has suggested 
that time delays can have major effects on ecosystem stability1,18,19,21–26. 
Yet in contrast, work on large communities of randomly interacting 
species has suggested that delays in interspecies interactions do not 
impact stability qualitatively27. These differences suggest that the 
impacts of time delays probably depend upon the precise ecological 
properties of the community in question. However, we lack a com-
prehensive understanding of the impacts of time delays in ecology, 
particularly when it comes to complex communities.

Motivated by this gap, here we develop a systematic framework 
to comprehensively study the effects of time delays on the local 
asymptotic stability of any ecosystem. Mirroring classical work on 
exploitative systems1,24, our work suggests that large delays in the 
effects of species on one another are destabilizing. However, criti-
cally, we find that short delays have the opposite effect and can in 
fact stabilize ecosystems. We also find that while some rules of eco-
logical stability, such as the effects of diversity, are robust to delays, 
other principles are changed. In particular, the introduction of time 
delays can alter which community type is the most stable, and dra-
matically alter the relationship between a species’ population size and 
stability. Our work demonstrates the importance of time delays for 
ecological stability and provides a general framework to understand  
their impacts.
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Fig. 1 | Illustration of the stability of communities with and without time 
delay. a, Schematic diagram of perturbing a three-species community without 
delay, whose dynamics follow the gLV model. Here, the change in a species’ 
abundance affects its own and other species’ abundances immediately. Sharp-
head and blunt-head arrows represent positive and negative effects, respectively. 
b, Schematic diagram of perturbing the same three-species community when 
time delay is considered. In this case, species respond to changes in their own and 
other species’ abundances after a certain time delay (τ = 1). c, Response of a three-
species delay-free community to external perturbations. Communities that 
recover to their previous state following perturbations are classified as stable 

and thus, this community is stable. d, Mathematically, a delay-free community is 
stable when all eigenvalues of the community matrix (given in equation (2)) have 
negative real parts, namely, all eigenvalues locate in the left half of the complex 
plane. For the three-species community shown in c, eigenvalues are depicted by 
black dots. e, The same three-species community as shown in c and d is unstable 
in the face of perturbations once time delay is introduced, as its eigenvalues lie 
outside the stability region (blue region in f). Here we set r1 = 2, r2 = 1, r3 = 0, si = 1, 
A12 = A23 = −1, A21 = A32 = 1, A13 = A31 = 0 for the three-species system. In numerical 
simulations, we regard a species as extinct if its abundance is <0.01.
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coexistence equilibrium and possibly lead to loss of species. Following 
classic stability analysis methods, whether a feasible coexistence equi-
librium XXX∗ is stable can be determined by the behaviour around this 
equilibrium. This behaviour is captured by linearizing equation (1) 
around the corresponding equilibrium (see Methods and Supplemen-
tary Note 1) as

dxxx(t)
d t

=MMMxxx(t − τ), (2)

where xxx (t) = XXX (t) −XXX∗  captures deviation from equilibrium abun-
dance and M is the so-called ‘community matrix’ whose element  
Mij represents the effect that species j has on species i around the  
equilibrium1–15.

For delay-free systems, stability can be determined by examining 
the maximum real part of the eigenvalues of M (that is, Re (λ1)). Specifi-
cally, provided Re (λ1) < 0, the system will be stable (Fig. 1c,d)1–16,28,32. 
However, the introduction of time delays (τ > 0) dramatically changes 
which communities are stable, often rendering previously stable com-
munities unstable (Fig. 1e). In other words, the stability of ecological 
systems with time delays cannot be determined by the canonical 
method of identifying the maximum real eigenvalue19,22,27,33.

While the maximum real eigenvalue is no longer predictive of 
stability, in Methods we show that communities with time delays will 
be stable provided that all roots of the characteristic equation

H(z) = z − λe−zτ = 0, (3)

have negative real parts. This requirement reduces the size of the 
region where stability is predicted within the complex plane, such 
that to ensure stability all eigenvalues λ of M now need to be located in 
a teardrop-shaped region defined by Re(z) < 0, satisfying equation (3) 
(blue region in Fig. 1f, see Methods). As illustrated in a three-species toy 
example in Fig. 1f, if any eigenvalues lie outside of the teardrop-shaped 
region, the system will be unstable and unable to recover following 
a perturbation, even if all eigenvalues lie within the left half com-
plex plane (Fig. 1e). Note that when time delays are absent (τ = 0), 
this teardrop-shaped region expands to the whole left half complex  
plane (Fig. 1d) and thus, the stability criterion degenerates to the 
delay-free case.

