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Biome-scale temperature sensitivity of  
ecosystem respiration revealed by 
atmospheric CO2 observations

Wu Sun    1 , Xiangzhong Luo    2,3,7, Yuanyuan Fang4, Yoichi P. Shiga5,8, 
Yao Zhang    2,3,9, Joshua B. Fisher    6, Trevor F. Keenan    2,3 & 
Anna M. Michalak    1 

The temperature sensitivity of ecosystem respiration regulates how the 
terrestrial carbon sink responds to a warming climate but has been difficult 
to constrain observationally beyond the plot scale. Here we use observations 
of atmospheric CO2 concentrations from a network of towers together with 
carbon flux estimates from state-of-the-art terrestrial biosphere models 
to characterize the temperature sensitivity of ecosystem respiration, 
as represented by the Arrhenius activation energy, over various North 
American biomes. We infer activation energies of 0.43 eV for North America 
and 0.38 eV to 0.53 eV for major biomes therein, which are substantially 
below those reported for plot-scale studies (approximately 0.65 eV). This 
discrepancy suggests that sparse plot-scale observations do not capture 
the spatial-scale dependence and biome specificity of the temperature 
sensitivity. We further show that adjusting the apparent temperature 
sensitivity in model estimates markedly improves their ability to represent 
observed atmospheric CO2 variability. This study provides observationally 
constrained estimates of the temperature sensitivity of ecosystem 
respiration directly at the biome scale and reveals that temperature 
sensitivities at this scale are lower than those based on earlier plot-scale 
studies. These findings call for additional work to assess the resilience of 
large-scale carbon sinks to warming.

The terrestrial carbon–climate feedback, resulting from the sensitivity  
of the terrestrial carbon sink to the physical climate1, dominates 
the uncertainty in climate projections2–4. This feedback depends on 
the difference between the responses of photosynthesis and respi-
ration to a changing climate5. Estimates of photosynthesis6,7 and 

respiration8–10 vary substantially across terrestrial biosphere models 
(TBMs)11, however. Furthermore, whereas there has recently been a 
proliferation of novel measurement techniques to better constrain 
photosynthesis from regional to global scales, such as solar-induced 
chlorophyll fluorescence12, near-infrared reflectance of vegetation13 and  
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other climatic and physiological variables, thereby represents the 
overall response of biome-scale ecosystem respiration to temperature.

Currently, the only available estimates of the biome-scale tem-
perature sensitivity of respiration are from upscaling of plot-scale esti-
mates, which are largely based on observations from eddy covariance 
towers (for example, Mahecha et al.44). Such observations are unevenly 
distributed across ecosystems45 and regions46,47 and represent fluxes 
for areas only up to several km2 (refs. 48–50). Therefore, even a network 
of hundreds of sites may not adequately represent fluxes at biome or 
continental scales51. This sampling limitation has led to a large discrep-
ancy between carbon fluxes upscaled from plot-scale observations and 
those derived from regional-scale observational constraints26, which 
casts doubt on the robustness of using plot-scale estimates to inform 
certain biome-scale responses. Moreover, cross-site analyses show 
that temperature sensitivity is similar across ecosystem types30,44,52, 
which contradicts anticipated responses from thermal acclimation 
of autotrophic and heterotrophic respiration; that is, the warmer 
the climate, the lower the temperature sensitivity53–55. Independent 
empirical estimates of biome-scale temperature sensitivity of ecosys-
tem respiration, such as those based on regional-scale observational 
constraints, are thus critically needed.

Here we leverage 39,000 atmospheric CO2 concentration measure-
ments from a network of monitoring stations across North America56 
during the period 2007–2010 to infer temperature sensitivities of 
ecosystem respiration for North America and major biomes therein 
(Extended Data Fig. 2a). To do so, we first use model estimates of eco-
system respiration at monthly temporal and 1° × 1° spatial resolu-
tion, obtained from the sum of gross primary productivity (GPP) and 
net ecosystem exchange (NEE, negative for uptake), to evaluate the  
biome-scale temperature sensitivity of ecosystem respiration as 
represented by TBM simulations from the Multi-scale Synthesis and  
Terrestrial Model Intercomparison Project version 2 (MsTMIP v2) (ref. 57)  
and Trends in Net Land–Atmosphere Exchange version 6 (TRENDY v6)  
(ref. 58) ensembles and FLUXCOM machine-learning models26. We 
then assess the degree to which space–time variability in observed 

carbonyl sulfide14,15, respiration remains difficult to constrain at  
large scales due to the absence of a unique spectral signature or  
atmospheric tracer.

Accurate climate projections thus hinge on improving our under-
standing of the magnitude, space–time distribution and climatic sen-
sitivity of respiration. More specifically, constraining the temperature 
sensitivity of respiration is key to estimating total ecosystem respira-
tion, to assessing the extent to which ecosystem respiration will be 
amplified by a warming climate and to assessing climate-related risks 
for regions that can trigger a substantial positive carbon–climate 
feedback16–19.

