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Limits to the accurate and generalizable use 
of soundscapes to monitor biodiversity

Sarab S. Sethi    1,2 , Avery Bick3, Robert M. Ewers    4, Holger Klinck5, 
Vijay Ramesh5,6, Mao-Ning Tuanmu    7 & David A. Coomes    1

Although eco-acoustic monitoring has the potential to deliver biodiversity 
insight on vast scales, existing analytical approaches behave unpredictably 
across studies. We collated 8,023 audio recordings with paired manual 
avifaunal point counts to investigate whether soundscapes could be used 
to monitor biodiversity across diverse ecosystems. We found that neither 
univariate indices nor machine learning models were predictive of species 
richness across datasets but soundscape change was consistently indicative 
of community change. Our findings indicate that there are no common 
features of biodiverse soundscapes and that soundscape monitoring 
should be used cautiously and in conjunction with more reliable in-person 
ecological surveys.

Anthropogenic pressures are impacting biodiversity globally1. Declines 
in species richness catch headlines2 but changes in community com-
position can have just as devastating ecological effects3. To design 
evidence-based conservation measures, monitoring biodiversity is 
essential and listening to the sounds produced by an ecosystem (acous-
tic monitoring) holds promise as a scalable and inexpensive way to 
achieving this4.

Many species contribute to an ecosystem’s soundscape, whether 
through producing vocalizations (for example, birdsong), stridula-
tions (for example, cricket chirps) or as they interact with the envi-
ronment (for example, the buzz of a bee). Streaming5 or recording6 
soundscapes across huge scales is now common7–9, yet interpreting 
the audio to derive biodiversity insight remains a challenge. Auto-
mating the identification of stereotyped sounds in audio record-
ings10 can provide species occurrence data on large scales, building a 
bottom-up picture of biodiversity. However, vocalization detection 
algorithms rely on vast amounts of training data11, meaning even 
state-of-the-art models are only able to reliably detect vocalizations 
from the most commonly found species12. An alternative top-down 
approach is to use the features of an entire soundscape to infer bio-
diversity13. Entropy-based acoustic indices13 or embeddings from 
machine learning models14 have both been used to predict community 
richness or ecosystem intactness with some success when calibrated 

using trusted independent sources of ground-truth biodiversity data 
(hereafter, ground-truth data)15,16. Nonetheless, soundscape features 
which correlate positively with biodiversity at one site can have an 
inverse relationship in another17,18 and no reliable single metric has 
been found19. The inability of both vocalization detection and sound-
scape approaches to generalize has meant that acoustic monitoring 
has only provided ecological insight in already well-studied regions 
and the technology’s transformative potential has remained largely  
unfulfilled.

We collated 8,023 short (1–20 min) soundscape recordings col-
lected concurrently with manually recorded avifaunal community 
data from four diverse datasets: a temperate forest in Ithaca, USA 
(n = 6,734, one site), a varied tropical rainforest landscape in Sabah, 
Malaysia (n = 977, 14 sites), an agricultural tea landscape in Chiayi, 
Taiwan (n = 165, 16 sites) and a varied montane tropical forest and 
grassland landscape in the Western Ghats, India (n = 147, 91 sites). In 
India, Malaysia and Taiwan, avian community data were collected by 
in-person point counts performed by experts, whereas citizen science 
checklists from eBird were used for the USA20 (Methods). For each 
recording, we calculated two common types of acoustic features: (1) 
a 128-dimensional convolutional neural network (CNN) embedding 
(learned features, LFs)14,21 and (2) 60 analytically derived soundscape 
indices (SSIs)22.
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features correlated significantly with species richness in either one 
or two of the four datasets (105 LFs, 43 SSIs; Fig. 1b). Only four LFs and 
not a single SSI correlated with avian richness across all four datasets 
(Fig. 1b). For features that were correlated with avian richness in mul-
tiple datasets, the gradient and intercept of fitted lines varied and 