Metric of ecological stability with time delays
While the teardrop-shaped domain enables us to make the binary clas-
sification of whether or not a given community is stable, it does not 
allow us to compare the relative stability of different communities. 
That is, it cannot tell us whether one community is more stable than 
another. In the context of ecology, the degree of stability is commonly 
evaluated by recovery time: the time for a perturbation to decay to a 
specified fraction of its initial size30,31. Systems that need less recov-
ery time are classified as more stable than systems that need more  
recovery time.

In delay-free systems, this recovery time can be quantified  
by the maximum real part of the eigenvalues of the community matrix 
M (that is, Re (λ1))34. −Re (λ1)  depicts the asymptotic rate at which 
perturbations to a stable delay-free ecosystem decay (Methods); thus, 
the more negative Re (λ1) is, the shorter the recovery time, hence the 
more stable the system is (left column in Fig. 2a,b). However, examining 
the dynamics of a simple three-species system demonstrates that this 
is no longer the case for time-delayed systems (right column in Fig. 2a). 
Here, the introduction of time delays renders previously highly stable 
communities (Re (λ1) << 0) far less stable than communities with less 
negative Re (λ1) (Fig. 2b). Crucially, systematically varying community 
parameters demonstrates that this is a general phenomenon—introduc-
ing time delays breaks down the relationship between the magnitude 
of Re (λ1) and the corresponding recovery time (Fig. 2d).

While the introduction of time delays disrupts the relationship 
between −Re (λ1) and recovery time, we find that this role is instead 
taken by −Re (z1) (z1 is the characteristic root with the maximal real 
part among all roots of equation (3), see Methods). That is, as shown 
by numerical simulations, the recovery time of time-delayed  
systems and −Re (z1) shows the same inverse proportional relationship 
(Fig. 2e) as that between the recovery time of delay-free systems and 
−Re (λ1) (Fig. 2c). Namely, a more negative Re (z1) corresponds to a 
shorter recovery time. It is worth noting that a positive Re (z1) (that is, 
local instability) does not necessarily guarantee subsequent system 
collapse and as with delay-free systems35, we can observe ‘unstable 
coexistence’ conditions wherein species abundances fluctuate either 
uniformly or chaotically about the equilibrium (Supplementary  
Fig. 22). However, anecdotally, we find that the likelihood of observing 
such communities decreases with increasing Re (z1) (Supplementary 
Fig. 22). Such unstable coexistence can refer to stable limit cycles due 
to the introduction of time delays, although testing for their presence 
might not be analytically tractable. Moreover, time delays make chaos 
easier to generate19, where species can also persist35.

Having established that −Re (z1)  quantifies the stability of 
time-delayed systems, we then face the challenge of determining Re (z1) 
for large complex ecosystems. This requires solving equation (3) S 
times (since M has S eigenvalues), making stability analysis of 
time-delayed complex ecosystems a non-deterministic polynomial 
hard (NP-hard) problem36 that cannot be solved in polynomial time 
(that is, the time required to solve equation (3) is prohibitively long). 
To overcome this challenge, we developed a new, time-efficient way to 
estimate Re (z1) from only the three endpoints of the eigenvalue dis-
tribution instead of all eigenvalues (see Methods and Supplementary 
Note 2). This method greatly reduces the computation time needed 
for stability analysis. Moreover, results from numerical simulations 
are in good agreement with the theoretical estimates (Fig. 3a and Sup-
plementary Figs. 3, 6, 7 and 11).

Short versus long delays have opposing impacts on stability
How do time delays impact ecological stability? Existing work1,23,24 on 
single-species communities has shown that long delays can lead to 
oscillatory overshoots in species abundances that decrease community 
stability, but whether this phenomenon is common to all delays or 
community types has until now remained unknown. To our surprise, 
our new framework reveals that the relationship between stability and 
time delay is non-monotonic. Specifically, as the magnitude of time 
delays increases, it first stabilizes and then destabilizes the original 
community (Fig. 3a). This non-monotonic relationship between delay 
length and stability holds regardless of interaction types, community 
connectance or community size (see Supplementary Figs. 6 and 7). 
Note that, in the figures, we quantify time delay relative to the average 
doubling time of a random generalized Lotka-Volterra (gLV)  
system37 (that is, Td, see Methods and Supplementary Note 6) to put 
the delay on a biologically meaningful footing. For example, for bac-
teria that double every generation via binary fission, when τ/Td < 1, 
the delays in the system are less than one generation and so on.

