nature ecology & evolution

Article

https://doi.org/10.1038/s41559-023-02095-9

Genomes of fungi and relativesreveal
delayed loss of ancestral gene familiesand
evolution ofkey fungal traits

Received: 5 December 2022

Accepted: 11 May 2023

Published online: 22 June 2023

W Check for updates

Zsolt Merényi®', Krisztina Krizsan™*, Neha Sahu’, Xiao-Bin Liu', Balazs Balint®",
Jason E. Stajich®?3, Joseph W. Spatafora®? & Laszl6 G. Nagy ®'

Fungiare ecologically important heterotrophs that have radiated into
most niches on Earth and fulfil key ecological services. Despite intense
interest in their origins, major genomic trends of their evolutionary route
fromaunicellular opisthokont ancestor to derived multicellular fungi
remain poorly known. Here we provide a highly resolved genome-wide
catalogue of gene family changes across fungal evolution inferred from
the genomes of 123 fungi and relatives. We show that adominant trend in
early fungal evolution has been the gradual shedding of protist genes and
the punctuated emergence of innovation by two main gene duplication
events. We find that the gene content of non-Dikarya fungi resembles that
of unicellular opisthokonts in many respects, owing to the conservation of
protist genes in their genomes. The most rapidly duplicating gene groups

included extracellular proteins and transcription factors, as well as ones
linked to the coordination of nutrient uptake with growth, highlighting

the transition to a sessile osmotrophic feeding strategy and subsequent
lifestyle evolution as important elements of early fungal history. These
results suggest that the genomes of pre-fungal ancestors evolved into the
typical filamentous fungal genome by a combination of gradual gene loss,
turnover and several large duplication events rather than by abrupt changes.
Consequently, the taxonomically defined Fungi represents a genomically
non-uniform assemblage of species.

Theevolutionary diversification of lineages into clades of various sizes
and phenotypes, some highly successful and species-rich while oth-
ers less so, is an outcome of complex interactions between ecologi-
cal opportunity, changing biotic and abiotic environments and the
genetic make-up of the organisms representing the lineage. Inferring
the genomic footprint of the emergence of high-ranking clades and
innovations that underlie their evolutionary success have been hard to
assess. Recently, comparative genomic approaches that allow ancestral

genome content to beinferred from extant genomes have revealed that
complex mechanisms, including gene birth, loss and co-option', con-
tributed to the origins of high-ranking clades, including prokaryotes*
and eukaryotes’, metazoans"° or land plants (embryophytes?). These pat-
terns are consistent with proposed general trends of genome evolution’;
however, whether they are universal across the tree of life is unknown.
Fungi are one of the evolutionarily most successful groups.
They exhibit extreme diversity in both morphology and ecological
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function and play key roles in many ecosystems as symbionts, para-
sites and saprobes, among others. The most typical manifestations
of the fungal morphology, that is, non-motile, septate, filamentous
thalli, are found in the Dikarya, but taxonomically, Fungi represent
a much broader spectrum. Fungi belong to the Holomycota in the
Opisthokonta, together with the Nucleariida®. Defined in the broad
sense, Fungiencompass at least ten phylum-level clades, with most of
their phylogenetic diversity found in non-Dikarya fungi (also known
as early-diverging fungi). This is a paraphyletic group comprising the
Chytridiomycota, Sanchytriomycota, Blastocladiomycota, Olpidi-
omycota, Zoopagomycotaand Mucoromycota as well as Aphelida’® and
the Rozellida + Microsporidia clade (Opisthophagea'®)" ™. Notwith-
standing the continuous flux in the taxonomic definition of Fungi®,
the phenotypes of the earliest fungal ancestors are characterized and
how they evolved from a unicellular opisthokont ancestor has been
the subject of intense research. Reconstructions of the last universal
fungal ancestor (LUFA) became more and more nuanced with the
inclusion of newly discovered and/or characterized early-diverging
lineages®'*'*1* These results contributed to our current understand-
ing of the LUFA as a unicellular phagotrophic parasite of microalgae,
possessing motile cell stages with amoeboid and flagellar motility
and a chitinous cell wall, atleast in part of its life cycle'®". By contrast,
derived fungi (that is, Dikarya) are sessile terrestrial osmotrophs that
grow septate hyphae covered by arigid cell wall throughout their life
cycle. How the LUFA and subsequent ancestors evolved modern fungal
traitsis poorly known, and systematic analyses of the genomic changes
during this transformation are missing.

In this study, we reconstructed the gene family evolution in the
Holomycota using 123 whole genomes and analysed temporal and
functional trends in the genomic changes we inferred. We found that
non-Dikarya fungi are genetically intermediate between pre-fungal
protists and the Dikaryaand thatagradual shedding of ancient protist
gene families happened in parallel with the emergence of novel families
and the expansion of pre-existing families in Fungi. The tempo and
mode of gene turnover and innovation outline major genomic trends
and reveal an episodic emergence of modern fungal traits, including
multiple waves of gene family expansion and contraction related to
key fungal traits. Our results reveal that taxonomically defined fungi
do not match with ‘genomic fungi’ and that early fungal evolution has
been highly episodic with continuous gene turnover.