First, we investigated univariate correlations between acoustic 
features and avian species richness within each dataset. We found that 
many LFs and SSIs correlated significantly with richness (Pearson’s 
correlation P < 0.05 by permutation test with Bonferroni correction), 
although the number varied greatly by dataset (Fig. 1a). Most acoustic 
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Fig. 1 | Predictions of avian species richness from acoustic features of 
soundscapes are not generalizable across datasets but soundscape change 
is a reliable indicator of community change. a, Many SSIs and LFs correlated 
significantly with avian species richness in each dataset. Dashed lines indicate 
significance thresholds derived from two-sided permutation tests and overlaps 
between the SSI (orange) and LF (blue) histograms are in brown. b, However, only 
four LFs and no SSIs correlated significantly with richness in all datasets, with 
most only correlating with richness in one or two datasets (105 LFs and 43 SSIs). 
c, For spectrogram cover and LF 14 (both of which correlated with richness in 
many datasets with two-sided Pearson’s tests) the gradient and intercept of the 

correlations varied between datasets and correlation coefficients were relatively 
low, limiting transferability. d, Predicting avian richness with a machine learning 
model trained on LFs was moderately successful when training and test datasets 
were the same. However, models were unable to generalize when predicting 
richness in datasets other than the one used for training. e, For each dataset we 
found that pairwise distances between the acoustic features of soundscapes 
correlated with Jaccard distances between avian communities present. 
With Jaccard distances, 0 indicates identical communities and 1 indicates no 
community overlap. Number of samples per dataset: India (n = 147), Malaysia 
(n = 977), Taiwan (n = 165) and the USA (n = 6,734).
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correlation coefficients were relatively low (for example, 14th learned 
feature: 0.048 < r2 < 0.286, ROICover (a measure of spectrogram cover): 
0.002 < r2 < 0.099, Fig. 1c).

By training a machine learning model on the full-dimensional 
learned feature vectors, we were able to predict species richness within 
datasets with relative success (coefficient of determination R2 = 0.32, 
0.50, 0.22 and 0.14 for India, Malaysia, Taiwan and the USA, respec-
tively; Fig. 1d). However, except for in one case (trained on Taiwan, 
tested on India, R2 = 0.13), the models were unable to predict richness 
when evaluated on datasets that they were not trained upon (R2 < 0, 
Fig. 1d). There was no significant correlation between dataset sample 
sizes and within-dataset or mean cross-dataset R2 values (Pearson’s 
correlation P > 0.05). Similar results were found when using only the 60 
SSIs or all 188 features (128 LFs + 60 SSIs) together to predict richness 
(Extended Data Fig. 1). Our results indicate that even within a single 
dataset—but especially when looking across datasets—soundscapes 
with similar levels of avian diversity do not share similar acoustic 
features.

Rather than attempting to predict species richness directly, we 
investigated the relationship between pairwise Euclidean distances 
between the mean acoustic features of each audio recording (sound-
scape change) and pairwise Jaccard distances between their associated 
avian species communities (community change). We found strong 
significant correlations between soundscape change and commu-
nity change within each dataset (Spearman correlation Mantel test, 
P ≤ 0.001 for all; Fig. 1e). There were more examples where communities 
changed but soundscapes did not than the converse, indicated by clus-
tering of points in the upper left of Fig. 1e. No significant correlations 
were found between soundscape change and change in species richness 
in any of the four datasets (Extended Data Fig. 2). For each of the 14 sites 
in Malaysia—the only dataset with sufficient replicates at individual 
sites to test for this relationship—there was a significant correlation 
between soundscape change and community change (P ≤ 0.03). The 
decision to use LF (Fig. 1e) or SSIs (Extended Data Fig. 3) to track sound-
scape change did not alter our findings.

In all four datasets, we found that certain acoustic features cor-
related with avian richness. However, features did not behave consist-
ently across datasets and most were only correlated with richness in 
one or two datasets (explaining inconsistencies seen in the literature19;  
Fig. 1a–c). Without access to independent sources of trusted 
ground-truth biodiversity data, ascertaining which features were most 
suitable for each dataset would be impossible, limiting the transfer-
ability of this approach. We then found that a machine learning model 
trained on compound indices was able to produce within-dataset 
predictions of species richness with some success. However, again, 
generalizability was not achieved as models did not produce informa-
tive estimates when applied to datasets they were not trained upon 
(Fig. 1d). The diversity of flora, fauna, survey designs and recording 
equipment across the datasets might, perhaps, make these results 
unsurprising. Indeed, further studies may show that limited generaliz-
ability can be achieved when study biomes and survey methodologies 
are closely matched. Nevertheless, given the current state-of-the-art, 
our results stress that however well an acoustic feature or machine 
learning model may perform in one scenario, without access to 
high-quality ground-truth data from the exact location being stud-
ied, soundscape methods should not be used to generate predictions 
of species richness.