While initially unexpected, the stabilizing effect of short delays 
has an intuitive basis. The relationship between the magnitude of the 
delay and stability is seen in single-species communities (Fig. 3b) as 
well as diverse communities. As such, we can use the single-species 
case to better understand the relationship (Fig. 3c–f). To do this, we 
focus here on a perturbation that increases population size, but simi-
lar logic can be derived for a downward perturbation. We divide the 
response process into three stages according to the per capita growth 
rate after perturbation, where the change in species abundance at 
time t is affected by the abundance at time t − τ due to the existence 
of the time delay. (1) Stage 1 (Fig. 3d–f, red region): here, the species’ 
per capita growth rate equals 0 for time τ because it is determined by 
the species’ abundance before the perturbation (subplot in Fig. 3d),  
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during which the population rests at its equilibrium. During  
this stage, the species’ abundance remains at the perturbed level.  
(2) Stage 2 (Fig. 3d–f, green region): here, the species’ per capita growth 
rate is a negative constant for a length of time τ, because its growth rate is 
now determined by the perturbed abundance level (subplot in Fig. 3d) in  
stage 1. (3) Stage 3 (Fig. 3d–f, white region between dashed lines): here, 
the species’ per capita growth rate is determined by the species’ chang-
ing abundance in stages 2 and 3, and therefore itself keeps changing. 
This stage lasts until the species’ abundance has returned to equilib-
rium, or until the species has gone extinct, and is therefore typically the  
longest stage.

In a single-species situation without time delay, there is no  
stage 1 and no stage 2 (as τ = 0), thus the species recovers monotonically 
to equilibrium following the perturbation (Fig. 3c). For a small delay  
(Fig. 3d), the return to equilibrium is delayed by stage 1, but when the 
return begins (stage 2), the population is now always responding to a 
higher (past) abundance than it would without delays. As a result, the 
rate of return during this stage is much higher than in the no-delay 

case. By the time the system enters stage 3, it is almost at equilibrium; 
hence the overall effect is to reduce the recovery time (that is, increas-
ing stability) compared with a delay-free system. With a longer time 
delay, however, we see a very different outcome (Fig. 3e). Here, the 
rapid return to equilibrium driven by stage 2 is maintained for a long 
period of time and can thus cause the species’ abundance to overshoot 
its initial equilibrium. In stage 3 the system begins to recover from this 
overshoot but does so again with a delay that is sufficient for it to again 
overshoot the equilibrium in the other direction, setting up a series 
of oscillations about the equilibrium. These behaviours mean that  
stage 3 is now much longer than without a time delay, and recovery time 
is therefore increased, resulting in a decrease in stability. Notably, this 
destabilizing oscillatory overshoot follows the same mechanism that 
has previously been recognized to drive instability in single-species 
systems1,23,24. Pushing the time delay further means the overshoot 
of the equilibrium in stage 2 can be so large that species go extinct  
(Fig. 3f), and the system is rendered unstable (see Supplementary  
Note 3 for a theoretical analysis of the single-species time-delayed 
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Fig. 2 | Quantifying the stability of time-delayed ecosystems. a, The responses 
of two three-species communities to perturbations before (left column) and after 
(right column) we introduce time delay. When time delay is absent, community 2 
is more stable since the recovery time is shorter. When time delay exists, 
community 1 is stable while community 2 is unstable. Here we deem that the 
community recovers to the equilibrium if the deviation of each species’ 
abundance from its equilibrium is <0.1% and give the recovery time accordingly. 
b, Black dots represent the eigenvalues of these two communities. The blue 
teardrop-shaped area represents the stability region when time delay exists. The 
eigenvalues of community 1 locate in this region, indicating that it is stable in 
both cases. The eigenvalues of community 2 locate outside of this region, 
indicating that it is stable without delay but unstable when delay exists. c, The 
inverse proportional relationship between recovery time and the maximum real 
part of eigenvalues (that is, −Re (λ1)) of M (given in equation (2)) when time delay 
is absent. This was obtained by perturbing different types (competitive −/−, 