At regional to global scales, ecosystem respiration (RE)—the sum 
of autotrophic and heterotrophic respiratory fluxes—can be estimated 
from prognostic TBMs that parameterize respiration based on responses 
to environmental and biotic drivers20,21, from data-driven models that 
rely on site-level measurements22, from remotely sensed covariates of 
respiration23 or from a combination thereof24–26. TBMs represent respi-
ratory processes in diverse ways27 but ultimately rely on generalizing 
locally derived relationships based on sparsely distributed observations 
to continental and global scales28. This has led to a large spread in esti-
mates of respiration. In addition, estimates of global ecosystem respi-
ration based on TBMs (76–180 Pg C yr−1) vary more widely than those 
based on data-driven models (94–109 Pg C yr−1; Extended Data Fig. 1).

Within naturally occurring temperature ranges, ecosystem respi-
ration typically shows an exponential response to temperature29,30 as 
described by the Arrhenius equation31 (Methods). While components 
of ecosystem respiration are also influenced by moisture32, phenol-
ogy33, photosynthate input34,35, biomass35, nutrients36, litter quality37 
and soil microbial responses38,39, and especially so at the plot scale and 
for diurnal to monthly timescales, temperature remains the first-order 
control of ecosystem respiration (and its primary components) at 
aggregated spatial (biome to continental) and temporal (monthly 
to decadal) scales17,40–43. This aggregate temperature sensitivity of 
ecosystem respiration, which incorporates both the direct response 
of ecosystem respiration to temperature and indirect influences from 
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Fig. 1 | Using atmospheric observations to constrain the temperature 
sensitivity of respiration for North America reduces the spread in estimates 
across models and suggests that the large-scale sensitivity is lower than 
that implied by the metabolic theory of ecology and by plot-scale studies. 
a,b, Histograms of the original (a) and optimized (b) aggregate temperature 
sensitivity of ecosystem respiration for North America, as represented by N = 32 
independent estimates of Ea, for TBMs in the MsTMIP v2 (pink) and TRENDY 
v6 (brown) ensembles and data-driven models in the FLUXCOM ensemble 
(orange). Grey boxplots summarize the estimates across models, with the centre 

line, bounds of box, whiskers and dots representing the median, first and third 
quartiles, smallest and largest estimates falling within 1.5× of the interquartile 
range from the nearest quartiles and outliers beyond that range, respectively. 
Green diamonds and vertical dashed lines indicate the reference value of 0.65 eV 
based on the metabolic theory of ecology29,59,114 and plot-scale estimates52.  
A two-tailed, paired two-sample t test confirms a statistically significant 
difference between model-represented temperature sensitivities before (a) and 
after (b) optimization against atmospheric CO2 observations, as indicated by the 
t statistic and p value shown in b.
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atmospheric CO2 concentrations is captured by carbon flux estimates 
from this same ensemble of models. Finally, we use the constraint pro-
vided by the atmospheric observations to optimize continental- and 
biome-scale temperature sensitivities of respiration both for individual 
models and across the model ensemble.

Results
Uncertainty in the temperature sensitivity of respiration
We find that the temperature sensitivity of ecosystem respiration, as 
represented by the Arrhenius activation energy (Ea, in eV; Methods), 
ranges widely for the 29 model simulations examined here both for 
North America (Fig. 1a) and for individual biomes (Extended Data  
Fig. 3). For North America, for example, Ea ranges from 0.33 to 1.19 eV 
(Fig. 1a, Extended Data Fig. 4 and Supplementary Table 1), equivalent to 
Q10 values (that is, the factor by which respiration increases for a 10 °C 
increase in temperature) of 1.5 to 4.9 at 10 °C (Methods and Extended 
Data Fig. 5). Inferred temperature sensitivities are highly correlated 
across biomes within the model ensemble; models with a high tem-
perature sensitivity in one biome also tend to have high sensitivities 
in other biomes (Supplementary Table 2).

Approximately two-thirds of the examined TBM simulations (19 of 29)  
show an Ea estimate for North America that is lower than site-level 
Ea values derived from flux tower observations30,52, which converge 
around a universal empirical value of Ea = 0.65 eV for organism- and 
community-level respiration, according to the metabolic theory of 
ecology29,59 (Fig. 1a). Note that the model-represented, regional-scale 
estimates derived here are methodologically comparable with previ-
ously reported plot-scale temperature sensitivity (0.65 eV) because 
both are bottom-up estimates and are derived using temperature as the 
driver, implicitly accounting for the influence of other covariates30,52. 
This discrepancy in temperature sensitivity between regional and plot 
scales is also present for individual biomes (Extended Data Fig. 3). 
Interestingly, all three FLUXCOM models, which are trained on site-level 
flux observations, also exhibit Ea estimates for North America (0.48 to 
0.61 eV; Fig. 1a and Supplementary Table 1) that are lower than those 
derived directly from half hourly eddy covariance flux tower observa-
tions (approximately 0.65 eV (ref. 52)), indicating that the upscaling 
of site-level flux observations in space and time impacts the observed 
aggregate temperature sensitivity of ecosystem respiration.