In contrast to the unpredictable behaviour of the models produc-
ing estimates of avian richness, we found that soundscape change cor-
related with community change in all datasets (Fig. 1e). However, this 
approach was also limited, as there were many examples where similar 
soundscapes were associated with very different avian communities. 
One reason could be that non-biotic sounds (for example, motors) or 
non-avian biotic sounds (for example, insects and amphibians) were 
larger contributors to soundscapes than were birds15,23. Our ability to 

predict avian richness was therefore more likely to have been based on 
latent variables measuring habitat suitability (for example, vocalizing 
prey or nearby water sources) rather than being driven by the vocal 
contributions of birds directly.

Despite having access to vast amounts of manually collected 
avifaunal point count data, even within datasets, soundscape pre-
dictions of avian richness and community change struggled with 
accuracy. This result suggests that even if we can collate standard-
ized global soundscape datasets and train models using ground-truth 
data from every biome on earth, we may still be left wanting. Rather 
than relying on automated predictions in isolation, a more reliable 
approach might be to use soundscapes to collect coarse but scalable 
data, which can be used to direct more detailed ecological studies. 
For example, data from large-scale acoustic monitoring networks 
could be used to direct in-person surveys towards only the sites with 
unexpected and prolonged soundscape changes or large shifts in 
predicted biodiversity. Such an approach could result in more effi-
cient use of limited expert resources to ensure that conservation 
interventions are deployed in a timely and focussed manner. Indeed, 
due to issues surrounding interpretability and accountability, we 
will probably always require expert verification of autonomous 
monitoring outputs before policy and management practices are 
modified24. Proceeding with more realistic expectations around how 
soundscapes can best contribute large-scale biodiversity monitoring 
efforts will be essential to maximizing the transformative potential of  
the technology.

Methods
Avifaunal point counts
India. Data were collected from 91 sites in the Western Ghats between 
March 2020 and May 2021. Sites were a mixture of montane wet ever-
green and semi-evergreen forests (29), montane grasslands (8), moist 
deciduous forests (7), timber plantations (17), tea plantations (20), 
agricultural land (8) and settlements (2). Sites had a mean separation 
distance of 18.9 km, with the closest two being 824 m apart.

In total, 147 15-minute point counts were conducted (mean 
1.6 per site). All point counts were conducted between 06:00 and 
10:00 as these were the hours with highest expected avian activity. 
A variable-distance point count approach was followed and all bird 
species heard, seen and those that flew over (primarily raptor species) 
were noted. A total of 119 avifaunal species were recorded across all 
point counts.

Single channel audio was recorded during each point count using 
an Audiomoth device raised 1–2 m from the ground6. Recordings were 
saved in WAV format at a sampling rate of 48 kHz.

Malaysia. Data were collected from a varied tropical landscape at 
the Stability of Altered Forest Ecosystems (SAFE) project25 in Sabah 
between March 2018 and February 2020. The 14 sites spanned a degra-
dation gradient: two in protected old growth forest, two in a protected 
riparian reserve, six in selectively logged forest (logging events in 1970s 
and early 2000s), two in salvage logged forest (last logged in early 
2010s) and two in oil palm plantations. Sites had a mean separation 
distance of 7.6 km, with the closest two being 583 m apart.

In total, 977 20-minute avifaunal point counts were performed 
across 24 hours of the day (59–80 per site). During point counts, all 
visual or aural encounters of avifaunal species within a 10 m radius of 
the sampling site were recorded. Species identifications and names 
were validated using the Global Biodiversity Information Facility26. A 
total of 216 avifaunal species were recorded across all point counts.