mutualistic +/+ and exploitative +/−) of three-species communities, suggesting 
that −Re (λ1) quantifies the stability of delay-free systems. d, When we impose 
random time delays chosen from [0.5, 1] to communities in c, the inverse 
proportional relationship disappears, suggesting that −Re (λ1) cannot quantify 
the stability of time-delayed systems. e, The inverse proportional relationship 
between recovery time of time-delayed systems and the maximum real part of 
the characteristic roots of equation (3) (that is, −Re (z1)), indicating that the 
stability of time-delayed systems is quantified by −Re (z1). Simulations are based 
on the gLV model shown in Fig. 1. In a and b, we set r1 = 1.5, r2 = 1, r3 = 0.5, si = 1 for 
community 1; r1 = 4, r2 = 3.5, r3 = 3, si = 3.5 for community 2; and A12 = A23 = −0.5, 
A21 = A32 = 0.5, A13 = A31 = 0 for both communities. The time delay considered in a 
and b is 1. In c–e, we consider different types of fully connected three-species 
community with si = 1, ||Aij,i≠j|| is randomly chosen from [0,1] and equilibrium 
abundance of each species is 1.
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system and see Supplementary Fig. 5 for detailed response processes 
under different time delays).

In short, the introduction of time delay prolongs the influence 
of a perturbation (that is, stage 2). However, when the time delay is 
small, this prolonged influence is in fact stabilizing because it pushes 
the species to return to equilibrium more quickly. As the time delay 
increases, the outcome shifts and one sees the more expected oscilla-
tion in abundances because of a mismatch between instant abundance 
and growth rate. When the time delay is large enough, this prolonged 
influence leads to community collapse.

Our main analysis involves several simplifying assumptions, most 
notably that (1) members of a community each experience the same 
level of time delays in their population and (2) regardless of the true 
nature of the interactions within a community, an equilibrium dynam-
ics can be approximated by the simple, direct net effects of species on 
one another (for example, the Aij terms of the gLV model). In reality, 
different species may experience different time delays and interactions 
between taxa can take highly complex functional forms, often mediated 
by external factors such as metabolites or toxins. Incorporating such 
inhomogeneous time delays is challenging, as it again returns us to an 
NP-hard problem36, while explicitly modelling more complex interac-
tions may suggest that delays in species interactions are already implic-
itly embedded in the modelling framework. Nevertheless, we wanted to 
check the robustness of our results to such complexities. We therefore 

numerically studied the effects of both inhomogeneous delays and 
complex interaction forms using a simplified two-species case  
(see Supplementary Note 7). These analyses show that our predictions 
are robust to such changes in assumptions: in both cases where delays 
are on average short, they are stabilizing, but long delays drive instabil-
ity (Supplementary Figs. 19 and 21, note that due to the increased com-
plexity of inhomogeneous delays and modelling metabolite-mediated 
interactions, here we limit our analysis to just two species; it therefore 
remains an important open problem as to whether these results hold 
in more diverse communities).

Delays change which type of community is the most stable
A key question in ecology is how the interactions between individual 
species influence overall community stability4–6,8,9,11,13. In delay-free 
systems, the most stable communities are those in which all species 
interact in an exploitative manner (+/−)4,9, where a common intuition 
provided for this result is that +/− interactions drive direct negative 
feedbacks between species that help to promote stability. Our frame-
work allows us to test whether this prediction holds for systems where 
there are time delays in the responses of species to one another. Impor-
tantly, we find that the introduction of time delays does indeed change 
this prediction. Specifically, we find that above a threshold in the delay 
length, the relative stability of exploitative communities drops sharply 
and becomes comparable to both competitive communities (−/−) and 
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dynamics. Bottom: the corresponding growth rate per capita. The response 
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rate per capita remains 0. In the second stage (green region), the growth rate per 
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lines), the growth rate per capita changes over time. The subplot in d illustrates 
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performed with the unit intrinsic growth rate and carrying capacity.
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those containing a random mix of interaction types. Moreover, this 
leads to a large area of parameter space where random communities, 
that is, communities composed of a mix of +/+, −/− and +/− interactions, 
are the most stable systems (Fig. 4a).

What drives this complex relationship between interaction type, 
delay and stability? A key driver in the shift in the most stable commu-
nity type is the rapid drop in the stability of exploitative communities 
with increasing delay. This drop has an intuitive basis because the 
introduction of time delay shifts exploitative interactions from being 
instantaneous negative feedbacks, which are highly stabilizing, to 
out-of-phase feedbacks, which are much less stabilizing. Introducing 
delays, therefore, has a stronger negative effect on the stability of 
exploitative interactions than the other interaction types, which helps 
to explain why the most stable community shifts to one with a random 
set of interaction types.