Results and discussion

Gene content of non-Dikarya fungi resembles that of protists
To obtain a global perspective on gene content differences between
fungiand related opisthokonts, we first clustered the protein sequences
of 123 species into homologous protein groups (HGs; Methods). For
this, we selected representatives of all currently accepted Holomycota
phylaexcept Sanchytriomycota, as well as16 other Amorphea (includ-
ing metazoans and single-celled representatives) and aHeterolobosea
species as anoutgroup (Supplementary Datal). For short, unicellular
non-fungal eukaryotes are referred to as protists hereafter. We inferred
aspecies phylogeny by maximum likelihood analysis of a supermatrix
of 272 single-copy orthologues (Fig. 1a and Extended Data Fig. 1). Our
phylogeny is highly supported and is largely congruent with phylog-
enies from recent studies'*"*°,

Based onthe HG membership data, a principal coordinate analysis
(PCoA)resolved phylainto distinct groups, indicating that gene content
divergence correlates well with phylogeny (Fig. 1b and Extended Data
Fig.2). Non-Dikarya fungi, especially chytrids and Aphelida, grouped
with non-fungal protists instead of occupying distinct positionsinthe
space. The Blastocladiomycota and Zoopagomycota were transitional
towards the Mucoromycota + Dikarya (Fig. 1b). The Dikaryabranched
intotwo groupsinatree-like pattern corresponding to the Ascomycota
and Basidiomycota, with secondarily reduced yeast-like lineages of
both phyla falling closer to each other. The intermediate placement

of non-Dikarya fungiin the genomic space is consistent with anumber
of phenotypic (amoeboids, flagellated zoospores), ecological (para-
sites, phagotrophicfeeding), biochemical and genetic similarities™>*.
Some of these have already been studied in detail, such as the distribu-
tion of flagellar genes®, cytoskeletal complexity®, class V-VII chitin
synthases®, the cell-cycle system®, the Wiskott-Aldrich syndrome
protein (WASP) and SCAR/WAVE homologues” or cobalamin utiliza-
tion”. However, whether protist genes are ubiquitous in non-Dikarya
fungi has not been systematically investigated. On the basis of these
observations, we asked whether the presence of protist-like genesis a
broad genomic trend in non-Dikarya fungi and, if so, how these were
replaced by fungal novelties during the evolution of the Holomycota.

A protist genomic heritage and limited novelty in fungi
Toidentify geneslost during early fungal evolution, HGs showing >70%
conservation in at least one taxonomic group were considered (Sup-
plementary Datal). We identified 540 HGs that must have been present
inthe Holomycota ancestor but are absent in Dikarya (Fig. 2 and Sup-
plementary Data2), indicatingloss events. Of these, we inferred that the
LUFAlost41HGs whenitdiverged from the nucleariids. The largestloss
events, 76,64 and 239 HGs, were inferred in nodes in which Blastocladi-
omycota, Zoopagomycota and Dikarya, respectively, split from their
immediate ancestors. This pattern suggests that genes conserved in
pre-fungal protists were lost in a step-wise manner, and non-Dikarya
fungi possess a substantial number of HGs shared with non-fungal
lineages, considerably more than what previous anecdotal evidence
suggested.

The 540 HGs included all gene families previously reported to
be lost in fungi: subunits of WASH and vasodilator-stimulated phos-
phoprotein (VASP) (lost in LUFA), WAVE®, the CyclOP* light-sensing
system (lost after Blastocladiomycota), flagellar genes®* (lost across
the branching of Chytridiomycota, Blastocladiomycota and Olpidium;
Supplementary Data 3), cobalamin synthesis proteins® and the replace-
ment of the E2F-type TF (E2F) cell cycle regulator by the Swi4-Swié6 cell
cycle box binding factor complex®. However, previous evidence cov-
ered only aminority (73 HGs, 13.5%) of the 540 HGs and our improved
taxonsampling pinpointed the placement of these loss eventsinseveral
cases. To understand the broad functions of HGs lost during early
fungal evolution, we performed Gene Ontology (GO) enrichment
analyses (Fig.2 and Supplementary Data2). This revealed asignificant
overrepresentation of several GO terms (Fisher’s exact test, P < 0.05,
Supplementary Data 2), for example, in relation to Ca*-binding pro-
teins and members of inositol 1,4,5-trisphosphate (IP3), diacylglycerol
(DAG) and Ca* signalling pathways. In these pathways, we inferred
both a copy number reduction and complete loss of HGs (Extended
DataFigs.3and 4). The shared ancestry of Ca*' signalling in Fungi and
Metazoawas known?, but our results revealed that the full complement
of these pathways has been retained in fungi until the Mucoromy-
cota-Dikaryasplit. Our dataset also showed that the gamma-secretase
complex, whichisinvolved inregulated intramembrane proteolysis for
various developmental and signalling processes and was thought to
be absent in fungi®, in fact, waslost only in Dikarya, Olpidiumand the
Rozellida-Microsporidia (RM clade). Interestingly, several HGs associ-
ated with ubiquitination have also been lost during fungal evolution.
Other functions highlighted by GO correspond to families annotated
inextant Holozoa as mechano- and voltage-sensitive channels, recep-
tors (epidermal growth factor, G-protein-coupled receptors (GPCRs))
and mechanical or visual perception (Supplementary Data 2). We
have relied here on metazoan GO annotations, as these are the most
complete, but note that they have limitations, as they might provide
little insight into the functions of families in the pre-fungal protists
and non-Dikarya fungi.

