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Identification of the selective forces that shaped adaptive phenotypes
generally relies on current habitat and function, but these may differ from
the context inwhich adaptations arose. Moreover, the fixation of adaptive
changeinafluctuating environment and the mechanisms of long-term trends
arestill poorly understood, as is the role of behaviour in triggering these
processes. Time series of fossils can provide evidence on these questions,
but examples of individual lineages with adequate fossil and proxy data over
extended periods are rare. Here, we present new data on proboscidean dental
evolutionin East Africa over the past 26 million years, tracking temporal
patterns of morphological change inrelation to proxy evidence of diet,
vegetation and climate (aridity). We show that behavioural experimentation
indietis correlated with environmental context, and that major adaptive
changein dental traits followed the changes in diet and environment but
only after acquisition of functional innovations in the masticatory system.
We partition traits by selective agent, showing that the acquisition of high,
multiridged molars was primarily aresponse to anincrease in open, arid
environments with high dust accumulation, whereas enamel folding was
more associated with the amount of grass in the diet. We further show
thatlong-term trends in these features proceeded in aratchet-like mode,
alternating between directional change at times of high selective pressure
and stasis when the selective regime reversed. This provides an explanation
for morphology adapted to more extreme conditions than current usage
(Liem’s Paradox). Our study illustrates how, in fossil series with adequate
stratigraphic control and proxy data, environmental and behavioural factors
canbe mapped on to time series of morphological change, illuminating the
mode of acquisition of an adaptive complex.

Thetempo and mode of evolutioninresponse to environmentalchange  emerged through time also underpins their use in predictive ecometric
and the role of behavioural innovation in this process' are critical ~ analysis. One of the most striking trends in the mammalian fossil record
for understanding the origin of adaptive traits. Understanding how is the evolution of high tooth crowns (hypsodonty)®~. Species across
functional relationships between traits and environmental variables  many orders of herbivorous mammals became hypsodontinapparent
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response to Late Miocene global shiftsin climate and vegetation, which
saw aridification and the spread of grasslands in Africa, Asia, the Ameri-
cas and parts of the Mediterranean realm. Although this is generally
considered to be a response to increased abrasion from feeding, it is
debated whether abrasive plants (especially phytolith-rich grasses), or
inorganic dust or gritingested with food, are the principal drivers of the
evolution of hypsodonty® ™. Furthermore, the evolutionary drivers of
other dental traits, such as changes in numbers of cutting or shearing
lophs and enamel thickness, are even less well understood.

Here, we focus on Proboscidea (elephants and relatives) from
the Neogene to Quaternary of East Africa, presenting new data on
the abundant fossil remains across a finely resolved stratigraphy that
reveal dramatic changes in hypsodonty and other dental traits**. This
is seen especially in the evolution of true elephants (Elephantidae),
which arose from within a paraphyletic assemblage of ‘gomphothere’
proboscideans (Extended Data Fig.1and Supplementary Information
Section 1) around 10-7 million years ago (Ma) in Africa. There, they
differentiated into several genera including extant African elephants
(Loxodonta) and Asian elephants (Elephas), as well as the extinct mam-
moths (Mammuthus) and straight-tusked elephants (Palaeoloxodon)”,
with parallel changes in dietary adaptation.

Results and discussion

Environmental change drove behavioural exploration of diet
To determine the pattern and causality of these changes (Figs.1-4 and
Extended Data Figs. 2-10), we compared trends in proboscidean dental
traits (Figs. 3 and 4, Extended Data Figs. 6 and 7 and Supplementary
Information Section 2) with a metric (dental mesowear angles'®) that
can be used to quantify the abrasion of enamel ridges on worn molar
lophs/lophids (from here onwards called ‘lophs’) and directly assess
the proportions of graze (grass and potentially other phytolith-rich
herbaceous monocots) and browse (all other plant foods) in the diet”>°
(Figs.1and 2; see Extended Data Fig. 9 for methodology).

We further compare dental morphometrics and mesowear with
(1) direct palaeovegetation data from the proboscidean localities, (2)
mean ordinated hypsodonty of the mammalian community as a proxy
for local aridity and (3) terrigenous aeolian mineral dust flux from
offshore cores asameasure of regional aridity and dust accumulation
(Supplementary Data2 and Supplementary Tables1-3 in Supplemen-
tary Information Section 3).

Previous studies have used §*C ratios asanindex of the proportion
of C3 and C4 plants in the environment and in animals’ diet, generally
taken as an index of browse versus grasses. This indicated that there
was adietary shiftin various mammalian orders, including proboscid-
eans, from browsing to grazing with the C3-C4 transition at around
10-8 Ma in East Africa'**. However, C3 grasses, a potentially impor-
tant dietary and selective factor, are invisible to this method; using
dental mesowear, we demonstrate much earlier episodes of mixed to
grass-dominated feeding within the C3-dominated assemblages of the
earlier Neogene (Figs.1and 2, Extended Data Fig.2 and Supplementary
Dataland2).Moreover, these episodes of dietary variation were closely
linked to the vegetational environments in which the animals lived
(Fig. 2 and Extended Data Fig. 3). Multiple regression commonality
analysis (MRCA), with mesowear as the dependent variable, showed
that the estimated grass percentage in fossil plant communities alone
explains most of the variation in mesowear, whereas the effect of dust
accumulationindicatingaridification is not significant (Supplementary
Table 3). Moreover, the diet of proboscideans varied spatially as well as
temporally (Figs. 1and 2, Extended Data Figs. 2-5 and Supplementary
Information Section4), and most of the variance, especially during the
Late Miocene, was correlated with the estimated proportion of grassin
fossil plant communities. This signals behavioural adaptation to local
context, exemplified by the ‘gomphothere’ Choerolophodon, whose
diet was graze-dominated at Fort Ternan, where pollen combined with
stable isotope analysis indicate an abundance of C3 grasses as well as

sedges and reedmace (Typha)?, then in the Ngorora Formation shifting
tobrowse-dominated feedinginaforest environmentin the Middle Mio-
cene, followed by renewed grass consumptioninthe Late Miocene with
alocal transition from forest to grassy woodland (Fig. 2 and Extended
Data Fig. 2). Spatial accommodation is shown at Moroto I, where the
Early Miocene Progomphotherium grazed in a locally grass-rich habi-
tat, in contrast to the generally forested environments of the time**.
Furthermore, the presence of C4 grasses hasnow beendocumentedin
East Africaas early as the Early Miocene? (Fig. 2c). Thisin turn allowed
flexible niche separation in mosaic environments, where locally open
grass-rich habitats existed in otherwise forest-dominated context; for
instance, at Maboko, where Afrochoerodon kisumuensis grazed in sea-
sonal grassland whereas Protanancus macinnesibrowsed in shrubland
and/or woodland, as suggested by our mesowear data (Extended Data
Fig. 2) and the palaeosol associations of these fossils**. Comparable
results suggesting niche partitioning have been noted for Middle Mio-
cene proboscidean communities in Europe®® and Central Asia”.

This intraspecific behavioural flexibility could have led to specia-
tion of populations exploiting a new feeding niche. Crucially, similar
behavioural ‘experiments’are seenin the transition to C4 grass-feeding
inthefirsttrue elephants (family Elephantidae). Thus, Stegotetrabelo-
donand Primelephas at Lothagam (Lake Turkanaregion, ca. 7.4-6.5 Ma)
grazedinalocally grass-rich paleoenvironment, whereas at other East
African localities ca. 6-5 Ma the same taxa show browse-dominated
dietsin amore wooded habitat (Fig. 2 and Extended Data Fig. 2). This
prefigured the directional trend toward grazing specialization in
elephants that began at ca. 4 Ma (Fig. 1). The C3-C4 transition during
this period may?®® or may not* reflect an overall regional expansion
of grassland, but our collation of local vegetational data show that
from 5 Ma onwards, elephants occupied increasingly grassy areas
(Fig. 2b). This led to an increase in the grass component of the diet
(Figs.1and2a), with potential selective pressure on dental morphology.