More formally, we can understand these patterns by looking at 
the shape of eigenvalue distributions for different systems and the 
stability contour plot (Fig. 4b,c, see Methods). Without delays, sta-
bility is determined by the rightmost eigenvalue of this distribution 
and, because the shape of the eigenvalue distribution changes with 
interaction type, so too does stability. For random communities, the 
eigenvalues are distributed in a circle with radius R (Fig. 4c, first col-
umn). For exploitative communities, the eigenvalues are distributed 
in a vertically stretched ellipse whose horizontal radius is smaller than  
R and whose vertical radius is larger than R (Fig. 4c, second column). For 
competitive communities and mutualistic communities (Fig. 4c, third 
and fourth columns), the eigenvalues can be divided into two parts: the 
bulk of the eigenvalues distributed in a horizontally stretched ellipse 
and an outlier (for competitive communities, this outlier is on the left 
side of the ellipse; for mutualistic communities, this outlier is on the 
right side). This horizontally stretched ellipse possesses a horizontal 
radius larger than R and a vertical radius smaller than R. Without delays, 
therefore, it is clear that the vertically stretched nature makes exploita-
tive communities the most stable community.

The introduction of time delays distorts the stability contour  
plot (Fig. 4b). For small delays, these changes are relatively small  
(middle panel, Fig. 4b) and the stability of each type of community is 
still determined by the rightmost eigenvalue. As a result, exploitative 
communities are still the most stable (upper row, Fig. 4c). However, 
as the time delay increases, the stability contour plot changes further 
and the stability region shrinks (right panel, Fig. 4b). In the face of these 
changes, it is the eigenvalue distribution of the random communi-
ties that maps the best to high-stability regions of the contour plots  
(bottom row, Fig. 4c). As a result, it is random communities that show 
the highest stability for large time delays (see Supplementary Note 4 for 
details). Further analyses of communities with mixed interactions also 
show that communities with mixed interactions are more stable than 
communities with a single interaction type (Supplementary Fig. 11).  
In summary, we find that a diversity of interaction types can lead to 
a more stable community when there are time delays in the system.

Time delays can destabilize large populations
Identifying populations that are at risk of extinction is a central goal 
of ecology38–41. A key intuitive result from existing theory is that species 
or communities with large population sizes at equilibrium are more 
stable38–40. Mathematically, this is because the eigenvalues of 
higher-abundance systems are typically situated more deeply in the 
left half of the complex plane, leading to a higher level of self-regulation 
and therefore a rapid recovery from perturbation (Fig. 5a). Using our 
framework, we can study the nature of this relationship for systems 
where there are time delays in species responses. In the analyses  
above, the community rests at the equilibrium point XXX∗ = 1. To study  
the impact of changing species abundances, therefore, we can  
systematically vary XXX∗.

In contrast to delay-free systems, we find that time delays funda-
mentally change the relationship between average species abundances 
and stability (Fig. 5b). As species abundances increase, stability first 
increases and then decreases. Importantly, a consequence of this is 
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Fig. 4 | A diversity of interaction types can lead to a more stable ecological 
community. a, The relationship between stability and the intensity of time delay 
for different types of community (exploitative +/−, competitive −/−, mutualistic 
+/+ and a random mix of +/−, −/− and +/+). b, Stability contour plot in the complex 
plane at different intensities of time delay. Colours represent the level of stability. 
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delay increases, the curvature of the contour lines increases and the stability 

region shrinks. c, The eigenvalue distributions of different types of community 
with the stability contour plot for small (top) and large (bottom) time delay. The 
region discussed here is marked with the black rectangle in the middle and right 
panels of b. Red dots are the eigenvalues from numerical calculations, while 
black lines are boundaries predicted by theory (Methods). The parameters of all 
communities discussed here are the same as those in Fig. 3a except S = 200, and 
we set τ = 0.2 and 0.5 for small and large time delay, respectively.
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that when species abundances are sufficiently large, the system loses 
stability entirely. This non-monotonic relationship also modulates 
the impact of different interaction types, with random communities 
outperforming exploitative systems in stability at high species abun-
dances. Again, therefore, we find that a diversity of interaction types 
can make the most stable communities (see Supplementary Note 5 
for details).