We also looked at core fungal novelties, defined here as HGs that
evolved in one of the early fungal ancestors and are highly conserved
(=70%) in descendant lineages. Previous studies have reported a
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Fig.1|Intermediate position of non-Dikarya fungi between protists and
Dikarya. a, Schematic representation of our species tree showing major clades
and node numbers. The bold numbers at the nodes denote common ancestors
of fungal phyla. See Extended Data Fig. 1 for the complete species tree and

0.1 0 -0.1 -0.2
PCo dimension 2: 11.6%

support values. Scale bar indicates number of substitutions per site. b, PCoA and
minimum spanning tree (dashed grey line) based on presence and absence data
0f 9,993 HGs. Microsporidia species were removed from this analysis for better
visualization.

shortage of fungal synapomorphies®, so we tested whether our
genome-wide dataset can provide a different viewpoint. We identi-
fied 163 HGs, considerably less than the number identified in recent
studies, inanimals and green plants (using a higher, 95%, conservation
threshold'). This suggests that novel core HGs are less prevalent in
fungi, possibly because fungi comprise several highly reduced clades
(for example, yeast lineages® and Microsporidia). The 163 families
originated across multiple nodes, withalarger grouping at the split of
the Chytridiomycota from other fungi (n = 57;35%, node C; Fig. 2), sug-
gesting that thisnode has seen key transitions in genome evolution (see
below). Conserved domain analysis of these 163 HGs revealed that 72
contain proteindomains that are predominantly (>99%) found in fungi,
corroborating them as real fungal novelties. These have functions in
spore formation (for example, Spo71 and Suppressor of rvs167 muta-
tion (Sur7) of Saccharomyces cerevisiae), mating (for example, Ste3,
Prmland Rsc7/Swp82 of the SWItch/Sucrose Non-Fermentable (SWI/
SNF) complex of S. cerevisiae) or cell polarity (for example, Spa2/Sphl
and SOG2 of S. cerevisiae), among others (Supplementary Data4a). We
also detected families related to the cytoskeleton, the fungal cell wall
(FCW; for example, the Kre9/Knhl family), intracellular trafficking,
transporters and fungal-type mitosis and meiosis. We found a signifi-
cant enrichment of transcription factors among novel HGs (Fisher’s
exacttest, P=0.002), including the origins of APSES, Copper fist, Opil
and Fungal trans 2 families (see details below). Notably, the Velvet, Gtil/
Pac2 and STE-like transcription factor (TF) families, which are thought
to be fungal specific, had representativesin early-diverging holozoans
(Capsaspora, Salpingoeca and Corallochytrium) or in Fonticula. Using
adomain-based searchlogic, we furtheridentified 186 less conserved
HGs comprising fungal-specific domains, with functions relevant to
sporulation, mating, intracellular transport, environmental sensing
and chromatin remodelling, among others (Supplementary Data4b).

Finally, HGs containing unannotated proteins are prevalent (17.8% of
163 and 14.5% of 186 HGs) among core fungal novelties, highlighting
the understudied status of fungal-specific genes (Supplementary
Data 4ab).

Taken together, our analyses revealed that non-Dikarya fungi pos-
sess a large number of HGs shared specifically with protists and that
these were gradually lost during evolution. The broad conservation
of protist HGs may explain the morphological and genetic similarities
between non-Dikarya fungi and protists reported in previous stud-
ies?26323 and also clarifies why the genome content of fungi reflects
that of ancestral opisthokonts more than the metazoan gene content
does®*. Our data revealed that the retention of protist genes is not
restricted to certain HGs but is a genome-wide trend in non-Dikarya
fungi. At the same time, we identified several conserved homologous
groups that originated in early fungi and were mostly conserved after-
wards, as well as 186 less conserved families containing fungal-specific
domains. Although most of these cannot be considered synapomor-
phiesinthestrict sense” because of theirincomplete conservation, this
indicates that beyond losses, considerable novelty has also emerged
in early fungal ancestors.

Aninterplay of gene gain and loss shaped fungal evolution

To obtain a detailed picture of gene repertoire changes and to test
whether evolutionis gradual or rather episodic, assome theories pre-
dict®, we reconstructed the gene gain and loss dynamics for all HGs
containing at least four proteins. Our reconstructions provide informa-
tion on which genes were duplicated and lost in each of the HGs and
at which branches of the phylogenetic tree (Fig. 3). For example, the
LUFA was inferred to have had 12,761 genes, gained 913 and lost 295
compared with itsimmediate ancestor, corresponding to amoderate
net expansion. Reconstructed ancestral proteome sizes ranged from
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12,761 protein-coding genes in the LUFA to 14,891 in the most recent
common ancestor (MRCA) of Zoopagomycota and derived fungi. If we
consider net changes (duplications minus losses), it seems that most
of the genomes of the early fungal ancestors contracted (Fig. 3), with
two exceptions. The first is the split of chytrids from other fungi, and
the secondis the MRCA of Zoopagomycota and derived fungi, whichis
inferred to have expanded by 791 genes (1,114 gains, 323 losses).

We find that gene duplication has been highly episodic, with five
large bursts, whereas losses were ubiquitous across the dataset. Of the
five bursts of duplication, two were inferred in ancestral fungal nodes
(nodes C and D in Fig. 3), two in phylum-level clades (Neocallimas-
tigomycota and Leotiomyceta) and one in the Opisthokonta MRCA.
The duplication eventinthe MRCA of chytrids and other fungi (C) was
associated with limited gene loss (2,455 gains, 382 losses), whereas
the one in the Dikarya (D) coupled with more loss (2,875 gene gains,
3,036 losses), suggesting itis better characterized asaturnover event.
In general, ancestral proteome sizes were relatively constant, which,
injoint consideration with the losses and pulses of gene duplication,
indicates highgeneturnover in early fungal evolution. Thus, while pro-
teome sizes changed moderately, gene content hasundergone notable
changes. These patterns are consistent with thosereportedinarecent
study**, both in terms of the relative constancy of the total proteome
size and the proportion of gains and losses at the nodes, though the
exact numbers of duplications and losses differ.