These biome-scale aggregate temperature sensitivity estimates 
may differ from those prescribed in models for individual respiratory 
components because the former characterize large-scale phenom-
enological properties resulting from a wide array of underlying micro-
scopic respiratory reactions and encompass mediating effects from 
GPP and other covariates. For example, the Community Land Model 
version 4.5 (CLM4.5) prescribes a Q10 value of 1.5 for autotrophic and 
heterotrophic respiration60, but the activation energy estimated from 
its model output is 0.62 eV for North America (Supplementary Table 1), 
equivalent to an apparent Q10 value of 2.4 at 10°C. On the other hand, it is 
precisely the fact that these temperature sensitivity estimates reported 
here characterize the aggregate properties of biomes, which cannot 
be readily deduced from model parameterizations, that makes them 
useful for informing the climatic responses of ecosystem respiration 
and diagnosing implications of model parameterizations.

Empirical constraint on temperature sensitivities
Next we adjust each model’s activation energy and baseline respira-
tion to maximize consistency with observations of atmospheric CO2 
concentrations (Methods) and find that the temperature sensitivity 
of ecosystem respiration is reduced for most (19 of 29) TBMs and all 
three FLUXCOM models (Fig. 1a,b and Supplementary Table 1). This 
indicates that the temperature sensitivity across existing prognostic 
TBMs and data-driven models is higher than what atmospheric obser-
vations suggest. The decrease in the optimized temperature sensi-
tivity of ecosystem respiration is especially large for TBMs with high 

original sensitivity estimates. As a result of the optimization, model 
spread of the temperature sensitivity of ecosystem respiration also 
decreases (Fig. 1b), leading to an ensemble mean (± 1 standard error) 
of 0.54 (± 0.03) eV (and an ensemble median of 0.51 eV). This ensemble 
mean temperature sensitivity is statistically significantly lower than 
the previously reported plot-scale temperature sensitivity of 0.65 eV 
(p = 0.00019, one-tailed Z test).

Furthermore, we find that the adjustments to Ea needed to maxi-
mize the consistency with observed atmospheric CO2 variability, ΔEa, 
are linearly and negatively correlated with the original Ea estimates of 
the models (Fig. 2; dashed lines), both for the North American domain 
(Fig. 2a) and for individual biomes (Fig. 2b–d). This means that atmos-
pheric observations can not only be used to adjust model-specific 
temperature sensitivities but also to infer an optimal sensitivity ( ̂Ea,opt) 
across models. This ensemble optimal sensitivity is represented by the 
activation energy corresponding to zero adjustment (that is, ΔEa = 0) 
on the linear relationship between Ea and ΔEa.

We find that the best estimate of the temperature sensitivity of 
ecosystem respiration ( ̂Ea,opt) across models is 0.43 ± 0.06 eV (1σ uncer-
tainty; equivalent to Q10 = 1.9 ± 0.2 at 10 °C) for North America. This 
sensitivity is substantially and significantly lower than the previous 
global Ea estimate of 0.65 eV (ref. 52) (p = 0.00022, one-tailed Z test) 
derived from half hourly, site-level flux observations but is remarkably 
similar to the Ea estimate that represents the temperature sensitivity 
on an annual timescale (0.42 eV (ref. 52)). Moreover, the optimal sen-
sitivity (0.43 ± 0.06 eV; Fig. 2a) is also lower than the corrected ensem-
ble mean (0.54 ± 0.03 eV, mean ± 1 s.e.) (p = 0.060, one-tailed Z test) or 
median sensitivity (0.51 eV; Fig. 1b) across the models examined here. 
This difference also shows that absent an observational constraint, the 
mean or median responses across a model ensemble may not be a good 
estimate of actual sensitivity.

We also find substantial variability in temperature sensitivity 
across biomes, namely, 0.38 ± 0.03 eV (Q10 = 1.7 ± 0.1 at 10 °C) for crop-
lands, 0.50 ± 0.03 eV (Q10 = 2.1 ± 0.1 at 10 °C) for evergreen needleleaf 
forests and 0.53 ± 0.05 eV (Q10 = 2.2 ± 0.1 at 10 °C) for deciduous broad-
leaf and mixed forests, which contrasts with earlier site-level studies 
that had suggested that Ea is uniform across a range of ecosystem 
types30,52. Tropical and Arctic biomes are not considered individually 
here due to the low sensitivities of available atmospheric CO2 observa-
tions to surface fluxes in these regions (Extended Data Fig. 2b).