Discussion
Time delays are expected for many ecological interactions and have 
long been considered important for ecosystem stability1,2,18–27. How-
ever, delays generate an NP-hard problem for diverse communities, 
which has limited our ability to study their impacts36. Here we overcome 
this problem with a novel estimation framework, which allows one to 
comprehensively analyse the stability of large complex systems with 
time delays. A key novel finding from our work is that the relationship 
between time delays and stability is non-monotonic, with small delays 
able to improve system stability. This result contrasts with the existing 
intuition from previous work that time delays are often destabiliz-
ing1,18,19,21–26. We believe that the reason for this discrepancy is primarily 
due to the focus in past work on large time delays, where we also find 
that delays can be destabilizing.

Our work also reveals that with sufficient delay, the identity of the 
most stable communities changes to that of communities with a diver-
sity of interaction types. Moreover, we find that large population sizes 
have the potential to be problematic for stability. This outcome occurs 
because large population sizes can generate strong negative feedbacks 
that, in the presence of delays, can cause large population fluctuations. 
This result is important, as it brings into question the commonly held 
intuition that large populations are the least threatened by extinctions.

Building on a large body of previous work1–16,18–27, here we have 
focused on local asymptotic stability as a measure of ecological sta-
bility. This measure assesses solely whether communities will be able 
to return to their initial equilibria following small perturbations (and 
how this ability is altered by the presence of time delays). However, 
there are many other measures of ecosystem stability2,28,30–32, includ-
ing resistance2,30,31 (how much are abundances changed by a given 
disturbance?), structural stability28 (how broad are the conditions 
for the existence of feasible equilibria?), persistence2,30,31 (will any 
species go extinct following a perturbation?) and more. While these 
measures often correlate with one another2,9,30,31, there is the potential 
for differences. For example, our observation of persistent yet unstable 
coexistence states illustrates how looking beyond local asymptotic 
stability can have value. Exploring whether and how these different 
stability measures are affected by time delays is therefore an interesting  
open question.

Our work has focused specifically on ‘delayed’ interactions, for-
mally defined as situations where a change in the abundance of one 
species is only felt by another after a certain time lag. However, there 
are other ways that the historic state of an ecosystem can influence 
future dynamics. One such example is ‘ecological memory’ wherein 
changes to an ecosystem can have prolonged impacts on future 
dynamics, long after the initial change occurs42. For example, this 
could occur due to species progressively altering the abiotic prop-
erties of the environments in which they reside. As with long time 
delays, ecological memory has been found to destabilize communi-
ties, increasing the time taken to recover from perturbation (although 
memory can also increase community resistance). However, current 
analyses42 of memory effects are restricted to small, purely competi-
tive ecosystems, thus exploring how this and other forms of hyster-
esis impact the stability of different community types, or combine 
with classic interaction delays, presents an exciting open question for  
the future.

In conclusion, we find that time delays have the potential to rewrite 
the principles of ecological stability. Given that these delays are likely to 
be widespread, our work suggests that a better understanding of time 
delays and their impacts is an important goal for ecology.

Methods
Stability analysis of systems with time delay
For the system depicted in equation (1) resting at XXX∗, the dynamics 
around XXX∗ can be obtained by linearization19,22, which yields

dxxx(t)
dt

= diag (XXX∗) JJJ|XXX∗xxx(t − τ).

Here, xxx (t) = XXX (t) −XXX∗  describes the deviation from equilibrium 

abundance, and the entry Jij |XXX∗ = ∂fi(t−τ)
∂Xj(t−τ)

|||XXX∗
 of JJJ|XXX∗ captures the per 

capita interaction strength. We denote JJJ|XXX∗ as J, name J as the ‘interac-
tion matrix’ and name the ‘community matrix’3,4MMM = diag (XXX∗) JJJ, as we 
present in equation (2). For simplicity and in line with previous work9,15, 
initially we set XXX∗ = 1, meaning that all species have the same equilib-
rium abundance (later we explore the effect of population size by 
equally raising or lowering the abundance of all species in the com-
munity). It is interesting to note that previous theoretical results14 have 
shown that relaxing this assumption does not qualitatively impact the 
stability of delay-free systems, thus explicitly exploring the impact of 
similar variable abundances on the stability of time-delayed systems 
is an interesting open question.

The stability of the equilibrium can be determined by checking 
the roots of the following characteristic equation19,22,27:

det (zIII −MMMe−zτ) = 0.