The chytrid and Dikarya duplication events contained a similar
functional signal, with an enrichment of terms related to extracel-
lular functions (for example, GO:0005576), transmembrane trans-
port (for example, GO:0055085), cellulose binding (GO:0030248)
and the FCW (for example, GO:0016977). These may correspond to
the transition from phagotrophy to osmotrophy and the chitinous
cell wall, respectively, and reflect the improvement of extracellular
digestive functions, as adaptations to the existence of increasingly
complex and abundant plant material™?°. A significant enrichment
of TFs was detected among duplicated genes across multiple nodes
(Fisher’s exact test P<0.05, Supplementary Data 5), consistent with the
results of novel core families (see above). On the basis of GO results,
we identified an expansion of PCL cyclins that transcends multiple
nodes in early fungi (Extended Data Fig. 5 and Supplementary Data
5). In extant species, Pho85p cyclins (PCL) coordinate the cell cycle
with polarized growth in response to nutritional cues (phosphate,
amino acid and glycogen metabolism)**%; thus, their diversifica-
tion might have provided the basis for the evolution of the sophis-
ticated coordination of nutrient supply and growth. The two bursts
of duplication in the Leotiomyceta and in the Neocallimastigomy-
cota may correspond to periods of intense lineage-specific innova-
tion which, in the latter clade, probably also reflect massive gene
gains through horizontal gene transfer from bacteria, as reported
earlier®*,
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Data for the first two nodes are not shown as they mostly contain pan-eukaryotic
genes. Acyl-CoA, acetyl coenzyme A; AIG2, protein of Arabidopsis thaliana;

AMP, adenosine monophosphate; DUF1479, domain of unknown function 1479;
DUF2421, domain of unknown function 2421; DUF3445, domain of unknown
function 3445; En/Spm, Suppressor-mutator elements; F-box domain, PF00646;
GlcG, GlcG gene of Escherichia coli; GSH, glutation; LAGLIDADG, sequence motifs
for this DNA endonuclease; MmgE/PrpD, 2-methylcitrate dehydratases and FMN,
flavin mononucleotide. Mss4, mammalian suppressor of Sec4; RGS, regulator of
G protein signalling; Rim9, pH-response regulator protein of S. cerevisiae; RmIC,
deoxythymidine diphosphates-4-dehydrorhamnose 3,5-epimerase; SH3, src
Homology-3; TauD/TfdA, taurine dioxygenase/alpha-ketoglutarate-dependent
2;4-dichlorophenoxyacetate dioxygenase; UPF0658, Golgi apparatus membrane
protein.

Theimpact of genomic changes in trait evolution

We were next interested whether the functional profile of inferred
bursts of duplication corresponds to hypothesized phenotypic
changes in early fungal ancestors®. The most dynamically changing
(expanding and contracting) homologous groups and correspond-
ing functions were identified by ranking families by their summed
expansion and contraction dynamics across eight nodes from the
LUFA to the MRCA of Dikarya (Supplementary Data 6). Among the
100 most dynamically expanding families, 51 contained extracellular
proteins (mostly carbohydrate-active enzymes, briefly CAZymes),
transporters or transcription factors (Fig. 3a). The remaining families

included diverse functions, such as GPCRs, heterokaryon incompat-
ibility genes and protein kinases, among others (Supplementary Data
6). When we parsed these figuresin the context of the large duplication
events in early fungal ancestors, we found that 22.9% of the chytrid
and 34.7% of the Dikarya duplications were related to extracellu-
lar functions, transporters and transcription factors (Fig. 3b). The
importance of these HGs for genomic changes was also confirmed
by the functional enrichment analyses of HG duplication data (Sup-
plementary Data 5). On the basis of these observations, we scrutinize
below the extracellular, transporter and transcription factor familiesin
more detail.
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Mapping of families with predicted extracellular localization
revealed two-stage duplication dynamics, with large expansionsin the
MRCA of chytrids and the rest of the fungi (from 441to 653 genes) and
inthat of Dikarya (from 806 to 1,167 genes; Extended Data Fig. 6). The
chytrid expansionwas driven mainly by CAZymes, whereas other extra-
cellular functions, including those of proteases, made amore modest
contribution. Overall, owing to these expansions, the CAZyme and
the smallsecreted protein content of the secretome shifted from34%
inthe LUFA to 51%in the Dikarya MRCA. Within extracellular proteins,
plant cell wall-degrading enzymes (PCWDE) follow similar patterns,
but with a larger expansion in the Dikarya (Extended Data Fig. 7). By
contrast to PCWDEs, FCW-related families showed proportionally more
diversificationinthe chytrids thaninthe Dikarya,and alarge turnover
in the Dikarya (Extended Data Fig. 8). The diversification of extracel-
lular proteins, especially PCWDEs, in the ancestor of chytrids and other
fungi, correlates with the transition from phagotrophy to osmotrophy,
whereas the expansion of FCW-related families here may have contrib-
utedtotheevolution ofthe FCW. The second burst, in the Dikarya, may
be concomitant with the radiation of plantlignocellulose-degradinglin-
eages, possibly in response to the onset of the radiation of land plants*.
However, inthe ancestors of Blastocladiomycota, Olpidiomycotaand
Zoopagomycota and other fungi, the lack of PWCDE expansion and a
moderate expansion of proteases may be explained with the primarily
non-plant-based nutrition of these clades*.