Building of an adaptive complex

We mapped the evolution of major dental adaptations in proboscid-
ean molars over 26 million years ago (Myr) (Fig. 3 and Supplemen-
tary Data 3-5). The quantified traits were hypsodonty, the number of
enamelloops (lophs) and their spacing, enamel thickness and enamel
folding, all of which have been broadly considered to be adaptations
for resisting abrasion®. Early grazers Afrochoerodon (blue circles in
Fig. 3) and Progomphotherium (blue ‘Y’ in Fig. 3) developed no clear
dental adaptations to grass-eating, suggesting accommodation by
behavioural means. Dietary flexibility in Choerolophodon, including
mixed feeding in grassy biomes, is associated with thinner, more pli-
cated enamel and slightly elevated hypsodonty in comparison with
other ‘gomphotheres’. These are minor compared with the drasticlater
shifts in elephants, but it is notable that at 12-10 Ma they predate the
increase in dustaccumulation® (Fig. 3 and Extended Data Fig. 6f), imply-
ing that diet is the selective factor.

The derived ‘gomphothere’ Tetralophodon is the probable
sister-group of Elephantidae and is close to its ancestry"”, and sam-
ples dated to 10-9 Ma are taken as the starting point for subsequent
morphological evolution. With third molars comprising 5-7 lophs,
it was derived compared with earlier genera (3-4 lophs, exception-
ally 5). Increased loph count reduces loph spacing (Extended Data
Fig. 6) and is considered to enhance shearing efficiency’°. This transi-
tion was facilitated by the flattening of the ovoid lophs into narrow,
parallel-sided lamellae (Fig.3g-i); these are associated with reorganiza-
tion of the masticatory apparatus to allow proal (fore-to-aft) chewing
atright-angles to the enamel bands, which has been considered to be
the key innovation enabling further dental evolution in elephants?.
We show, based on a test of phylogenetically correlated evolution,
that the major increase in loph count in proboscideans was associ-
ated with and probably depended on the evolution of proal chewing
(Supplementary Information Section 5). Tetralophodon, both at the
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Fig.1|Mesowear of East African Proboscidea26 Ma to present. Each data point corresponds to a molar. Dashed lines mark approximate thresholds between broad

dietary categories (Methods). s.l. refers to sensu lato (in the broad sense).

localities studied here and at Nakali, Kenya (ca. 9.9 Ma), is considered
to show the earliest evidence of proal chewing in the elephant stem
group’. We found browse-dominated mesowear in most individuals,
but afew were mixed feeders (Fig. 1), suggesting that the adaptations
may have evolved as individuals exploited grassy areas in a largely
wooded habitat® Crucially, though, such changes enabled the later
expansion of elephants into increasingly abundant grass-dominated
environments and facilitated later dental changes driven by aridity and
the association of the species with grassland.

Theearliest elephants, Primelephas and Stegotetrabelodon, experi-
menting withgrazing intheinterval 7-5 Ma as discussed above, show a
furtherincreaseto 6-9 lophs, as well as significant thinning of enamel
and the beginnings of enamel folding, but not yet any increase in hyp-
sodonty. Thefirstincrease in hypsodonty is seenin Loxodonta cookei at
6-5Ma (significantly different fromboth Primelephas and Stegotetra-
belodon), and the nextincrease inloph countisin Loxodonta adaurora
at 4.2-4.1 Ma (significantly different from all three) (Supplementary
Table 4). All dental characters subsequently underwent major direc-
tional change across several million years (Fig. 3 and Extended Data
Figs. 6 and 10).

Identifying environmental correlates of adaptive change

Experimental research hasindicated thatboth dietary silicaand exog-
enous dust affect rates of tooth wear?****, To investigate which were
the selective factors for the major trends in hypsodonty and other

dental traits within the Elephantidae, we first conducted ordinary least
squares (OLS) linear modelling (Supplementary Table 2) and MRCA
(Supplementary Table 3), each with one trait as the dependent variable
andinorganic abrasives (proxy for aridity) and dental mesowear (proxy
for diet) as independent variables. Empirical and experimental data
have indicated that mesowear reflects the amount of grass in the diet
rather than the quantity of exogenous mineral dust, providing ameans
of separating the effects of these variables”*°. Although the mecha-
nistic basis of this is uncertain, it has been suggested that it results
from the large grain size of phytoliths compared with dust particles,
or fromgrass leaves acting asamorerigid platform for phytoliths than
for free-moving dust particles.

Our proxy for regional aridity was terrigenous dust accumulation
indeep-seasediment cores fromssite 659 off North-West Africa, which
extendsto23 Maand isthelongest available record from anywherein
Africa®*¢, and from sites 721/722 in the Arabian Sea, which are closer
to our study sites and span the past 7 Ma (ref. 37). Dust accumulation
reflects regional aridity and shows a first-order increase through the
past 7 Ma, with major fluctuations that have been linked to orbital
forcing as well as high-latitude glacial-interglacial cycles after 2 Ma
(refs. 38,39) (Fig. 4b and Extended Data Fig. 6f). As a proxy for local
aridity, we used mean ordinated hypsodonty values of large mammal
communities from the localities. Mean ordinated hypsodonty has
been demonstrated to be a reliable proxy of precipitation today***,
and it can be used to reconstruct precipitation (and hence aridity) in
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Fig.2|Dietary variation of proboscidean populationsinrelation to
vegetation. a-c, Parallel variation in mesowear (dietary proxy) of proboscidean
populations (a) and estimated grass cover of the locality (Supplementary Data 2)
(b) compared with §13C in carbonate nodules of sediments (c). Colours and
symbolsinaareasinFig.1. Examplelocalities are indicated ina with arrows

to highlight parallel variation between the mesowear and grass figures.
Continuous lines connecting points are to aid visual comparison and do not
necessarily indicate atemporal trend. The horizontal dashed line in aindicates
the threshold between purely browsing mesowear angle values (below the

line) and those indicating mixed feeding to grazing (above the line). Note early
episodes of grass-dominated mixed feeding in Choerolophodon ngorora at Fort
Ternan (ca. 14 Ma) and Members A-E of the Ngorora Fm (ca.13.2-10.5 Ma). At

21 Ma, Progomphotherium from Moroto, Uganda, represents the earliest known
evidence for agrass-dominated dietin a proboscidean. Note also the failure of
the 613C signal to identify C3 grassland, as at Ft Ternan. K, Kanjera; KF (KBS),
Koobi Fora, KBS Member; UN, Laetoli Upper Ndolanya Beds; Nkondo, Nkondo
Formation (Fm); Ngo D-E, Ngorora Fm Members D-E; Ngo A-C, Ngorora Fm
members A-C; ULB, Upper Laetoli Beds; UNB, Upper Ndolanya Beds.

terrestrial paleoenvironments'*>. Comparison of dust accumulation
with palaeovegetation has challenged the view that grassland expan-
sion is primarily linked to aridity®*’, and our MRCA results confirm
stronger correlation of diet (mesowear) with grass cover estimates than
with aridity proxies (dust and locality mean ordinated hypsodonty)
(Supplementary Table 3). In addition, proxies indicate locally high
grass cover at sites such as Moroto and Fort Ternan, when the regional
climate was probably not arid. Following these observations, we treat
aridity and grass cover asindependent variables.