Here I is an identity matrix and M is the community matrix defined 
above. When all roots z have negative real parts, the corresponding 
equilibrium XXX∗ is stable. This equation further generates the decoupled 
characteristic equation (that is, equation (3), see Supplementary Note 
1 for detailed derivation). When Re (z) = 0, by solving the characteristic 
equation, we get the boundary

τ = 1
√x2 + y2

tan−1 (− x
y ) ,

which encloses a teardrop-shaped region (Fig. 1f). If all eigenvalues λ 
of M fall inside this region when plotted as (Re (λ) , Im (λ)), all charac-
teristic roots z will thus have negative parts, rendering a stable system. 
It is worth noting that when time delays are absent (τ = 0), equation (3) 
becomes H (z) = z − λ = 0  and the stability criterion degenerates the 
delay-free case (that is, max (Re (λ)) < 0).

St
ab

ili
ty

Without delay With delaya b

Abundance, X*

0 2 4

0

1

2 Random
+/–
–/–
+/+

0 2 4

0

1

2

Unstable
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Constructing interaction matrices
Following the canonical framework in studying ecosystem stability3,4,9, 
we model different types of community by directly constructing the 
interaction matrix J. For random communities, two species i and j 
interact with probability C, and the per capita interaction strengths Jij 
and Jji take the value of a random variable Z with mean 0 and variance 
σ2 respectively and independently. The diagonal terms Jii, representing 
self-regulation, are all set to −s (s > 0). For communities with complex 
interaction types, two species still interact with probability C. With 
probability Pm, two species interact in a mutualistic manner, and the 
per capita interaction strengths Jij and Jji take the value of |Z| respectively 
and independently. With probability Pc, two species interact in a com-
petitive manner, and the per capita interaction strengths Jij and Jji take 
the value of − |Z| respectively and independently. With probability Pe, 
two species interact in an exploitative manner, and the per capita 
interaction strengths Jij and Jji have opposite signs: one takes the value 
of |Z| while the other takes the value of − |Z |. The diagonal terms Jii are 
also set to −s. The statistical features of the interaction matrix can  
then be extracted for different types of community. For random  
communities, we have 𝔼𝔼 ( Jij,i≠j) = 0, Var ( Jij,i≠j) = Cσ2, 𝔼𝔼 ( Jij,i≠j Jji,i≠j) = 0 .  
For communities with complex interaction types, we have 
𝔼𝔼 ( Jij,i≠j) =  C𝔼𝔼 (|Z|) (Pm − Pc) , Var ( Jij,i≠j) = Cσ2 − (𝔼𝔼 ( Jij,i≠j))

2, 𝔼𝔼 ( Jij,i≠j Jji,i≠j) =
C𝔼𝔼2 (|Z|) (Pm + Pc − Pe) .

The metric of stability for time-delayed systems
Since the level of stability is normally evaluated by the recovery time30,31, 
here we offer the derivation of a new metric quantifying recovery time 
for time-delayed systems. The particular solution of equation (2) can 
be obtained through the combination of ϕi(t) = ezitkkki (t)  (zi is the ith 
characteristic root of equation (3), kkki (t) is an S-dimensional vector 
whose elements are polynomials with respect to t and it is determined 
by the state before perturbation as well as the perturbation). That is, 
xxx (t) = ∑nr

i=1 e
zitkkki (t) (nr is the number of characteristic roots).

When time delays are absent, equation (3) is not a quasi-polynomial 
and has S (number of species) characteristic roots (which are the eigen-
values of M). Therefore, the solution of delay-free linearized systems 
can be represented as xxx (t) = ∑S

i=1 e
λitkkki (t). It is clear that the real parts 

of λ represent the decaying rates of each component of the solution. 
Among these eigenvalues, −Re (λ1) (λ1 is the eigenvalue with the largest 
real part) is the lowest decaying rate and thus determines the final 
recovery time. Therefore, −Re (λ1)  is often used by ecologists to  
quantify the recovery time, and we have

Stability = −Re (λ1).

When time delays are considered, equation (3) has infinite number 
of roots33 and the particular solution takes the form xxx (t) = ∑∞

i=1 e
zitkkki (t).  

It is clear that the real parts of z represent the decaying rates, and 
−Re (z1) now is the lowest decaying rate that quantifies stability. Hence, 
the stability of time-delayed systems can be defined as

Stability = −Re (z1).

The contour plot of stability
To analyse the stability of large complex ecosystems with time delays, 
we depict the stability contour plot in the complex plane. Let 
z = −α + iω,α ∈ ℝ+

0 ,ω ∈ ℝ . Due to the symmetry of z, we only need to 
consider non-negative ω, namely for ω ∈ ℝ+

0. Substituting z = −α + i ω 
into equation (3), we arrive at the boundary for α-stability region

⎧
⎨
⎩

τ = 1
ω
tan−1 ( −αy−ωx

−αx+ωy
) ,

ω = √e2ατ(x2 + y2) − α2.