Additional analyses confirm that the temperature sensitivities 
inferred here are not substantially impacted by potential confound-
ing effects of soil moisture or radiation, by co-variability with GPP, by 
thermal acclimation or by lateral fluxes (Supplementary Notes 1–5 and 
Supplementary Figs. 1–7). These inferred temperature sensitivities 
therefore do represent the overall biome-scale response of ecosystem 
respiration to climatic temperature gradients.

Correcting temperature sensitivity improves model NEE skill
Having obtained observationally constrained estimates of temperature 
sensitivities of ecosystem respiration (Fig. 2), we then examine how 
these estimates impact the ability of NEE estimates from TBMs and 
data-driven models to explain observed atmospheric CO2 variability.

Surprisingly, although space–time variability in atmospheric CO2 
concentrations results from space–time patterns in NEE, we find that 
GPP estimates explain the variability in observed atmospheric CO2 
concentrations better than corresponding NEE estimates for 12 of the 
29 original TBM simulations in the MsTMIP and TRENDY ensembles 
(Fig. 3; circles, squares or diamonds; Extended Data Fig. 6). The differ-
ence between the explanatory power of monthly averaged NEE esti-
mates and that of GPP estimates (ΔR2 = R2

NEE − R2
GPP ) ranges from 

ΔR2 = 0.10 for the simulation for which the improvement from GPP to 
NEE is greatest to ΔR2 = −0.26 for the simulation where the deterioration 
relative to the explanatory power of GPP is greatest, highlighting the 
misrepresentation of ecosystem respiration in the latter set of models. 
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For the FLUXCOM models (not considered TBMs because of their 
data-driven nature; Methods), NEE estimates neither markedly improve 
nor degrade the degree to which flux estimates reproduce observed 
atmospheric CO2 variability relative to GPP estimates (ΔR2 ≤ 0.02;  
Fig. 3). Note that three of the 29 TBM simulations have GPP estimates 
that explain an even smaller portion of the observed atmospheric CO2 
variability than does shortwave radiation (R2

SW = 0.23; symbols with 
empty left portion in Fig. 3; Extended Data Fig. 6), a first-order climatic 
driver of GPP, and these simulations are therefore excluded from  
further analysis (consistent with Fig. 2; Methods).

Correcting ecosystem respiration by adjusting temperature sen-
sitivity and baseline respiration (Extended Data Fig. 7 and Methods) 
substantially improves the degree to which NEE estimates reproduce 
observed atmospheric CO2 variability for those models for which the 
performance of NEE trailed that of GPP (Fig. 3a, red shaded area). For 
four of the ten models in this group (SDGVM, CLASS-CTEM-N, CABLE 
and TRIPLEX-GHG; Supplementary Table 3), NEE estimates in fact out-
perform GPP estimates once ecosystem respiration is corrected. Only 
one model, BIOME-BGC (Supplementary Table 3), which has the lowest 
temperature sensitivity among all investigated models (Ea = 0.33 eV; 

Supplementary Table 1), shows a minor degradation after respiration 
is corrected.

By contrast, correcting ecosystem respiration does not consist-
ently improve the performance of NEE estimates for models for which 
the explanatory power of NEE already exceeded that of GPP (Fig. 3a, 
blue shaded area). For these models, bias in ecosystem respiration may 
have been offset by corresponding bias in GPP.

Interestingly, correcting ecosystem respiration using a single value 
of the ensemble optimal temperature sensitivity (0.43 eV for North 
America) across all models and biomes yields an improvement in the 
performance of models’ estimates of NEE that is almost as large (mean 
increase in R2

NEE  of 0.10 for models for which R2
NEE < R2

GPP ; Fig. 3b)  
as adjusting both the respiration sensitivity and baseline respiration  
to model-specific optimized values (mean increase in R2

NEE of 0.12 for 
the same set of models; Fig. 3a), further supporting the robustness of 
the overall estimate of temperature sensitivity for North America.

The improvement in model explanatory power of NEE after cor-
recting ecosystem respiration indicates a dominant role of the tem-
perature sensitivity bias in causing the underperformance in carbon 
flux estimates, although other sources of bias also exist. Attribution of 
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the model ensemble. Adjustments to model-specific estimates of the activation 
energy are determined by maximizing consistency with observed atmospheric 
CO2 variability (Methods). a–d, Relationships between adjustments to 
model-specific estimates of the activation energy needed to maximize 
consistency with observed atmospheric CO2 variability (ΔEa; vertical axis) and the 
original estimates of activation energy (Ea; horizontal axis) for models in the 
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in the North American domain (a), croplands (b), evergreen needleleaf forests (c) 

and deciduous broadleaf and mixed forests (d). Note that only models for which 
the explanatory power of simulated GPP (R2

GPP) exceeds that of shortwave 
radiation (R2

SW) are included (Extended Data Fig. 6), leaving two models in the 
MsTMIP ensemble and one model in the TRENDY ensemble excluded (Methods). 
The grey dashed lines represent the best orthogonal distance regression (ODR) 
fit between ΔEa and Ea estimates across the three ensembles of models (N = 29), 
with light grey shading indicating the 95% prediction interval. The optimal  
Ea ( ̂Ea,opt) corresponds to the point where the ODR fit line crosses ΔEa = 0 eV  
(that is, no adjustment to Ea is needed) and is indicated using a green dashed  
line and listed for each biome in the corresponding panel.