The OLS models show that hypsodonty, loph count, relative loph
distance (loph distance/molar width) and enamel thickness have
significant relationships with the aridity proxies (core 722 dust data
and locality mean ordinated hypsodonty) but not with mesowear;
this was valid whether considering all elephantoids or Elephantidae
specifically over the past 7 Ma (Supplementary Table 2). Only enamel
plication was significantly related to mesowear (as well as to regional
dust datafrom core 722) but not to the local aridity proxy (mean ordi-
nated hypsodonty), suggesting a functional response of this trait to
grazing diet (Supplementary Table 2). Similar results were obtained
for all elephantoids during the past 26 Ma, with plication showing an
even stronger relationship with diet, being significantly associated

only with mesowear. There was also arelationship of hypsodonty and
enamel thickness with mesowear, in addition to their relationship
with local aridity.

We alsoran MRCA over the past 5 Ma (the period of steepest direc-
tional change in dental morphology) to quantify the unique effects of
mesowear and aridity on the dental traits (by removing potentially
confounding correlations between them). This was done with both
raw data and detrended data, to account for possible effects of auto-
correlation. We found that local aridity (represented by locality mean
ordinated hypsodonty) and diet, separately or jointly, explained ca.
35-60% of variation in major dental traits, whereas regional aridity and
diet accounted for ca.25-55% (Supplementary Table 3). Hypsodonty,
loph count, relative loph distance and enamel thickness were predomi-
nantly related to the aridity proxies, confirming that they correlate
principally witharidity of the environment, whereas enamel plication
showed a mixed effect of aridity and mesowear.

These observations reflect functional differences across the dental
traits. Hypsodonty increases the durability of the molar in the face of
increased wear rate*, and our results parallel observations in other
large mammals, including suids®and equids*, in suggesting increased
aridity as the main driver of proboscidean hypsodonty. Further, our
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results show thatincrease inloph count was primarily connected with
the unique effects of aridification, suggesting that the primary selective
advantage was durability and functional performancein arid environ-
ments. For enamel plication, on the other hand, both OLS analysis and
MRCA indicated arelationship with mesowear, suggesting that plica-
tion would have been functionally beneficial for grazing elephantoids,
probablybecauseitincreased the length of enamelbands and hence the
shearing efficiency of the molars. A further proportion of variationin
these traits was common to both aridity and mesowear proxies, leaving
open the possibility of joint or synergistic causality.

These correlations across time and space suggest adaptation of
the dental system to arid conditions and resulting increase in tooth
wear. Although dust itself was probably the major selective force in
these trends, plants living under arid conditions also contain more
fibre (sclerenchyma)® and organicsilica (phytoliths)*¢, and C4 grasses
have lower nutrient value than C3 grasses*’*%; this would require
greater food intake overall and more chewing, increasing lifetime
abrasion and potentially contributing to selective pressure for the
dental trends.

The thinning of the enamel bands that bound the lophs was also
correlated only with aridity across the Elephantidae, with additional
influence of grazing dietin the broader 26-0 Ma Elephantoidea analysis
(Supplementary Tables 2 and 3). Enamel thickness, however, is linked
bothintraspecifically and interspecifically to the number and spacing
of the lophs, corresponding to developmental coupling that became
fixed at the species level, probably to maintain shearing efficiency*
(Supplementary Data 6 and 7). The data do not support a model of
enamel thinningasadriver of hypsodonty to compensate for reduced
durability*’. The frequency and amplitude of enamel folding (plica-
tion), however, are inversely correlated with enamel band thickness
intraspecifically and interspecifically in Elephantidae, implying a pos-
sible developmental and functional link that was probably selected
to maximize enamel volume and hence durability despite thinning.
Nonetheless, we also show a relationship between plication and mes-
owear; this suggests that plicationis associated with grazing diets and
may have an adaptive role inincreasing shearing efficiency by adding
contact points between enamel edges as the lophs of the upper and
lower molars slide against each otherin a‘scissor-like’ contact®.

Theratchet effect of stepwise evolution under varying climate
The correlation of dental traits with proxies for aridity and vegetation
strongly suggests an adaptive basis for these traits. We used time-series
analysis toidentify these factors as the original drivers of change. The
increase in hypsodonty and loph count in true elephants after 5 Ma
was not only rapid but occurred in a stepwise fashion. Hypsodonty
shows three major periods of increase (Fig. 4): (1) 5.0-3.75 Ma, culmi-
nating with Loxodonta exoptata at 3.74 Ma (range 3.8-3.5 Ma), Elephas
ekorensis and L. adaurora at 4.15 Ma (4.2-4.1) and ‘Elephas’ brumpti at
3.43 Ma(3.5-3.36 Ma); (2) 2.5-1.5 Ma, culminating with Palaeoloxodon
reckireckiat1.46 Ma (1.53-1.38 Ma); (3) 0.5-0.13 Ma, culminating with
Palaeoloxodonjolensisat 0.13 Ma (n =1only in East Africa, but elevated
hypsodonty is corroborated in referred material from other regions
of the continent’®). The pattern of increasing loph/lamella numbers
parallels the periods of increase in hypsodonty (Fig. 4), whereas the

decreasein enamel thickness was amore gradual process that started
ca.7 Maafter ashift toincreasingly grazing diets (Extended DataFig. 7).

Breakpoint analyses (Fig. 4) revealed a pattern where periods of
rapid increase in hypsodonty and loph count (shaded areas in Fig. 4)
alternate withlonger periods of relative stasis in these traits. Moreover,
thefirstappearance of each of these successively more dentally derived
taxa corresponds to or slightly follows the three major episodes of
elevated dustaccumulationinthe Arabian Searecord through 5-0 Ma
(Fig.4). Thisnotonly strongly corroborates aridity asadriver of dental
evolution butillustrates the cumulative effect of successive pulses of
change. Intervals of low aridity are accompanied by morphological
stasis, not reversal. This indicates a ratchet effect, where the dental
traits successively shifted to a new level with each increase in dust,
remaining at that level until the next pulse pushed them to a further
level (Extended Data Fig. 8). This model also explains the MRCA findings
oflower correlation of morphological traits with regional compared to
local aridity proxies, and the greatly reduced coefficients on removal
of the first-order trend (detrending), as positive correlation at dust
maxima is offset by negative correlation at dust minima.

The ratchet pattern occurred in the context of shifting species
composition through the 7-0 Myr period, providing support for a
neglected butimportant hypothesis of directional evolution. We sug-
gestthatthereplacement of species through timein eachgenusisnot
simply the artificial subdivision of an anagenetic trend. Instead, it is
likely to reflect the hypothetical process proposed by Futuyma® and
Gould®, inwhich ephemeral local adaptations contribute to long-term
trends only when ‘fixed’ by speciation. Otherwise, they would be lost
by continual range-shifting, splitting and merging at the population
level. Hence, speciation facilitates directional evolution “by retaining,
stepwise, the advances made in any one direction... Successive specia-
tion events are the pitons attached to the slopes of an adaptive peak™°.
Directional trends thus resulted in part from aform of population-level
selection whereby only hypsodont populations or species survived
episodes of extreme aridity.

Moreover, our findings of stepwise dental evolution in concert
with peaks inselection pressure support the hypothesis that features
such as hypsodonty are primarily adaptations to extreme rather than
average conditions. The peaksin meandustaccumulation result mainly
from an expansion of variation towards episodic high values (with
medians remaining more constant)®*’. This provides an explanation
for Liem’s Paradox, in which mammalian species at a given time (for
example, today) often have more specialized dentitions than their
observed diets would predict™. Hypsodonty increases the longevity of
molars and allows the consumption of abrasive foods without short-
ening lifespan®. Arising convergently in many mammalian lineages, it
has hardly ever reversed to more brachydont crowns?, implying that
selection did not favour resource conservation in the face of reduced
durability and developmental reorganization.