Single channel audio was recorded during each point count with 
a Tascam DR-05 recorder mounted to a tripod raised 1–2 m from the 
ground (integrated omnidirectional microphone, nominal input level 
−20 dBV, range 20 Hz–22 kHz). Recordings were saved in WAV format 
at a sampling rate of 44.1 kHz.
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Taiwan. Data were collected from 16 tea plantations in the Alishan 
tea district, located in Chiayi County of Taiwan, between January and 
November 2022. The tea plantations spanned an elevation gradient 
from 816 to 1,464 m and were surrounded by secondary broadleaf 
forests or coniferous plantations.

In total, 176 10-minute avifaunal point counts were conducted, on 
average once per site per month. Every survey was conducted within 
3 hours after sunrise. During point counts, the species of every bird 
individual visually or aurally detected was recorded and its horizontal 
distance from the observer was estimated as 0–25, 25–50, 50–100, 
>100 m or flying over. Our process for matching audio recordings to 
point counts is provided later in the Methods. A total of 81 avifaunal 
species were recorded across all point counts used in this study.

Stereo audio was recorded at a sampling rate of 44.1 kHz for one of 
every 15 minutes at each site throughout the sampling period. Wildlife 
Acoustics Song Meter 4 devices were used (mounted to a tree trunk 
or tripod raised 1–2 m from the ground) and data were saved in WAV 
format.

The USA. Data were collected from a single site in a temperate forest at 
Sapsucker Woods, Ithaca, USA, from January 2016 to December 2021.

In the absence of standardized point counts across such a long 
duration, we used eBird checklists to determine avian communities 
(only possible since Sapsucker Woods is a major hotspot for eBird data). 
Data were filtered to only keep checklists which were complete, of the 
‘travelling’ or ‘stationary’ types, located within 200 m of the record-
ing location and lasted less than 30 minutes (to minimize bias from 
varying sampling intensities). We combined occurrence data from all 
eBird checklists that started during each audio recording to create one 
pseudo point count per audio file. Since we only use occurrence data, 
double counting of the same species was not an issue. This resulted in 
a total of 6,734 point counts and 231 species.

Audio was recorded continuously throughout the sampling 
period using an omnidirectional Gras-41AC precision microphone 
raised approximately 1.5 m from the ground and digitized with a 
Barix Instreamer ADC at a sampling rate of 48 kHz. Files were saved in 
15-minute chunks and in WAV format.

Avian communities
For each point count, we used the field observations to derive com-
munity occurrence data (that is, presence or absence) since not all 
datasets had reliable abundance information. To calculate avian rich-
ness, we calculated the unique number of species encountered within 
each point count (α-diversity).

Acoustic features
We used two approaches to calculate acoustic features for each record-
ing. The first was using a suite of 60 SSIs, using the scikit-maad library 
(v.1.3)22. Specifically, we appended together the feature vectors from 
the functions maad.features.all_temporal_alpha_indices and maad.
features.all_spectral_alpha_indices. In all cases, we used default argu-
ments for generating features, since tuning parameters to each of the 
datasets would have been a cumbersome and inherently qualitative 
process susceptible to introducing bias. A full list of features is given 
in Supplementary Table 1.

The second approach was to use a learned feature embedding LF 
from the VGGish CNN model21. VGGish is a pretrained, general-purpose 
sound classification model that was trained on the AudioSet database27. 
First, to transform raw audio into the input format expected by the 
pretrained VGGish model21, audio was downsampled to 16 kHz, then 
converted into a log-scaled mel-frequency spectrogram (window 
size 25 ms, window hop 10 ms, periodic Hann window). Frequencies 
were mapped to 64 mel-frequency bins between 125 and 7,500 Hz 
and magnitudes were offset before taking the logarithm. Data were 
inputted to the CNN in spectrograms of dimension 96 × 64, producing 

one 128-dimensional acoustic feature vector for each 0.96 s of audio.
For all acoustic features (LFs and SSIs), mean feature vectors 

were calculated for each point count. For Malaysia, India and the USA, 
recordings had a 1:1 mapping with point counts, so features were aver-
aged across each audio recording. For Taiwan, where audio data were 
sparser, features were averaged across all audio recordings that begun 
within a 1-hour window centred around the start time of the point 
count, resulting in an average of four 1-minute audio recordings per 
point count. Using window sizes of 40 or 20 minutes around the point 
count start time in Taiwan did not change our results (Fig. 1d repro-
duced with different window sizes and Extended Data Fig. 4).