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | August 2023 | 1199–1210 1203

Article https://doi.org/10.1038/s41559-023-02093-x

model NEE bias to respiration parameters has been difficult up to now 
because of equifinality—that is, in the presence of respiration bias, the 
bias in NEE estimates may still be alleviated by compensation from bias 
in GPP estimates. Here because rescaling ecosystem respiration based 
on an overall optimal temperature sensitivity for North America alone 
(Fig. 3b; Methods) leads to substantial improvement in NEE explana-
tory power for models for which the performance of NEE trails that of 

GPP (ΔR2 < 0; Fig. 3b, red shaded area), respiration bias is probably a 
more important contributor to the NEE bias than is GPP bias for these 
models. This notion is also corroborated by changes in the seasonal 
cycles of NEE after imposing the optimal temperature sensitivity on 
the model ensemble (Supplementary Figs. 8 and 9) and by additional 
tests on the influences of GPP uncertainty on the inferred temperature 
sensitivity (Supplementary Figs. 1 and 2).
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temperature sensitivity (ΔEa in Fig. 2a) and the baseline respiration rate at 10∘C for 
North America (Extended Data Fig. 7a). b, The same information from a after 
rescaling based on an overall optimal temperature sensitivity derived for North 
America ( ̂Ea,opt = 0.43 eV; Fig. 2a). The R2 differences (R2

NEE − R2
GPP) of the original 

MsTMIP, TRENDY and FLUXCOM models are represented by squares, circles and 
diamonds, respectively. A symbol that is filled in the left (right) half indicates that 
the corresponding model’s GPP (NEE) estimates explain a higher fraction of CO2 
variability than does incoming shortwave radiation (R2

SW = 0.23). Solid symbols 
indicate models for which both GPP and NEE estimates outperform shortwave 
radiation in explaining atmospheric CO2 variability, whereas empty symbols 
indicate models for which neither GPP nor NEE estimates outperform shortwave 

radiation. Models for which the explanatory power of GPP lags behind that of 
shortwave radiation (CLASS-CTEM, VISIT and JPL-HYLAND) are excluded from 
the rescaling. The blue shaded area highlights models for which the original 
estimates of NEE outperform GPP in terms of explanatory power, while the red 
shaded area includes models for which GPP outperforms NEE. The R2 differences 
after rescaling respiration are indicated by triangles, with upward orientation 
indicating an improvement in the explanatory power and downward orientation 
indicating the opposite. Most models for which the explanatory of NEE originally 
lagged that of GPP (red shaded regions of both panels) show a marked 
improvement in explanatory power once the temperature sensitivity of 
ecosystem respiration is adjusted to optimized values. Conversely, adjusting the 
temperature sensitivity of respiration does not have a large or consistent impact 
for those models where the explanatory power of NEE was already superior to 
that of GPP (blue shaded regions). See Supplementary Table 3 for a list of all 
model names, abbreviations and references.
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Discussion
Our findings highlight the spatial-scale dependence of the temperature 
sensitivity of respiration. Several factors probably contribute to the 
temperature sensitivity at the biome scale and seasonal to interannual 
timescales being lower than that reported from plot-scale studies. 
Temporal aggregation may smooth out short-term (for example, half 
hourly, typical for plot-scale observations) responses, leading to mark-
edly reduced temperature sensitivity on annual timescales30,52. For soil 
heterotrophic respiration—a major component of ecosystem respira-
tion—climatological temperature sensitivity has also been shown to 
differ from instantaneous temperature sensitivity17. Indeed, we find 
that the relationship between biome-scale temperature sensitivity 
estimates and mean air temperatures of the studied biomes (Supple-
mentary Fig. 10) is broadly consistent with the previously observed 
response of climatological Q10 for soil carbon decomposition to the 
mean air temperature in the temperate domain17. Despite the difference 
in respiratory components, such qualitative consistency lends support 
to the robustness of the inferred climatologically relevant temperature 
sensitivity for temperate North American biomes.