The adoption of C4 grazing in elephants occurred some time in
the fossil-poor gap between 9 Ma (the last record of their browsing
sister-group Tetralophodon) and 7 Ma (the first record of true ele-
phants). Thelagbetween the adoption of grazing between these dates
and the onset of the major trend in hypsodonty and loph increase at
4 Maled to the question of whether the dental change was adaptive to

Fig.3|Trendsin proboscidean dental traits in relation to aridity.

a-d, Evolution of hypsodonty (a), number of lophs/lamellae (b), enamel
thickness (mm) (c) and enamel plicae frequency (d) in East African Proboscidea
26-0 Ma. Symbols for species are asin Fig. 1; colours mark families or
paraphyletic ‘gomphothere’ group (blue), with eachicon representing one
molar. Lines connect mean values of each taxonomic group per locality and

are for visualization. e-f, Aridity proxies: mean ordinated hypsodonty values

of proboscidean localities (locality symbols are as in Fig. 2) (e), aeolian dust
accumulation data from cores 659 and 722 (f). g-i, Example photographs
illustrating morphology and measurements of molars in lateral and occlusal

views: crown width (W) and height (CH) (hypsodonty = CH/W) (g), loph/lamella
(L) and loph distance (LD) (h), and enamel thickness (ET) and plicae (PL) (plicae
frequency = number of plicae in1 cm of enamel band) (i). Left, P. macinnesi
(Amebelodontidae) m3, Maboko, Kenya (NHMUK-PV-M15541a). Right, P. recki
recki (Elephantidae) M3, Kanjera, Kenya (NHMUK-PV-M15418, reversed).
Photographs are not to scale. The photographs on the left (Protanancus)
represent amore plesiomorphic elephantoid molar and those on the right
(Palaeoloxodon) represent a derived elephant molar. HYP, hypsodonty.
Specimens photographed at the Natural History Museum, London.
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Fig. 4 |Ratcheted hypsodonty and loph countincrease in Elephantidae and
dust flowrecord 7-0 Maasindicated by breakpoint analyses. a, Terrigenous
dust percentage in ODP cores 721/2. b, Hypsodonty of Elephantidae. ¢, Loph
count of Elephantidae. d-fBreakpoint analysis for a-c, respectively. Grey bars
indicate times of increase in each variable delimited by estimated breakpoints
ind-f, transferred to a-c. Both hypsodonty and loph count increases occur
during times of major surge in dust flow, 4.8-4 Ma and 2.3-1.8 Ma, as delimited by
estimated breakpoints, with no or shortlag. A third coincident breakpointin dust

4
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[1 Loxodonta cyclotis

O Loxodonta exoptata

-+ Mammuthus subplanifrons
0 Primelephas korotorensis
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and dental variables is probable between 0.5-0 Ma, but this was not recognized
by the algorithm owing to a lack of data beyond the present. Stasis is seen 7-5 Ma
in Stegotetrabelodon orbus, Primelephas korotorensis and L. cookei; 4-2.5Main L.
adaurora, L. exoptata and Elephas spp; and 1.5-0.5 Main P. recki. Lines inb,c are
for visualization and do not necessarily indicate direct ancestry. L. exoptatais
considered to be close to the ancestry of L. africana”, but the pattern of change
isunknown 2.5-0.5 Ma, indicated by the dashed green line. The dust data are
represented by asmoothing spline curve withR*=0.3and A= 0.015.
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grass-eating butlagged behind the behavioural trigger or was adaptive
toanother selective force concurrent withit'*. The data presented here
suggest that the secular increase in aridity and airborne dust was the
principal driver of the adaptive trend in abrasion resistance. Moreover,
small morphological advances 7-5 Ma are coincident with the begin-
ning of the aridity trend. Lags between the adoption of grazing and
the evolution of hypsodonty have been observed inmammalian guilds
on other continents®***, with hypsodonty suggested as a response to
aridity or grit ingestion®>°°,

Nonetheless, behavioural experimentation with grazing (a form
of phenotypic plasticity that can presage evolutionary change®’) set
the context for morphological adaptation, as early elephants explored
more open environments. Following the innovations of proal chewing
and lamelliform lophs around 10 Ma, loph numbers first increased in
the elephantid precursor Tetralophodon, aprobable response to feed-
ing on low-growing vegetation and the consequent incorporation of
griteven atlow levels of airborne dust. A shift to grazing and increased
aridity beginning around 6 Ma then drove a further increase in loph
count and the first reduction in enamel thickness (Lothagam Stego-
tetrabelodon and Primelephas, dated in the range 7.4-5.0 Ma; Extended
Data Fig. 6a-c). The first major peak in dust flux in the North-West
African core at 6 Ma (Fig. 3f) also corresponds to the first elephant with
elevated hypsodonty (L. cookei). It is matched by only a minor peak
in the Arabian Sea core (Fig. 3f), but a major episode of aridity at this
time in East Africais indicated by pollen spectra from a nearby core*.
Aridity and the prevalence of grass-eating increased further from ca.
4 Ma, the former leading to the major, ratcheted trends in hypsodonty,
loph count and packing, and enamel thinning. Enamel plication is the
trait most clearly associated with grazing diets, enhancing shearing
efficiency by increasing the length of enamel bands.

Theratchet pattern observed here for proboscidean hypsodonty
and loph count may have generality across other mammalian orders
and further traitsincreasing dental durability. Madden® plotted molar
occlusal surface areas of two suid and two primate species from East
Africansitesintheinterval 4.5-1.5 Ma, suggesting that increases coin-
cided with peaksin an offshore dust core, although the relation was not
tested statistically orincomparison with dietary or vegetation proxies.

Diversification and extinction
The pattern of morphological change among African Proboscideaas a
wholeisone of increasing disparity upward from a continuing baseline
of low loph count (two being the minimum possible) and low crowns,
maintained throughout by the browsing deinotheres (Fig. 3, red sym-
bols). Moreover, early experiments in grazing within ‘gomphotheres’
did notlead to substantive dental specialization. Grazing on relatively
high-nutrient C3 grassesin ahumid environment favouringless fibrous
species, together with alow prevalence of dust, presumably maintained
low selection pressure ondental traits. Morphological constraints may
also have played a part: the multiplication of lophs could not commence
until the ‘invention’ of proal chewinginthe precursors of true elephants,
whereasthe development of hypsodonty may have been developmen-
tally inhibited by morphological constraints such as bunodonty and
thick enamel. The acquisition of proal chewing in stegodonts in Asia
(before their dispersal to Africa), in parallel with the elephants, led to
lamellar multiplication but not to hypsodonty increase’. In Africa, the
last-surviving ‘gomphothere’ Anancus underwent only minor parallel
changes: anincrease in last molar loph count by one or two lophs and
development of some enamel plication (Fig. 3 and Extended DataFig. 6).
The expansion of C4 grasslands from 10 Ma and the adaptation
of true elephants to grazing saw a gradual shrinking of proboscidean
diversity, with the extinction of ‘gomphotheres’ (Anancus) at around
4 Ma, stegodonts (Stegodon) at 3 Maand deinotheres (Deinotherium) at
1.5 Ma((ref. 58). This formed part of ageneral decline in megaherbivore
browsers and mixed feeders with the expansion of grasslands®’. The
latest-surviving proboscidean taxain Africa, into the Late Pleistocene,

were the extreme grazing-adapted elephant P, jolensis and the last
representatives of Loxodonta, the extant African elephants Loxodonta
africana and Loxodonta cyclotis (the latter not represented in the
known fossil record). Extreme aridity in the second half of the Pleis-
tocene after ca. 1 Ma appears to have reversed this trend, expanding
shrubby semidesert and disfavouring grazers®®. The dental trends of
Loxodonta progressed in parallel with those of other genera but to a
more moderate extent (Fig. 4 and Extended Data Fig. 7), reflecting a
more generalized diet than that of the grazing Palaeoloxodon that
perhaps explains the sole survival of Loxodonta among African Probos-
cidea. Today’s African elephants are browsers and mixed feeders (Fig. 1)
inhabiting forests, savanna grasslands and desert shrublands, their
broad niche facilitated by the absence of proboscidean competitors.