For cell surface transmembrane transporters, we identified 253
HGs based on characteristic domains and subcellular localization
(Supplementary Data 7). Similar to CAZymes, transporters show a
two-stage expansion, with the highest number of duplicationsinferred
inthe Dikarya MRCA (Extended DataFig. 9). Of the three largest trans-
porter families, we found that adenosine triphosphate binding cas-
sette transporters and P-type ATPases showed contraction, whereas
the major facilitator superfamily underwent an extreme expansion
in fungi. This makes sense considering that only the latter is able to
transportahigh variety of small molecules, including sugars, peptides
and lipids*?, whereas adenosine triphosphate binding cassette trans-
porters and P-type ATPases are primarily exporters* and specific for
cations**, respectively. Given the role of transporters in osmotrophic
nutrition®, the correlated diversification of transporters with CAZymes
and theinferred continuousincrease of copy numbers in ancient fungal
genomes suggest their importance in the refinement of fungal-type
heterotrophy. We identified 657 TF HGs based on domain content
and classified theminto 52 putative TF families (Supplementary Data
8) following previous studies***. Mapping of these 657 HGs revealed
aconstant change in TFome (general TF repertoire) during early fun-
gal evolution. Early nodes, such as the splits of chytrids (193 gains, 3
losses) and Zoopagomycota (168 gains, 5losses), are almost exclusively
dominated by gains withbarely any losses (Fig. 4). This implies that the
TFomes of these clades are similar to those of related protists, as sug-
gested inaprevious study”. By contrast, later evolution of non-Dikarya
fungiis characterized by ahigh turnover of TFs: at the MRCA of Mucoro-
mycotaand derived fungi, we inferred 87 gains and 43 losses, whereas
in the Dikarya MRCA, we detected 117 gains and 184 losses. Losses in
the Dikarya MRCA affected several families (for example, bZIP, Myb,
CBF-NFYA, GATA, Homeobox) and included the complete loss of the
E2F TDP, T-Box and Tub families. From the LUFA to the Dikarya, TFome
diversity (based on the Shannon index) and the number of ancestral
TFsincreased with the peak inferred in the MRCA of Mucoromycota
and Dikarya (784 TFs; Fig. 4a). In line with this, extant Mucoromycota
contain the most TFs among fungi, with Shannon-based diversities
similar to those of other non-Dikarya fungi (Fig. 4c). The TFomes of
extant Dikarya, especially Ascomycota species, show similar sizes but
lower diversity partly owing to the expansion of the fungal trans 2 and
Zn cluster TF families and the losses of certain families.

Theinferred copy number of TFsin the fungal ancestors outlined
three ‘epochs’, within each of which ancestral TF repertoires seemed

to be relatively constant (see shading in Fig. 4a). Transitions between
these epochs are concomitant with remarkable historical events, such
asthe emergence of mostly anucleate rhizoids and osmotrophy or that
of terrestrialization and of aseptate hyphae (Figs. 2 and 4a).

Theranking of TF families based on the cumulative net change dur-
ing early fungal evolution (from the LUFA to the Dikarya; Supplemen-
tary Data 8) revealed that the most dynamically changing TF families
included both pan-eukaryotic (for example, C2H2-like, bZIP, HLH, HSF,
Homeobox and GATA) and predominantly fungal families (for example,
Zn cluster, Fungal trans 2, APSES, Velvet and Gtil/Pac2). Several families
expanded considerably more than the whole proteome, indicating that
their copy numbers are decoupled from proteome size. For example,
while the proteome size of the MRCA of chytrids and derived fungi
increased by 1.16x (from 12,818 to 14,891 genes) relative to the preced-
ingnode, the Zn cluster and bZIP families expanded by 7.38x and 3.25x,
respectively. Interestingly, C2H2 TFs underwent a massive expansion
inthe Opisthokonta ancestor. This family is highly diverse inboth the
Holozoa and the Holomycota (Extended Data Fig. 10).

Taken together, functional analyses of highly expanding homolo-
gous groups revealed processes that dominated duplications dur-
ing early fungal evolution. Of these, the expansion of extracellularly
secreted proteins and transcription factors may have facilitated the
evolution of osmotrophy and that of fungal gene regulatory sys-
tems, respectively. Osmotrophy evolved independently in Fungi
(Phytophagea'®), Microsporidia (Opisthophagea) and the distantly
related Oomycetes (Stramenopila*®*°). It is noteworthy that while in
fungiand oomycetes the evolution of osmotrophy correlates with gene
gains, mostly transporters and extracellular digestive enzymes*®*’,
in the Microsporidia, it correlates with genome reduction, possibly
because thelatter areintracellular parasites. The evolutionary dynam-
ics of transcription factors differs from genome-wide patterns, in that,
albeit also episodic, it showed expansions in different nodes. Overall,
patterns of transcription factor evolution suggest that broad rewiring
of fungal gene regulatory networks has transcended multiple ancestors
innon-Dikarya fungi.

Conclusions

The origins of highly diverse clades across the tree of life are noteworthy
evolutionary events, but are they remarkable from a genomic perspec-
tive or because we attach taxonomic definitions to them? On the basis
of systematic analyses, we inferred that protein coding gene content
has changed drastically during early fungal evolution. However, in
contrast to animals® and plants?, this has not happened abruptly at the
taxonomic limit of Fungi, even if competing taxonomic circumscrip-
tions are considered. Rather, we found a remarkable retention and
step-wise loss of protist genes in fungi, combined with the episodic
expansion of novel and ancient homologous groups. We also identi-
fied major functional trends and the most dynamically changing HGs,
which allowed us to relate genomic changes to trait evolution during
the early evolution of fungi.

Our analyses revealed that non-Dikarya fungi retained hundreds
of protist HGs that are missing in the Dikarya. Remarkable lost or con-
tracting gene groups were related to phagocytosis, the flagellum, cell
cycle regulation and signalling (Fig. 3), among others. These were
lost gradually or replaced by fungal-specific genes (for example, E2F
cell cycle regulator by SBF*®) during fungal evolution. We think that
the presence of these genes in non-Dikarya explains why they gravi-
tate towards unicellular opisthokonts in gene content-based analyses
(Fig. 1). They also provide a genome-wide explanation for previous
anecdotal observations of similarity between non-Dikarya fungi
and non-fungal opisthokonts, from analyses of single genes?*%,
individual genomes** or TFomes". At the same time, we detected a
limited number of HGs that could be considered synapomorphic for
Fungi, in agreement with previous conjectures on the lack of fungal
synapomorphies'>?,
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proportionally from 5,262. The Shannon index of TFome diversity for extant
species is shown with dots.