Moreover, biome-scale temperature sensitivities may further 
differ from plot-scale temperature sensitivities because the responses 
observed here incorporate indirect sensitivities to temperature via 
drivers such as soil moisture32, nutrients36 and phenology33. Indeed, 
some plot-scale studies show a lower temperature sensitivity than 
the biome-scale temperature sensitivity inferred here after removing 
influences from low-frequency variability (Q10 = 1.4 ± 0.1 (ref. 44)) or 
hydrometeorological drivers (Q10 = 1.6 ± 0.1 (ref. 61)). In addition, as 
ecosystems in cooler (warmer) climates tend to have higher (lower) 
baseline respiration rates29, accounting for this spatial gradient in 
baseline respiration potentially dampens the inferred biome-scale 
temperature sensitivity. Ecosystem state variables such as GPP and 
phenology may also regulate the baseline respiration62. The relative 
contribution of these factors at the biome scale merits further research. 
Given that the sensitivities inferred here encompass these various 
additional factors, they are likely to more aptly reflect the bulk response 
of respiration to future warming on aggregate space–time scales and 
therefore inform climatic responses.

In addition to differences in sensitivity across scales, several known 
challenges with flux measurements and partitioning may have also 
led to an overestimate of the temperature sensitivity of ecosystem 
respiration in earlier studies even at the plot scale. These known chal-
lenges can cause ecosystem respiration to be undercounted when 
temperatures are low (at night or in the dormant season) and overes-
timated when temperatures are high (during the day or in the growing 
season). Nighttime respiration can be underestimated in conditions 
of weak turbulence and canopy CO2 storage build-up63. Moreover, for 
sites in uneven terrain, there is no accepted way to reliably account for 
advective CO2 fluxes64, which may lead to a further underestimation of 
respiratory carbon loss at night. Partitioning daytime respiration from 
NEE measurements also remains challenging because the relationship 
between nighttime respiration and temperature often does not hold 
during the daytime due to light inhibition of leaf respiration65–67 and 
non-temperature controls of nighttime autotrophic respiration68. As 
a result, using the relationship between nighttime respiration and 
temperature to partition daytime fluxes often leads to overestimation 
of daytime respiration69. Furthermore, this overestimation of daytime 
respiration is particularly strong in the growing season (up to 23%)  
(ref. 69), further enhancing the bias of inferred temperature sensitivity 
on an annual timescale. These problems all contribute to a potential posi-
tive bias in the plot-scale temperature sensitivity and, in turn, the size 
of the difference in temperature sensitivity across scales reported here.

The difference in the temperature sensitivity of ecosystem respira-
tion between croplands and forests observed here (Fig. 2b-d) and the 
absence of such biome specificity in plot-scale studies may arise from 
several factors. Croplands typically show a higher carbon use efficiency 

(ratio between net primary productivity and GPP) than unmanaged 
forests70, that is, a lower autotrophic fraction in ecosystem respiration. 
This, in turn, means that the fraction of soil heterotrophic respiration, 
which is less sensitive to air temperature than is aboveground respira-
tion, is higher in croplands than forests, thereby leading to the overall 
lower temperature sensitivity of ecosystem respiration in croplands. 
Management practices such as harvest, irrigation and tillage can cause 
dramatic changes in ecosystem respiration at weekly to monthly time-
scales71, though their impact on the temperature sensitivity at longer 
timescales remains poorly understood. The dearth of cropland sites 
in FLUXNET observations45 may explain the lack of biome specificity 
in the temperature sensitivity inferred in plot-scale studies and the 
fact that the FLUXCOM models26, trained on FLUXNET observations, 
capture the temperature sensitivity best in deciduous broadleaf and 
mixed forests (Fig. 2d) but least well in croplands (Fig. 2b). To reach a 
robust understanding of cropland carbon cycling, future investigations 
may need to examine the partitioning among different respiratory 
components, quantify the impact of management practices on the 
temperature sensitivity of ecosystem respiration and expand the eddy 
covariance network in cropland areas.

Given that the temperature sensitivity of ecosystem respiration 
constitutes a leading-order positive climate feedback, the findings 
presented here also open several avenues for advancing the under-
standing of terrestrial carbon–climate feedbacks.

First, although observed atmospheric CO2 variability incorporates 
influences of both photosynthesis and ecosystem respiration, the infer-
ence of an ensemble optimal temperature sensitivity for respiration for 
North America (Fig. 2a) and major biomes (Fig. 2b–d) indicates that 
the current level of uncertainty in GPP7,72,73 does not obscure informa-
tion about ecosystem respiration (Supplementary Fig. 1). Given this 
finding, partitioning of net carbon fluxes into photosynthesis and 
respiration at regional scales is, in principle, achievable in a manner 
akin to the respiration-based partitioning widely used at eddy covari-
ance sites63,74; such partitioning would overcome a key observational 
challenge in constraining regional-scale responses of carbon fluxes 
to climate. Pursuing this goal may require expanding and optimizing 
atmospheric observational networks to better resolve space–time 
variability in photosynthesis and respiration75, especially in sparsely 
sampled tropical and Arctic biomes.