Univariate correlations with avian richness
Univariate Pearson correlations were calculated between each of the 
60 SSIs and 128 LFs with avian richness across all point counts within 
datasets. Significance thresholds were determined by calculating 100 
null correlation coefficients between shuffled features and avian rich-
ness. Null correlation coefficients were aggregated for each dataset 
across all 60 SSIs and 128 LFs (total null values 18,800). Accounting for 
a Bonferroni multiple hypothesis correction, the threshold for signifi-
cance at P = 0.05 was taken as value 18,784 in an array of sorted absolute 
null correlation coefficients in ascending order. For each dataset, all 
real correlations between acoustic features and avian richness with 
an absolute correlation coefficient greater than this threshold were 
determined to be significant. Lines of best fit in Fig. 1c were determined 
by fitting a first-order polynomial to the data on avian richness (x axis) 
and the single acoustic feature being considered (y axis).

Machine learning predictions of avian richness
We used a random forest regression model to make predictions of 
avian richness using the full-dimensional acoustic feature vectors. In 
Extended Data Fig. 1b, the mean of all 60 SSIs and 128 LFs were com-
bined to create one 188-dimensional feature vector per audio record-
ing. The scikit-learn implementation RandomForestRegressor was used 
with a fixed random seed and other default parameters unchanged. 
We randomly selected 70% of point counts in each dataset for training 
and held back 30% for testing. Splitting train and test data randomly 
represents a ‘best-case’ scenario since, within datasets, training data 
distributions will closely match test data distributions. We measured 
how well predicted richness matched true richness using the coef-
ficient of determination (R2). Both within and across datasets (that is, 
for all results in Fig. 1d and Extended Data Fig. 1), models were always 
trained on the training data and scores were evaluated on the test data.

We used Pearson’s correlation coefficient to test whether there 
was a link between dataset sample sizes and classifier performance. 
For within-dataset performance, we used the diagonal values of  
Fig. 1d. For cross-dataset performance, we took the mean of each row 
in Fig. 1d, excluding the diagonal values.

Investigating link between soundscape change and 
community change
To measure community change between two point counts we used the 
Jaccard distance metric, where 0 indicates no change in community 
and 1 indicates no shared species between communities. To measure 
soundscape change we calculated the Euclidean distance between  
the mean acoustic feature vectors for each point count. Distances were 
computed in the full 128-dimensional space for the LFs (Fig. 1e) and 
60-dimensional space for the SSIs (Extended Data Fig. 3). Performing 
these two operations between all point counts within each dataset, we 
derived two matrices representing pairwise community change and 
pairwise soundscape change. Since community change was bounded 
between 0 and 1, a Pearson correlation was not appropriate. Therefore, 
the Spearman correlation between these two matrices was measured 
using a one-tailed Mantel test, with P values derived empirically (using 
the skbio implementation skbio.stats.distance.mantel).
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Processed acoustic features and avian community data for all point 
counts are published at https://doi.org/10.5281/zenodo.7410357.

Code availability
Code with instructions to reproduce analyses, results and figures can 
be found at https://doi.org/10.5281/zenodo.7458688.
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Extended Data Fig. 1 | Predictions of species richness were not generalisable 
using alternative feature sets. When training and test datasets were the same, 
predictions of species richness from a machine learning model (Random Forest 
Regressor) trained on (a) the 60 soundscape indices (SSIs) or (b) all 188 acoustic 
features (60 SSIs + 128 LFs) were of varying levels of accuracy (R2 = 0.09, 0.50, 