Methods

Thefossiland extant proboscidean material studied hereis conserved
at the Natural History Museum, London, UK (NHMUK); Museum fiir
Naturkunde, Berlin, Germany; Royal Museum of Central Africa, Ter-
vuren, Belgium; Tsavo Research Station, Tsavo East National Park,
Kenya; the National Museums of Kenya, Nairobi, Kenya; Uganda
Museum, Kampala, Uganda; and National Museum of Tanzania, Dar es
Salaam, Tanzania. Altogether, ca. 500 molars of proboscideans fromthe
past 26 Mawere studied for mesowear and morphometrics, including
32modernsavannaelephant L. africana and 43 forest elephant L. cyclo-
tisspecimens (Supplementary Data 1-5). Taxonomicissues relating to
the samples are discussed in Supplementary Information Section 1.

Mesowear angle measurements and dietary categories

The method used to measure mesowear angles of proboscidean molars
followed the procedure introduced by Saarinen and colleagues',
extended to cover buno-lophodont ‘gomphothere”’ molars and facet
slope-based mesowear angles (Extended Data Fig. 9a-c). All suffi-
ciently preserved molariform teeth apart from dP2/dp2 and dP3/dp3
were scored (Supplementary Data1). For buno-lophodont molars, the
mesowear angle was measured from the deepest dentine valley within
aloph, which corresponds with the practice of measuring from the
middle of worn dentine valleys in elephant molars. We demonstrate
that mesowear angles measured from facet slopes canbe used to com-
plement the mesowear data from dentine valleys, as the difference
between the mean facet and dentine valley angles is negligible and
non-significantin deinotheres that have consistently similar browsing
dietary composition (Extended Data Fig. 9d). Moreover, mesowear
angles measured from dentine valleys and facet slopes have been
shown to be the same within worn ‘gomphothere’ molars®. We suggest
this consistency between facet-based angles and mesowear angles
measured from worn dentine pits and/or valleys is due to processes
that maintain similar mean slopes across worn occlusal surfaces with
similar wear stages and similar dietary composition®2. Comparisons of
the mean slope of worn enamel features at occlusal surfaces between
five wear stages in five extant primate species have shown that with
the exception of nearly unwornand extremely worn molars, the mean
slope of occlusal surfaces remains similar in different wear stages
within species, with differences mainly between species following
dietary differences®.

Mesowear data are graphed either by individual specimen (Fig.1)
or as species means per site (Fig. 2a). We followed the principle of Hoff-
man and Stewart’s definition®® of dietary categories as browsing (less
than10%grassindiet), grazing (more than 90% grass in diet) and mixed
feeding (10-90% grassin diet). However, our thresholds between broad
dietary categories were based on regressions between mesowear and
stable carbon isotope proxies of diet in East African proboscideans®,
and owing to a possible effect from C3 as well as C4 grasses we set the
grazer signal at valuesindicating more than 70% C4 plants. Moreover,
the threshold mesowear angle marking -70% grass in diet has been
modified from124°to117°based on arevised mean of mesowear angles
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corresponding to 8“C > 2%, (Supplementary Data 2). Species and/or
site means are used in statistical analyses.

Dental morphometrics

Morphometric data were collected from last molars (M3 and m3) for
elephantoids (Mammutidae, ‘gomphothere’ families, Stegodontidae
and Elephantidae), whereas for Deinotheriidae, second molars (M2 and
m2) were included to enhance sample sizes, because of the structural
and morphological similarity of second and third molars in deinoth-
eres.Some M2/m2 data, for enamel thickness only, were alsoincluded
for Tetralophodon to increase the sample size. Proboscidean molar
morphology is discussed in Supplementary Information Section 2.
The measurement protocol is shown in Fig. 3e and is based on those
of Lister and Sher®* and Beden®. Molar crown width was measured as
the greatest width along the molar crown, including cement. Crown
length is the greatest length of the crown normal to the average ori-
entation of lamellae. Crown height was measured as the height of the
anteriormost unworn loph/lamellainthe molar fromthe bottomto the
top of the crown (this measurement was only taken from unworn and
moderately worn molars on unworn lophs/lamellae). Hypsodonty was
calculated as: (crown height/crown width) x 100. Numbers of lophs/
lamellae were counted only for complete tooth crowns that had not
lost lamellae, excluding anterior and posterior cingulae (‘talons’). The
distance between lophs/lamellae was measured from the midline of a
loph/lamella to the midline of the following loph/lamellaand averaged
acrossall pairs of adjacent lophs/lamellae. Enamel thickness was meas-
ured parallel to the walls of an enamel ridge exposed by wear (not along
inclined enamel surfaces). Enamel thickness was measured at three
points onthe molar surface (where possible) and averaged. Frequency
of enamel plications (plicae frequency) was counted as the number of
enamel folds in a1 cm length of a fully exposed enamel ridge on the
worn occlusal surface of the molar. Plicae frequency was also measured
atthree points onthe worn occlusal surface (when possible) and aver-
aged. Plicae amplitude was measured as the distance between three
upper and lower peaks of plicationin the enamel band. Where possible,
this wastaken at three points within the enamel band and averaged. The
dental morphometric data can be found in Supplementary Data 2-5.

Patterns of dental trait evolutionin relation to phylogeny and
taxonomy
Weinterpret the successive appearances of more derived morphology
with the Elephantidae, interspersed with episodes of stasis (Figs.3 and
4 and Extended DataFigs. 6, 7and 10), as reflecting atrue evolutionary
pattern despite the uncertainty of the precise relationships among
the species and subspecies in the sequence. The first appearance of
each morphotype in East Africa generally represents its global FAD
(firstappearance datum)®; indeed Fortelius et al.*’ suggested that the
Turkanaregion, with early aridification, probably acted asa‘species fac-
tory’ where many groups of mammals first started to adapt to expand-
ing grasslands and seasonally dry climatic conditions. Hence, there is
no evidence of immigration masquerading as in situ evolution, even
where the immediate ancestor of a newly appearing morphotype is
unidentified. Moreover, trait evolution was remarkably parallelamong
genera (Extended DataFig. 7); thatis, shifting the generic attribution of
aspecies would not affect the overall pattern. Finally, episodes of stasis
within species are robust irrespective of generic assignment. In the
figures, lines connecting chronologically successive samples are to aid
visualization and do not necessarily represent direct lines of descent.
We tested the hypothesis that major increases in loph countin pro-
boscideans (beyond fivein last molars) were facilitated by the evolution
ofapropalineal (proal)—that s, fore-aft—chewing cycle by performing
Pagel’s test® for the global proboscidean supertree of 185 species of
proboscideans presented by Cantalapiedraetal.”®. For comparison, we
similarly tested whether the evolution of hypsodonty in proboscideans
was phylogenetically correlated with the evolution of proal chewing.

The trait data used in the analysis are provided in Supplementary
Data 8. The results are presented in Supplementary Information
Section 5 (and Supplementary Tables 5and 6 there).