Second, our findings establish a link between the explanatory 
power of modelled NEE and bias in the temperature sensitivity of eco-
system respiration, which is useful for refining TBMs. Although the 
temperature sensitivity of either GPP or ecosystem respiration may be 
adjusted to improve the consistency between NEE and observed atmos-
pheric CO2 concentrations, in reality, GPP and ecosystem respiration 
are intricately tied by carbon allocation and decomposition processes. 
Such coupling does not always allow errors in ecosystem respiration 
to be cancelled by corresponding errors in GPP. Here the substantial 
improvements in model explanatory power resulting from correcting 
the temperature sensitivity of ecosystem respiration (Fig. 3) provide 
robust evidence that current model representation of respiratory pro-
cesses contribute substantially to uncertainty in NEE estimates, and in 
turn, uncertainty in the response of the terrestrial carbon sink to future 
warming. We suggest that calibration of the biome-scale temperature 
sensitivity of ecosystem respiration against multi-scale constraints be 
prioritized in model development to reduce compensating errors in 
ecosystem respiration and GPP, which could otherwise meet model 
benchmarks but for incorrect reasons.

Finally, if bias in the temperature sensitivity of ecosystem respira-
tion represented by standalone TBM simulations is indicative of that in 
coupled Earth system model simulations, we may expect the response 
of ecosystem respiration to warming to be stronger in those models 
than what current atmospheric CO2 observations suggest as well. This 
difference also highlights a gap in the predictive understanding of how 
large-scale carbon sinks respond to future warming, because much of 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | August 2023 | 1199–1210 1205

Article https://doi.org/10.1038/s41559-023-02093-x

current understanding derives from Earth system model simulations. 
Meanwhile, in the long run, the response of ecosystem respiration to 
climatic warming may be additionally influenced by acclimation to a 
warmer climate53–55,76,77, changes in soil microbial community compo-
sition78, limitation of labile carbon pools79 and soil warming80, among 
other factors. As early warning signs of potential saturation and desta-
bilization of regional carbon sinks appear81, there is an urgent need to 
assess the resilience of large-scale carbon sinks to climatic warming by 
synthesizing multi-scale observational constraints with Earth system 
models that embed state-of-the-art mechanistic understanding of 
respiration. Looking forward, we anticipate that the expanding network 
of ground-based, airborne and satellite remote-sensing observations 
of atmospheric CO2 concentrations will further elucidate the climatic 
sensitivities of ecosystem respiration across regions and spatiotem-
poral scales and thereby inform respiration-driven terrestrial carbon–
climate feedbacks.

Methods
Model estimates of terrestrial carbon fluxes
Monthly model estimates of GPP and NEE were obtained from the  
MsTMIP (version 2, spanning 1901–2010)57,82–86 and the TRENDY (version 6,  
spanning 1960–2016)58,87,88 ensembles for the period 2007–2010. We 
chose this study period because of the overlapping temporal coverage 
of carbon flux estimates (MsTMIP ends in 2010) and high-resolution 
atmospheric transport (starting in 2007). Each model ensemble used 
a set of standardized climate drivers to drive individual model runs, 
thereby minimizing model divergence contributed from climate driv-
ers. There were 29 simulations from 24 independent TBMs. In addition, 
we used three machine-learning models from the FLUXCOM ensemble 
for comparison26. This yielded N = 32 pairs of simulated GPP and NEE 
estimates for the analysis of ecosystem respiration. The model output 
was regridded to 1° × 1° resolution. A list of all models is provided in 
Supplementary Table 3.

Estimating the temperature sensitivity of respiration
Air temperature data were obtained from the North American Regional 
Reanalysis data89, regridded to the same monthly, 1° × 1° resolution as 
the carbon flux estimates.

Ecosystem respiration (RE) was calculated from the sum of model 
estimates of GPP and NEE per definition (note that NEE is negative when 
there is net ecosystem uptake).

We used the Arrhenius equation to describe the relationship 
between ecosystem respiration (RE, μmol m−2 s−1) and air temperature 
(T, K):

RE(T) = RE,ref exp [−
Ea
kB

( 1T − 1
Tref

)] , (1)

where Ea (eV) is the activation energy of ecosystem respiration, 
kB = 8.617333262 × 10−5 eV K−1 is the Boltzmann constant, Tref = 10 °C 
or 283.15 K is the reference temperature and RE,ref (μmol m−2 s−1) is the 
baseline ecosystem respiration rate at Tref.