0.24, 0.10 [SSIs] R2 = 0.30, 0.54, 0.24, 0.15 [all 188 features] for India, Malaysia, 
Taiwan, USA, respectively). In all cases, predictive models did not generalize to 
produce informative estimates of species richness when applied to datasets they 
were not trained on. Similar results using only the 128 LFs are shown in Fig. 1c in 
the main text.
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Extended Data Fig. 2 | Soundscape change did not correlate with change in species richness. No significant correlations were found between change in 
soundscape features and change in species richness in any of the four datasets (Spearman’s correlation two-sided Mantel test, p > 0.05 in all cases).
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Extended Data Fig. 3 | Soundscape change correlated with change in species community using soundscape indices. Even when using soundscape indices rather 
than learned features, change in acoustic features was correlated with change in avian community across all datasets (Spearman’s correlation two-sided Mantel test, 
p = 0.002, 0.001, 0.023, 0.001 for India, Malaysia, Taiwan, USA).
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Extended Data Fig. 4 | Window size for the Taiwan dataset did not impact our results. The chosen size of the window around the point count start time in the 
Taiwan dataset did not change the accuracy or generalizability of the machine learning models trained to predict species richness.
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Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A
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Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size India: Data was collected from 91 sites in the Western Ghats between March 2020 and May 2021. Sites were a mixture of montane wet 
evergreen and semi-evergreen forests (29), montane grasslands (8), moist deciduous forests (7), timber plantations (17), tea plantations (20), 
agricultural land (8), and settlements (2). 
147 15-minute point counts were conducted between 6-10am at each site (mean 1.6 per site). A variable-distance point count approach was 
followed, and all bird species heard, seen, and those that flew over (primarily raptor species) were noted. All point counts were carried out 
between 6am and 10am (timing of high avian activity) at each location.  
Single channel audio was recorded during each point count using an Audiomoth device6. Recordings were saved in WAV format at a sampling 
rate of 48 kHz. 
Malaysia: Data was collected from a varied tropical landscape at the Stability of Altered Forest Ecosystems (SAFE) project24 in Sabah between 
March 2018 and February 2020. The 14 sites spanned a degradation gradient: two in protected old growth forest, two in a protected riparian 
reserve, six in selectively logged forest (logging events in 1970s and early 2000s), two in salvage logged forest (last logged in early 2010s), and 
two in oil palm plantations. Sites had a mean separation distance of 7.6km, with the closest two being 583m apart. 
977 20-minute avifaunal point counts were performed across 24 hours of the day at each site (59-80 per site). During point counts all visual or 
aural encounters of avifaunal species within a 10m radius of the sampling site were recorded. Species identifications and names were 
validated using the Global Biodiversity Information Facility25 (GBIF). A total of 216 avifaunal species were recorded across all point counts. 
Single channel audio was recorded during each point count with a Tascam DR-05 recorder mounted to a tripod at chest height (nominal input 
level -20 dBV, range 20Hz-22kHz). Recordings were saved in WAV format at a sampling rate of 44.1k kHz. 
Taiwan: Data was collected from 16 tea plantations in the Alishan tea district, located in Chiayi County of Taiwan, between January and 
November 2022. The tea plantations spanned an elevation gradient from 816-1464 m and were surrounded by secondary broadleaf forests or 
coniferous plantations.  
Stereo audio was recorded at a sampling rate of 44.1kHz for one of every fifteen minutes at each site throughout the sampling period. Wildlife 
Acoustics Song Meter 4 devices were used (mounted to a tree truck or tripod at chest height) and data was saved in WAV format. 
176 10-minute avifaunal point counts were conducted in total, on average once per site per month. Every survey was conducted within 3 
hours after sunrise. During point counts, the species of every bird individual visually or aurally detected was recorded and its horizontal 
distance from the observer was estimated as either 0-25m, 25-50m, 50-100m, >100m or flying over.  Our process for matching audio 
recordings to point counts is provided later in the Methods. 
USA: Data was collected from a single site in a temperate forest at Sapsucker Woods, Ithaca from January 2016 to December 2021.  
Audio was recorded continuously using a Gras-41AC precision microphone mounted at chest height and digitised with a Barix Instreamer ADC 
at a sampling rate of 48 kHz. Files were saved in 15-minute chunks and in WAV format. 
In the absence of standardised point counts across such a long duration, we used eBird checklists to determine avian communities (only 
possible since Sapsucker Woods is a major hotspot for eBird data). Data was filtered to only keep checklists which were complete, of the 
“travelling” or “stationary” types, located within 200m of the recording location, and shorter than 30 minutes. We combined occurrence data 
from all eBird checklists that started during each audio recording to create one pseudo point count per audio file. Since we only use 
occurrence data, double counting of the same species was not an issue. This resulted in a total of 6,734 point counts. 

Data exclusions N/A

Replication N/A

Randomization N/A
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