Stratigraphy and palaeoenvironments

Thesstratigraphic age of the proboscidean specimens was based mainly
onradiometrically dated volcanic tuffs®7° (Supplementary Data2-4).
Where arangeisgiven, the median age is used in graphing and analyses.
Estimates of grass percentages of the vegetation in paleoenvironments
are based mainly on published pollen and plant macrofossil records,
with additional information from mammalian and molluscan assem-
blages, phytoliths and soil carbonate 613C records (Supplementary
Information Section 6). We acknowledge the most recently published
estimates of presence of C4 photosynthesizing grasses in the Early
Miocene®. However, because of the non-analogue nature and highly
heterogenous signal of vegetation proxies for the Early Miocene locali-
ties, and the fact that some of the evidence for abundant C4 grassesin
Rusinga, for example, does not come from the same level as the pro-
boscidean fossils, we collated acombination of studies and proxies for
the estimation of grass percentage of the vegetation for Early Miocene
localities (Supplementary Information Section 6). The relationship
of grass percentage with soil and enamel carbon isotope records,
especially in relation to the role of C3 grazing, is further explored in
Supplementary Information Section 4.

Therecord of aeolian (terrigenous) dust accumulation during the
past 7 Mais based on deep-sea sediment cores from the Arabian Sea®
and North-West Africa®¢, whichreflect the influx of aeolian dust from
the hornof Africaand the north-west Sahara, respectively. The Arabian
Searecord (Ocean Drilling Program (ODP) Sites 721 and 722) of terrig-
enous dust percentage, spanning ca. 8 Myr, is close to our study area
and is therefore used in the OLS multiple linear regression model and
MRCA (see below). The bottom part of the core (7-8 Ma) is, however,
considered tobe unreliable (P. deMenocal, personal communication)
and is therefore excluded. The West Atlantic record (ODP Site 659) of
dust flux is corrected for sedimentation rate and dry density* and
extends to ca. 23 Ma, so it was consulted for the first-order pattern
across the whole time interval, given evidence that major patterns of
aridification are broadly continent-wide®®”". We took raw data from
the source references and fitted a smoothing spline curve for graph-
ing, maintaining R* values of ca. 30% in the interpolation of the raw
data. For OLS analysis and MRCA, we averaged dust percentage or flux
values across the age range of the sample (Supplementary Data 2).
Locality mean ordinated hypsodonty values were obtained from the
NOW-database (data (https://nowdatabase.org/now/database/) by the
NOW Community/ CC BY 4.0), and from additional literature sources
(see Supplementary Data 2).

Extended DataFig. 10 presents asummary of all the essential data
used inthe analyses for visual inspection and comparison.

Statistical analyses

Dietary differences among proboscidean species and populations
(Extended DataFig. 2) were tested with pairwise Wilcoxon tests onthe
sample means of mean mesowear angles using SAS JMP Pro 14.

We used an OLS approach for regressions between the time series
of dental traits, dietary proxies (mesowear) and aridity proxies (local-
ity mean ordinated hypsodonty and dust accumulation record from
the marine sediment cores). The potential effect of autocorrelation
(in particular, the autoregression—that is, the autocorrelation of
residuals—between time series) should be accounted for in analyses
of time series. As a first step, therefore, we tested for autoregression
by performing Durbin-Watson tests’” for the complete elephantoid
data from 26 to 0.13 Ma, using R package ‘car’ in RStudio v.3.5.3. The
Durbin-Watson tests, which compare adjacent data pointsin a time
series, did notindicate significant autoregression for any of the dental
traitsinamultiple regression model that had mesowear, core 722 and
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core 659 dust data and locality mean ordinated hypsodonty as the
independent variables (Supplementary Table 1). Based on the lack of
autoregression, the correct models to chooseinthese cases were OLS
rather thanautoregressive-moving average models””*. Note that in the
OLSresults (Supplementary Table 2), significant values have negative
signs for loph distance/crown width and for enamel thickness; this
is because these variables reduce in value in response to an abrasive
diet (lophs pack more closely and enamel becomes thinner), whereas
hypsodonty and loph number increase.

To explore the correlates (putative causal factors) of dietary
change, climate and dental morphology, we used MRCA””¢, imple-
mented in IBM SPSS Statistics v.25. This method partitions variance
into that explained uniquely by each of the predictor (independent)
variables and that which is explained by them in common but can-
not be uniquely allocated. The method was used to explore (1) how
much of the variation in mesowear was explained by terrigenous per-
centage or estimated grass percentage and their ‘common’ (that is,
indivisible) effects; and (2) how much variation in dental metrics was
explained by terrigenous percentage, locality mean ordinated hyp-
sodonty, mesowear and their common effects. The mesowear analysis
was run across all proboscidean populations excluding deinotheres
(means extracted from Supplementary Data 2, n = 81); modern African
elephants were excluded because their habitats, and therefore prob-
ably diets, have beeninfluenced by anthropogenic factors””; 0.13 Mais
the age of the youngest fossil data point, P.jolensis from Natodomeri.
The dental trait analysis was run on all elephantid populations from 5
to 0 Ma (including modern African elephants); means were extracted
from Supplementary Data 4, n = 41). To account for possible effects
of autocorrelation, we performed the analyses with detrended data
(datawithlinear trends through time removed) as well as the original
data. The detrending reduced the overall robustness of the models
drastically but proportional unique versus common effects of mes-
owear and the aridity proxies (locality mean ordinated hypsodonty
and terrigenous dust) on dental traits were mostly retained; however,
the unique effect of mesowear on loph packing (loph distance/molar
width) and enamel thicknessincreased (Supplementary Table 3). Note
that negative coefficients in MRCA indicate that the variable is acting
to ‘suppress’ the effect of another and are subtracted in the calculation
of total explained variation”™.

Interrelationships among dental parameters are strongly collinear
acrossspeciesand populations (Supplementary Data9 and 10), sototest
for probable functional links we used partial correlation analysis (imple-
mented in Statistica 13.3, Tibco). Analyses were run separately across
allelephantid population means (extracted from Supplementary Data
4,n=41)and allnamed species or subspecies means (Supplementary
Data5, n=16)withcrownheight,loph/lamellacount, lamellar frequency,
enamel thickness, plicae frequency and plicae amplitude as variables.
Ineachrun, the partial correlation of one pair of variables was obtained,
with the other variables kept constant (Supplementary Data 6).
Crown width, as a measure of molar size, was included as a covariate
inpartial correlation analyses. We therefore used crown height rather
than hypsodonty in these analyses as the latter (hypsodonty = crown
height/crown width) is already corrected for crown width. Similarly,
lamellar frequency, anindex of the spacing between lamellae or lophs,
is influenced by both loph count and (inversely) molar size’®. Partial
correlation analyses were therefore run both with and without crown
width as a covariate, in the latter case allowing lamellar frequency to
reflect the absolute spacing between lophs (and hence enamel bands),
of probable functional significance irrespective of molar size.

Correlations within species are likely to reflect developmental
links, but too few specimens preserve all measurements for partial
correlation analysis, so product-moment correlation coefficients
were obtained for each pairwise combination of variables; this yielded
a limited, meaningful set of significant correlations (Supplementary
Data 7). For bivariate intraspecific correlations, we analysed both

lamellar frequency, and lamellar frequency x crown width against
other variables; the latter effectively corrected for theinverse relation
of lamellar frequency to crownsize.

P <0.05was considered to indicate statistical significance, but
we also note results where 0.05 <P < 0.10 as potentially significant,
especially where sample sizes were low”’.

Finally, we tested a hypothesis of a ‘ratchet effect’ of the regional
proxy of climatic aridification (core 722 terrigenous dust percentages)
ondental traits using breakpoint analyses and broken-line regressions
with the R package ‘segmented’in RStudio v.3.5.3 (ref. 80). Significant
breakpoints wereidentified in the core 722 terrigenous dust percentage
dataandinhypsodonty andloph counts of elephants, and we compared
these patterns to identify aratchet effect between aridification (dust
accumulation peak) events and incremental increase in hypsodonty
and loph count. The most recent (Middle Pleistocene to extant) Loxo-
dontawere excluded from the breakpoint analyses because of the long
gap in the occurrence of this genus in the East African fossil record
between ca.2.5and 0.5 Ma and the subsequent uncertainty about the
area of occurrence and habitats of Loxodonta during this time.