The retention of protist genes and the lack of clear synapomor-
phies for fungi blur lines between fungi and related protists and may
explain why the taxonomic limits of fungi have been challenging to
define and are stillamatter of debate'®. In other words, taxonomically
defined Fungi do not match with any clade we could define, based on
gene content, as ‘genomic Fungi’. This situation would not change even
with the exclusion of Opisthophagea from the fungal kingdom. Defin-
ing ‘genomic Fungi’ is also complicated by patterns of gene turnover.
Nevertheless, gene content (Fig. 1), turnover rates (Fig. 2) and novel
HGs suggest that, of any fungal clade, the Dikarya comprises species
with abroader set of signature HGs. At the same time, the ancestor of
the Chytridiomycota and derived fungi showed the second highest
number of genomicinnovations (novel HGs, Fig. 1; gene duplications:
Fig.3), propounding this node as a potential genomics-informed bor-
der of Fungi.

In contrast to gene loss, our inferences show that gene duplica-
tions were highly episodic, with large congregations of duplication
in a few nodes of the fungal tree. Functional analysis of gene duplica-
tions outlined major functional trends in the evolution of early fungi.
A dominant functional signal was related to extracellular proteins
(for example, degradative enzymes) and transporters, which can be
linked to the transition from phagotrophy to osmotrophy, and the
subsequentsophistication of extracellular digestive and uptake mecha-
nisms'®>13184130 These also explained a considerable portion of the
duplication events in the chytrid and Dikarya ancestors, although it
shouldbe noted that amyriad of other functions were also represented
among the most expanding families. For example, transcription factors
emerged as one of the most dynamically changing gene groups, sug-
gesting abroad rewiring of gene regulatory mechanismsin early fungi.
Another type of dynamically changing regulator was PCL-type cyclins,
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which link nutritional status with the cell cycle. The expansion of this
family is perhapsrelated to the balancing of nutrient assimilation and
growth, animportant regulatory mechanism for hyphal osmotrophs.
Our genome-wide catalogue of changes revealed alarge array of other
functions as well, many of which cannotbe easily linked to phenotypes
or ecological functions owing to the paucity of knowledge on gene
function, but represent interesting targets for functional analyses.

Taken together, this study reconstructed the history of genomic
change in fungi at unprecedented detail and provides a resource for
further analyses of fungal genome evolution, also at smaller evolution-
ary timescales. We conclude that, although sharp genetic changes at
the taxonomic border of fungi were not inferred, a large turnover of
protistan genes and a gradual emergence of fungal novelties in early
fungal evolution portray a clear genetic roadmap for the emergence
of derived fungi from their opisthokont ancestor.

Methods

Dataset assembly and clustering of proteins

To evenly cover the Holomycota lineage, we sampled 106 fungal spe-
cies, consisting of proteomes from all known phylum-level clades, with
the exception of Sanchytriomycota®, which were not published before
our data collection. In addition, as outgroups, 17 non-fungal species
were sampled torepresent Heterolobosea, Amoebozoa, Holozoa and
Nucleariids. In this study, for simplicity, we use the term ‘protist’ as a
paraphyletic group of unicellular and non-fungal eukaryotes. Proteome
sequences were downloaded from the JGI Genome Portal and NCBI/
Ensembl (before July 2021°"%%). All versus all similarity searches of the
123 proteomes were performed with MMSeqs2* using threeiterations,
with sensitivity set to 6.5, max-seqs set to 15,000, e-profile set to 0.001,
a preliminary coverage threshold set to 0.2 and an e value threshold
setto1x107*. We then performed an asymmetric coverage filtering
(requiring 20% coverage for the longer and 80% for the shorter protein)
and Markov clustering with an inflation parameter of 2.0 (ref. 54) as
described previously®. After clustering, we removed contaminating
proteins from homologous groups according to a previous study®. Fur-
thermore, to achieve better completeness of clusters without increas-
ing noise, we merged clusters based on similarity, using the all versus
all output of MMSeqs and the results of the hidden Markov Model
(HMM) search between the consensus sequence and HMM profiles of
clusters. Based on the MMSeqs output file, a network of clusters was
constructed. These networks wereiteratively reduced by excluding the
weakest nodes—sorted by the number of connections between the two
clusters, normalized to cluster size—until the maximum diameter of a
network was three. Of these cluster pairs, only those that achieved an
evalue cut-offatleast1x107°in the HMMsearch (http://hmmer.org/)
with an asymmetric coverage of 75% and 20% (HMM profile and con-
sensus, respectively) and whose match score reached at least 75% of the
self-match were allowed to be merged. We called these merged filtered
clusters of protein HGs.

Species tree reconstruction

For species tree inference, marker genes were selected from four
sources: (1) single-copy HGs based on the clustering mentioned above,
(2) clusters that were single copy after eliminating terminal duplica-
tions from gene trees inferred for each cluster using a custom-made
script (https://github.com/zsmerenyi/compaRe/blob/main/Terminal-
dupdet.zip), (3) aHMM-based search of BUSCO version 3.0.2 (ref. 57)
and (4) a HMM of JGI 1,086 marker gene sets*** (https://github.
com/1KFG/Phylogenomics_HMMs/tree/master/HMM/JGI_1086) using
HMMER 3.3.2 (ref. 60). For the latter two, only best hits were used for
each species. Subsequently, clusters were removed in which the aver-
age distance of amino acid (AA) alignment was >1.5 (dist.ml under the
WAG model®). Also, we eliminated candidates containing potential
ancestral paralogues by filtering out those presenting clusters with
low phylogenetic relations at the first split of a hierarchical clustering