For λ inside this boundary, the corresponding −Re (z1) > α. For λ 
on this boundary, the corresponding −Re (z1) = α . For λ outside this 
boundary, the corresponding −Re (z1) < α. By increasing α from 0 and 
plotting the corresponding α-stability boundary, the stability contour 
plot in the complex plane can be obtained and is presented in Fig. 4b. 
Indeed, these boundaries form contour lines in the contour plot of 
stability. As the intensity of time delay increases, the curvature of these 
contour lines increases together with the shrinkage of the stability 
region (Fig. 4b and Supplementary Fig. 8). We can see that eigenvalues 
closer to the boundary of the stability region lead to lower −Re (z1), 
that is, lower stability level (see Supplementary Note 2 for more details).

Estimating the stability of large complex ecosystems with 
time delays
Since the endpoints of the eigenvalue distribution are more likely to 
locate near the boundary of the stability region (see Supplementary 
Note 2 for more details), we only need to find three endpoints  
(leftmost, rightmost and uppermost) to estimate the stability of large 
complex ecosystems with time delays. For simplicity, here we  
denote some statistical features of the community matrix M by 
𝔼𝔼 (Mij,i≠j) = E, Var (Mij,i≠j) = V, 𝔼𝔼 (Mij,i≠jMji,i≠j) = ρ.

For random communities3,4,7,9, eigenvalues of M are uniformly 
distributed in a circle with radius √SV  centred at (−s, 0) (see Supple-
mentary Note 2 for detailed derivation). Therefore, the corresponding 
endpoints are

⎧
⎪
⎨
⎪
⎩

Qleftmost (−s −√SV,0) ,

Qrightmost (−s +√SV,0) ,

Quppermost (−s, √SV) .

For communities with complex interaction types4,7,9, eigenvalues 
of M can be divided into two parts: the bulk of eigenvalues are distrib-
uted in an ellipse centred at (−s − E, 0) and an outlier. Lengths of the 
half-horizontal axis and the half-vertical axis of the ellipse are 
√SV (1 + (ρ − E2) /V) and√SV (1 − (ρ − E2) /V), respectively. The outlier is 
Qoutlier (−s + (S − 1) E,0) (see Supplementary Note 2 for detailed deriva-
tion). The corresponding endpoints are then

⎧
⎪⎪
⎨
⎪⎪
⎩

Qleftmost (min (−s − E −√SV (1 + ρ−E2

V
) , −s + (S − 1)E) ,0) ,

Qrightmost (max (−s − E +√SV (1 + ρ−E2

V
) , −s + (S − 1)E) ,0) ,

Quppermost (−s − E, √SV (1 − ρ−E2

V
)) .

Substituting these endpoints into the characteristic equation and 
calculating the corresponding z, we get the estimation for −max(Re (z)).

The average doubling time of a random gLV system
Theoretically, the doubling time of a specific species can be calculated 
through the intrinsic growth rate r, that is, Doubling time = ln2/r. The 
dynamics of a random gLV system can be represented as

dXXX(t)
dt

= diag (XXX(t)) (rrr +AAAXXX(t)) ,

where X(t) is the absolute abundance vector and r is the intrinsic growth 
rate vector. A is the interaction matrix, which is constructed as follows: 
for each pair of off-diagonal elements (Aij,Aji), we draw a random value 
p from a uniform distribution U [0, 1]. If p ≤ C, we draw Aij and Aji inde-
pendently from a distribution with mean 0 and variance σ2. If p > C, we 
assign 0 to both Aij and Aji. All diagonal elements Aii are set to −1. When 
the system rests at a homogeneous equilibrium XXX∗ = 1, which means 
that r + AXXX∗ = 0, the intrinsic growth rate of species i can be derived as 
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ri = 1 −∑S
j=1,j≠i Aij. For a sufficiently large random community, we have 

𝔼𝔼 (∑S
j=1, j≠i Aij) = 0. Therefore, the average intrinsic growth rate can be 

obtained as r = 1, which leads to the average doubling time Td = ln 2 
(see Supplementary Note 6 for more details).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data analysed are simulation data and can be reproduced using the 
codes provided.

Code availability
All computer codes are available at https://github.com/Pawn053/
Stability-of-time-delayed-complex-ecosystems.
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