Reporting summary
Furtherinformationonresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alloriginal data used in the study are included in Supplementary Data
1-10 and in the figshare online repository (https://doi.org/10.6084/
mo.figshare.23276126). The proboscidean supertree data used in
Pagel’s test (Supplementary Information Section 5) has been previ-
ously published by Cantalapiedra et al.®.
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Extended Data Fig.1| Cladogram of East African Proboscidea from the last
26 Ma. Deinotheriidaeisindicated in red colour, basal stem of Elephantoideain
grey, Mammutidae in brown, Stegodontidae in black and Elephantidae in green.
The families shown in blue are often grouped informally as ‘gomphotheres’.
Nodes indicate relationships but not precise divergence ages. The cladogramis

based on the Proboscidean supertree of Cantalapiedra etal.’®. The dashed line
from Elephas/Mammuthus to Palaeoloxodon indicates a suggested influence
of hybridization into Palaeoloxodon from those lineages (see references in
Supplementary Information1).

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-023-02151-4
p = 0.05
p=|0.02
p=g.05
p=0.03 :
. pE00
p =0.04 : ,'p
p=004 P -59-003:
0.05 p =0.03 p=0.01 p.=;0'°1 :
p=0. =0.01 p=0.03 =0.0005 p = 0.05 p=0.006
— P pZ0.  E—
135 ] ¥
130 ]
] A n
125 |
] 0 + <
120 ] <o
115 ] + <o
° Y X x X Zz
2110 | A 3
s A 2% KRp - - - -@P-f L AT b - - - ﬁ S— -
g ] X
€100 | §§ X v +
< _ X Z
S 95 \Y x = + Z
90 | X
85 | >
80 X
75 T T T © T T xI T c>I oI T T T T T T T U)I (I)I wl T T T OI T T OI oI T T ©
S = ®© x~ o) © c c c O O w w 2 @ » IS € o o o] ©
2223322 EEI3ad4F::585058§ 5§ c¢edg2
2§53 223 58 g8 Qg8 g g g g 22 28 8 g 3 = = 22 8 ¢ ¢
22 € 4 =222% L g 8889 33 3% %85 23322888
=24 £ < s s L 98 &2 2 2 > 5 E E E T J 2 ¥ 0¥ Qv
& -8 Z 31 22288 3x 88" < ¥ 2
o o z 7 o - F g
o © °c 0o @ 3 &
Y Progomphotherium maraisi X Prodeinotherium hobleyi
X Archaeobelodon sp. Y Deinotherium bozasi

Extended Data Fig. 2| Mean mesowear angles of selected proboscidean
populations from East African Miocene localities. Mean mesowear angles of
selected proboscidean populations from East African Miocene localities, with
two-sided pairwise Wilcoxon tests. Symbols show mean mesowear angle of each
specimen; diamonds show population mean (central line) and 95% confidence
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interval (upper & lower line). Localities arranged left to right in approximate
order from oldest to youngest. The dashed line indicates tentative threshold
value of mean mesowear angle (106°) separating browsers (<10% grass in diet)
from mixed-feeders and grazers (>10% grass in diet). Statistically significantly
different p-values are indicated for selected population pairs.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02151-4

a
MeanMW = 95.41842 + 0.3194558*Grass
125 =
R®=0.63 AL
1204 p<0.0001 o
115
E 110
c
(]
[}
= 105
100 +
95
90 T T T T T T T
0 10 20 30 40 50 60 70 80
Grass %
b MeanMW = 100.26361 + 0.2891796*Grass
125 —
R*=0.70
120  p<0.0001
115 Z
g 110+
c
[
(5]
= 105
100 .
95
90 T T T T T T T
0 10 20 30 40 50 60 70 80
Grass %
O Buluk <1 Upper Burgi I Nariokotome
-+ Chemeron1 > Laetoli ULB Ngorora D-E
<& Chemeron2  /\ Laetoli UNB + Ngorora A-C
X FtTernan Lomekwi < Nkondo
A Kalodirr < Lothagam Olduvai Il
Kanapoi Karungu A Olduvai lll-IV
Z Kanjera > Lukeino Y Rusinga
* KBS Moroto Il Zu Lomekwi
O Okote Kajong (Mwit) ~ ** Warwire

Extended Data Fig. 3| Ordinary least squares regressions between estimated

percentage of grass cover and mean mesowear angle of proboscidean guild
withinlocalities. a) Mean mesowear angle of all proboscideans (including

deinotheres) within localities (n = 27,R*= 0.63, p = 0.0000008) and b)

figuresaandb.

mean mesowear angle of elephantoid proboscideans only, that is excluding

deinotheres (n=27,R*=0.70, p = 0.00000004). Both show significant positive
correlations between mean mesowear of proboscideans and estimated grass
percentage. 95% confidence limits of fit are indicated as dashed curvesin

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article https://doi.org/10.1038/s41559-023-02151-4

mean mesowear (all) mean mesowear (no deinotheres)  estimated grass %

Early Miocene (22 - 16 Ma)
. A . ml.\
Vi
.. ~

A&'\\///

Middle Miocene (16 - 11 Ma)

o
d

]

”

early Late Miocene (11 - 9 Ma)

7

Late Miocene (9 - 5 Ma)

L)
" "
Mean mesowear angle - 120  Estimated grass % - 70
115 50
112 40
107 30

. -0 o
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Extended Data Fig. 6 | The timing of dental trait shifts through time in
relation to each another and aridity proxies. Timing of morphological

shifts across the Proboscidea (minus deinotheres) (a-e), and terrigenous dust
accumulation (f) 23 - 0 Ma. a) number of lophs/lamellae, b) loph distance /
molar width (inverse of LF*W; see Methods), ¢) enamel thickness, d) plicae
frequency, e) hypsodonty and f) smoothing spline fit of core 659 dust influx data
(dottedline) and core 722 dust % data®. Solid horizontal lines in (a)-(e) indicate

means of ‘gomphotheres’ up to 10 or 5 Ma, and of Tetralophodon and/or

early elephantids 10-5 Ma; solid diagonal lines indicate regression of main
directional change since ca. 6-4 Main derived Elephantidae. Vertical dashed
lines mark beginning of morphological shifts at 10 Ma (increased loph count
and packing) and at 6-5 Ma (hypsodonty increase). Short dashed lines indicate
means or regression lines for Anancus (a - d), Loxodonta cookei (e) and
choerolophodonts (d).
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Extended Data Fig. 7| Trends across population means in loph distance / molar width (a), enamel thickness (b) and plicae frequency (c), separated by
elephantid lineages 7 - 0 Ma. Note that the y-axes for (a) and (b) are reversed showing decreasing values towards the top of the figure to aid visual comparison with
the other traits. Compare with Fig. 4.
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Extended Data Fig. 8 | Schematic diagram showing possible evolutionary stasis during environmental reversal. Pale green line: the trait has reached a
responses to an increasing but fluctuating environmental driver (selective maximal or optimal value after two increases and remains in stasis thereafter (as
force). Inthe tracking response (red) evolutionary traits revert when the inLoxodontain the present study).