of AA distances (using the default parameter of the hclust function
of package stats version 3.6.2). Multiple sequence alignments were
inferred using PRANK v.170427 (ref. 62) and trimmed using TrimAL
v.1.2 (ref. 63) (- strict). Trimmed alignments shorter than 60 AAresidues
and containing <30 species were discarded, leaving 272 single-copy
clusters resulting in 68,662 sites that were finally used for tree recon-
struction. Phylogenetic inference was performed under maximum
likelihood inIQ-TREE v1.6.12 (ref. 64) with ultrafast bootstrap® (1,000
replicates) based on the partitioned dataset of 272 clusters using the
substitution model LG + G. More complex models (LG + C60 + G) had
no effect on the branching of early-diverging lineages. We applied a
constrained treetopology ((Allmal, Olpborl), Ganprl, Partr) to separate
Aphelidafrom Blastocladiomycota, which caused no significant change
inlog-likelihood values as assessed by the Shimodaira-Hasegawa test®
(Alikelihood = 21.8, P= 0.356).

Inference of genome-wide duplication and loss history

For gene-tree reconstructions, homologous groups containing at least
four proteins were aligned using the L-INS-1 or auto (if the former was
notapplicable) algorithm MAFFT v7.313 (ref. 67) and trimmed with Tri-
mAL (-gt 0.2). Gene trees were inferred in RAXMLHPC-PTHREADS-AVX2
8.2.12 under the PROTGAMMAWAG model, and we estimated branch
robustness using the Shimodaira-Hasegawa-like support®®. Rooting
and gene-tree or species-tree reconciliation were performed with
NOTUNG v2.9 (ref. 69) using an edge-weight threshold of 80.

Gene duplication and loss histories were inferred by mapping
orthologous groups delimited on the basis of gene trees to the spe-
ciestree using Dollo parsimony implemented inamodified version of
COMPARE?”. Detected gene gains could be de novo origination, dupli-
cation, horizontal gene transfer or the result of undetectable distant
homology; however, in this study, we did not attempt to separate these
events. A custom R script (https://github.com/zsmerenyi/compaRe)
was used to visualize the mapping results utilizing functions of the
phytools, ape, tidyr and phangorn packages®7° ",

Annotation of homologous groups

For the evaluation of domain content and GO terms of HGs, an InterPro-
Scan 5.47-82.0 (ref. 74) analysis was performed on all 123 proteomes.
A GO enrichment was carried out using Fisher’s exact test with the
weightOIFisher algorithm of the topGO Bioconductor module”, and a
P <0.05was considered significant. For the enrichment analysis of 540
homologous groups lost across fungal evolution, the most complete,
the Homo sapiens GO list, was used as a reference. This approach has
its limitations, as itis hardly informative for ancient lineages, but it is
the most carefully and completely annotated GO reference available.
For the GO enrichment analysis of HGs that underwent duplication
or loss events in the ancestors of fungal phyla, all species were used
and frequencies of orthologous groups were taken into account for
each node.

A uniformrule was used for further annotation of HGs: a HG was
assignedtoagroupif>50% of its proteins were annotated with the same
type of annotation (for example, a specific domain, a small secreted
protein (SSP) or extracellular localization). For TF family identification,
sequence-specific DNA binding domains (DBDs) were selected based
on literature mining. From the putative TF HGs (containing >50% of a
given DBD), we filtered out those containing domains characteristic
of non-TF families or processes such as ribonucleases, metallopepti-
dases, chromatin remodelling or splicing. Finally, we classified the
HGs into TF families based on their DBD content, following previous
studies*®*.

Extracellular protein identification was based on subcellular
localization prediction by WoLFPSORT 0.2 (ref. 76) using the ‘fungi’
option. Proteases, SSPs and CAZymes were predicted to further dif-
ferentiate the extracellular protein-containing HGs. For proteases,
the non-redundant database was downloaded from MEROPS (on
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27 September 2022, from https://www.ebi.ac.uk/merops/download_
list.shtml merops_scan.lib) and used as a query against the protein
sequences of the 123 speciesin a BLAST search, with20% bidirectional
coverageandal x 10~ evalue cut-off, keeping the best hit for each sub-
ject protein. The prediction of SSPs was performed using a modified
version of the bioinformatics pipeline’” as follows: proteins shorter
than 300 amino acids were subjected to signal peptide prediction in
SignalP (version 4.1(ref. 78)), with those containing atransmembrane
helix predicted by TMHMM version 2.0 (ref. 79) excluded. For the
prediction of CAZymes, a HMM search was performed with dbCAN2,
using dbCAN-HMM profiles (https://bio.tools/dbcan CAN*°) as queries.
Subsequently, CAZYmes were classified according toaprevious study®.
FCWs and PCWDEs were based on the classification of CAZy families
in previous studies®*’,

Thedetection of transporters was based on the presence of char-
acteristic InterPro (IPR) domains according to a previous study®* and
plasma membrane localization, predicted by WoLFPSORT. HGs were
considered transportersifthey contained >50% of transporter-specific
domains and if plasmamembrane localization (score >15) was the most
likely within the HG.

Identification of conserved and dynamically changing HGs

To obtain a holistic picture of similarities and differences in the gene
repertoire of the 123 species, aPCoA was performed. For PCoA, atotal
0f 9,993 HGs comprising at least four proteins and reaching a conserva-
tion of 250% of species in any clade were used (see clades in Supplemen-
tary Datal). Abinary distance coefficient from the homologous group
presence and absence data were used, and a minimum spanning tree
was superimposed on the distribution of species on the two principal
coordinates (using packages of stat, ape and tidyverse” ).

To identify conserved HGs, we defined eight groups, Metazoa,
Chytridiomycota, Zoopagomycota, Mucoromycota, Pezizomycotina
and Agaricomycotina as well as the paraphyletic ‘non-opisthokonta
outgroups’and ‘basal Holozoa’ (Supplementary Datal). The conserva-
tion of aHG was calculated as the proportion of the number of species
with a protein present to the total number of species in each of these
groups. We considered HGs to be shared between non-Dikarya fungi
and protists if they had at least 70% conservation in any of the above
groups or if the HG emerged in or before the first Holomycota node
and was missing in Dikarya.

For identifying fungal core novelties, we searched for HGs that
emerged after node 141 (LUFA) and had >70% conservation for all
descendants of the node in which it emerged. This is similar to ‘novel
core’ families investigated previously in animals® and plants?; however,
we chose a conservation threshold of 70% owing to the large number
of secondarily simplified lineages (for example, yeasts, Microsporidia)
among fungi®.

To validate fungal core novelties and losses, the distribution of
InterPro domains among high-ranking taxonomic groups (Viruses,
Bacteria, Archaea, Chromalveolata, Chromista, Excavata, Plantae,
Protists, Holomycota, Holozoa) was examined. InterPro annotated
proteins from UniProtKB, together with InterPro annotation (Release
2022_01), and the NCBI taxonomy database® (in May 2022) were down-
loaded. The distribution of the 37,834 IntePro domains among 10
taxonomic groups was calculated by normalizing the total counts for
eachdomain, based onaltogether 230,895,644 proteins. We used this
dataset to assess the fungal dominance of a domain. For example, a
domain was considered as fungal specific if 99% of uniprot hits come
from Holomycota (Supplementary Data 4). Also, this proportion was
used for mining HGs containing at least 75% of fungal-specific domain
(Supplementary Data4b).

To assess the dynamics of HG changes in the ancestors of fungal
phyla, therelative net change to the copy number of the preceding node
was calculated and summed across over eight nodes from the LUFA to
the MRCA of Dikarya (Supplementary Data 6 and 8).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within the
maintext, Methods and Supplementary Informationand in the figshare
repository (taxonomic versus genomic fungi®): https://figshare.com/
articles/dataset/Taxonomic_vs_genomic_fungi/22692505 (https://doi.
org/10.6084/m9.figshare.22692505.v1).

Code availability
Scriptsused for the inference of genome-wide duplication and loss his-
toryareavailable at https://github.com/zsmerenyi/compaRe (ref. 89).
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Extended Data Fig. 2| Principal coordinate analysis based on homologous groups. Principal coordinate analysis (PCoA) based on the presence/absence data of
9,993 HGs. Microsporidia species were removed from this analysis for better visualisation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Decreased redundancy and diversity of the
phosphatidylinositol signalling system in fungi. a) KEGG graph based on
Homos sapiens gene IDs. A rectangle can contain multiple genes from the
same homologous group, therefore we have only shown the representative
gene name that KEGG uses, in the chart and table (b) as well. Colouring of the
rectangles is based on the average copy number ratio between non-fungi and
Fungi (Ratio N/F), warmer colour represents more members of agiven HG in

non-fungi thanin Fungi. Green asterisk (*) indicates the absence of acomponent
inthe Saccharomyces pathway based on the KEGG pathway (sce04070), while
blue stroke represents the absence of acomponent from Dikarya based on our
clustering. b) The table shows the average copy numbers of the HGs in which the
components of the pathway were clustered. The ratio (N/F) explained above was
used to colour the rectangles in diagram (a).
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Extended DataFig. 4 | Decreased redundancy and diversity of the calcium
signalling system in fungi. a) KEGG graph based on Homos sapiens gene IDs.
Arectangle can contain multiple genes from the same homologous group,
therefore we have only shown the representative gene name that KEGG uses,
inthe chartand table (b) as well. Colouring of the rectangles is based on the
average copy number ratio between non-fungi and Fungi (Ratio N/F), warmer

colour represents more members of a given HG in non-fungi than in Fungi. Blue
stroke represents the absence of acomponent from Dikarya while purple stroke
represents Holozoa specific genes based on our clustering. b) The table shows
the average copy numbers of the HGs in which the components of the pathway
were clustered. The ratio (N/F) explained above was used to colour the rectangles
inchart (a).
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Extended Data Fig. 6 | Copy numbers and evolution of homologous groups containing extracellular proteins. Copy numbers are shown as grey circles, while
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fungal phylogeny. Duplications mapping to terminals (that is species specific
paralogs) are not shown. The size of the circles is proportional to the number of
net gain events and copy numbers in panel (a) and (b), respectively.

Nature Ecology & Evolution


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02095-9

a Net changes

i1 R
Copd! AmutBmut1
—4 =84 ATETYL o7 2
gl’,écﬁg075 2

4512 Fibsp1

'-‘7_7 e 982
74 Colgrt”
. DeiCo 1
- )al
-40 15 Cadsp?

— Exode1
6 -{TZS
—4g  GocheCs3
ibme1v2

Naeggrub

Extended Data Fig. 9| Ancestral copy numbers and evolution of transporters.

a) Net changes (expansion - blue; contraction - red) to ancestral protein coding
capacity across the fungal phylogeny. b) inferred ancestral copy numbers.
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Extended Data Fig. 10 | Ancestral copy numbers and evolution of the C2H2 ancestral copy numbers. Duplications mapping to terminals (that is species
transcription factor family. a) Net changes (expansion - blue; contraction - red) specific paralogs) are not shown. The size of the circles is proportional to the

to ancestral protein coding capacity across the fungal phylogeny. b) inferred number of net gain events and copy numbers in panel (a) and (b), respectively.
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