environment reverses. In the ratcheted response (green), the traits remain in
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Extended Data Fig. 9 | Measurement of mesowear angles (angle a) of
proboscideans (a-c), and comparison of mesowear angles measured from
dentine valleys vs. facet slopes in Deinotheriidae (d). a) in Elephantidae the
mesowear angles were measured on lamellae in medium wear stage by placing
the tip of the angle at the bottom of a worn dentine valley and the sides of the
angle tangent to the top of the adjacent enamel ridges'®. Mean mesowear angle
per tooth was calculated as a mean of angles measured from three central worn
lamellae in the molar. b) In ‘gomphotheres’, the mesowear angles were measured
similarly to elephantids, by placing the tip of the angle at the deepest point of
worn dentine valley within a lophid, with the sides of the angle touching the
tops of the enamel ridges. ¢) Mainly in Deinotheriidae (and some specimens

of Mammutidae and ‘Gomphotheriidae’s.l.), the mesowear angle data were
complemented by angles measured from wear facets in worn lophs (angle b).
The latter was measured by placing one side of the angle parallel to the level of
the tooth crown base and the other side parallel to the slope of the facet, the

110 ——

105+

1001 ¢

90

Mean mesowear angle
©
Q

85

80

dentine valley facet

mesowear angle then calculated as a =180°-2*b. Example specimens shown: a)
M3 (dext.) of Elephas atavus (Elephantidae), Olduvai Bed I, Tanzania (NHMUK-
PV-M14691), b) M3 (sin.) of Protanancus macinnesi (Amebelodontidae), Maboko,
Kenya (NHMUK-PV-M15530) and ¢) m3 (sin.) of Deinotherium bozasi, Olduvai
Bed II, Tanzania (NHMUK-PV-M14119). d) Two-sided pairwise Wilcoxon test
comparison of mesowear angles measured from worn dentine valleys (n =11)
and from wear facets in enamel (n = 16) in Deinotheriidae. In the box plots, the
central line within the box marks the median, the lower boundary of the box
marks the first quartile (25th percentile), the upper boundary of the box marks
the third quartile (75th percentile) and upper and lower lines of the whiskers
mark the maximum and minimum values, respectively. The mean difference (2°)
is non-significant (Z =-0.67, p = 0.5) and is within the margin of measurement
error for anindividual angle. Specimens photographed at the Natural History
Museum, London.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02151-4

Mesowear

«! V

Loph count

Plicae frequency

Aeolian dust flux

Estimated grass %
4 % HE‘E’.‘Q“?‘A“‘V’ 2
I

® Elephantidae

® "Gomphotheriidae’
©® Mammutidae

® Stegodontidae

® Deinotheriidae

» outlines:

o )
+ Anancus kenyensis

© Anancus ultimus

% Archaeobelodon sp.

A Choerolophodon ngorora
< Gomphotherium sp.
Anancus

5 "Elephas” bru

V Protanancus macinnesi
< Tetralophodon sp.
v Elopiras glarensic

*Elephas” shungurens:s

Prodeinotherium Afrochoerodon ; Q Tﬁ\E L i& éi ; &

Eozygodon Archaeobelodon ; g \ & l

Loxodonta adaurora

Palaeoloxodon recki

Elephas atavus

maraisi * Elephas atavus

+ Mammuthus subplanifrons

~ Loxodonta adaurora adaurora © Primelephas korotorensis
/ Loxodonta adaurora kararae >

\ Loxodonta africana
= Loxodonta cookei

Loxodonta africana  Loxodonta cyclotis

Extended Data Fig. 10 | Summary figure. Summary figure of phylogeny, diet

and dental traits of Proboscidea, and environmental proxies, during the last

26 million yearsin East Africa. From left to right: East African proboscidean
phylogeny based on Cantalapiedraet al.*;

proboscidean taxa; dental traits (hypsodonty, loph count, enamel thickness and

; mean mesowear angles of

mean plicae frequency [on1 mm of enamel band]); aeolian dust records from

deep-seasedimentary cores; and grass % estimates of plant communities based
onsources summarized in Supplementary Information and Supplementary Data.
The vertical lines in the mesowear figure indicate approximate threshold values

0 Loxodonta cyclotis
© Loxodonta exoptata

orbus

> Palaeoloxodon recki recki
 Palagoloxodon jolensis
2 Stegodon kaisensis

- L

p. VE
recki leretensis x

rygodor

hobleyi

¥ Deinotherium bozasi

Ratchet effect of dust (aridity) on dental traits:
~ — = Hypsodonty trend (from breakpoint analysis)
~ = = Loph count trend (from breakpoint analysis)

Dietary interpretation from

mesowear:

Climate interpretation from
dust flux data:

@ = %

Browsing  Mixed-feeding Grazing

Humid

Arid

—— Core 659 dust influx
(top horizontal axis)

= =+ Core 722 aeolian dust %

(bottom horizontal axis)

® Buluk
A Fort Ternan

¥ turi-Bwamba Forest

= Kalodirr

* Kanapoi

3 Kanjeraltoma Montain

» Karungu

7 Kpsaraman (Tugon Hills)
1 Koobi For.

S Koobi Fora Lokochm)

0 0 0 0 I ? «
1 1 1 1 > °
2 2 2 2] ¥ % - 2 u\vh/\" .
3 3 3 3] 8 p° 3 =
o Fo e 1 o oy g 77 LS
5 5 5 o8 5] 2,° . 5] x ©
6 H 6 6 Bty 6] ¢ + 83 z
7 w 7 7 o 3 7] So T~ 0
8 : 8 8 8 8
9 . 9 9 e 9
1 * : 1 10 . <o F ° 10 N
1 : 1 1 B "ot 1
12 H 12 12 A 12 N 2] <
13] : 1 13] 13 13
14] x : 14] 14 14] v 1 v 14. N
18] x % o 15] 15] « oy 18] 15] av 15:
16} Voo 16] 6 16} “ 18] © 16 =
17] T 17, 17 Ly 17] 17 g 7] .,
1 )k oxy t 1 18] % 18] x ™ 18] 18p
19) [ 19] 19] 1 19 19.
20 FXno 2 20] 2 2 20 *
2 . HE R 21 2 v 21 21 M
22) [ 22 22 22 22 22!
23] . 23] 23] 23 2 23]
24 HE 24| 24 24] 24 24]
25] [ 251 25| 25 251 25
Py > ol o o 2 x 6 6
80 90 100 110 120 130 40 80 120 160 200 0 2 4 6 8 10121416182022 1 2 3 4 5 6 7 012345678 15 20 25 30 35 10 20 30 40 50 60 70

< Laetoli (ULB)
> Laetoli (UNB)

& Lomekut (West Turkana)
0 Lothagam, Nawata
C Lower Chemeron (Tugen Hills)
Z Lukeino (Tugen Hils)
Y Mor¢
+ Mpeswda (Tugen Hills)
& Nackukui (West Turkana)
< Ngorora A-C
> Ngorora D-E
X Nkondo FM
A Olduvai Bed |
V Olduvai Bed II

— Olduvai Beds III-IV

in

u
A Koobi Fora (Lokochot/Tulu Bor) \ Tsavu East
e)

V Koobi Fora (Okots
0 Koobi Fora (Upper Burgi)
* Koru

Upper Chemeron (Tugen Hills)
N Upper Lomeiari, West Turkana
wWarwire

dividing browsing, mixed-feeding and grazing dietary signals. The vertical lines
inthe hypsodonty figure represent thresholds between brachydont, mesodont
and hypsodont crown height categories. The patterns of average hypsodonty
increase (red dashed line) and average loph countincrease (blue line) during
the last 7 Ma are shown to demonstrate the ratchet effect of the aridification
peaks (core 722 dust data) on these dental traits. The outline reconstructions

of example proboscidean taxa are made by ). Saarinen based on available

craniodental and postcranial evidence from East African fossil record, in some

cases completed based on additional information from closely related taxa.
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