We estimated Ea and RE,ref for each model for North America (Fig. 1a)  
and then also separately for several major biomes (croplands, ever-
green needleleaf forests and deciduous broadleaf and mixed forests; 
Extended Data Fig. 2a) through a linear regression:

lnRE(T) = lnRE,ref −
Ea
kB

( 1T − 1
Tref

) . (2)

RE values that were negative or close to zero were filtered out. We used 
all valid monthly, grid-cell-level RE and corresponding temperature 
values during the period 2007–2010 to estimate Ea and RE,ref for each 
study domain (North America or individual biomes), accounting for 
both spatial and temporal variabilities in temperature and RE. This 

treatment took the assumption of ‘trading space for time’54,90, given 
the short span of the study period. Note that we did not consider tem-
perature thresholds in the response of ecosystem respiration52 because 
monthly mean temperature rarely dips below the previously identified 
low temperature threshold (−24.8 °C) and most models do not show 
a discontinuity above the high temperature threshold (15.1 °C) in the 
study domain.

The Q10 formulation expresses respiration as an exponential func-
tion of temperature, that is, a linear relationship between lnRE and T. 
Hence we linearized lnRE against T to obtain the apparent Q10 as a func-
tion of Ea and T to aid interpretation of estimated Ea values in the context 
of reported Q10 values in the literature:

Q10 (Ea,T) = exp (∂ lnRE

∂T
ΔT10) = exp ( Ea

kBT2
ΔT10) , (3)

where ΔT10 = 10 K. For example, at T = 283.15 K (10 °C), Ea = 0.65 eV is 
equivalent to an apparent Q10 of 2.6 (Extended Data Fig. 5).

Optimizing the temperature sensitivity of respiration
Observations of atmospheric CO2 concentrations are sensitive to 
net CO2 fluxes from large regions (106 km2) (ref. 91) and thus provide 
top-down constraints on carbon flux estimates for large biomes and 
continental regions73,92–96, provided that atmospheric transport is 
adequately resolved to link fluxes to observed concentrations. While 
atmospheric CO2 observations can inform the mass balance and space–
time variability of net carbon fluxes, they lack direct component-level 
constraints on photosynthesis and respiration. Consequently, 
TBM-based estimates97 or photosynthetic proxies9,98 have been needed 
to separately inform estimates of photosynthesis and respiration from 
atmospheric CO2 observations.

Here we optimized the continental- and biome-scale temperature 
sensitivity of ecosystem respiration for individual models by maximiz-
ing the consistency between transported signals of ecosystem respi-
ration from bottom-up models and the components of space–time 
variability in CO2 concentrations caused by ecosystem respiration 
(Extended Data Fig. 2).

To do so, atmospheric measurements of CO2 mixing ratio during 
2007–2010 were obtained from 44 tall towers across North America, 
sourced from the ObsPack CO2 GlobalViewPlus v3.2 data product56,99. 
We used three hourly averaged CO2 measurements centred in the 
afternoon (15:00 local time for most sites and 16:00 or 17:00 for a 
few remaining sites). From these measurements, we subtracted back-
ground CO2 values and fossil fuel influences (FFDAS v2 (Fossil Fuel Data 
Assimilation System version 2)) (ref. 100) to derive the net influence of 
terrestrial biospheric carbon fluxes on atmospheric CO2 mixing ratio. 
The resulting observations of CO2 depletion or enhancement were then 
filtered to remove influences from non-terrestrial fluxes or data points 
that showed a large model–data mismatch. In sensitivity analyses, 
we also subtracted the influence of lateral fluxes obtained from the 
Global Stocktake data product101–104 (Supplementary Notes 2). We then 
removed the influence of GPP on atmospheric CO2 observations in the 
same way. This yielded the respiratory component of the space–time 
variability in atmospheric CO2 observations. Because biomass-burning 
emissions (~0.06 Pg C yr−1) (ref. 105) were minor compared with NEE 
over North America (−0.7 Pg C yr−1) (ref. 95) during the study period 
(2007–2010)—and certainly dwarfed by model spread in ecosystem 
respiration—influences from biomass-burning emissions on the tem-
perature sensitivity of ecosystem respiration were not considered.

Sensitivities of CO2 mixing ratio measurements to surface 
fluxes, also known as transport footprints, were produced from 
high-resolution (10 km for temperate North America and 40 km 
for tropical and high-latitude North America) WRF–STILT (Weather 
Research and Forecasting – Stochastic Time Inverted Lagrangian Trans-
port) model runs106 and post aggregated to a 1° × 1° resolution as part 
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of the CarbonTracker–Lagrange project (https://gml.noaa.gov/ccgg/
carbontracker-lagrange/). The potential transport error is demonstra-
bly minor relative to the spread in TBM flux estimates107,108.

We then calculated the adjustments to the temperature sensitivity 
(Ea) and the baseline respiration rate (RE,ref) by minimizing the mismatch 
between the transported signal of model estimates of ecosystem respi-
ration and the respiratory component of atmospheric CO2 variability. 
The original estimates of ecosystem respiration (RE, equation (1)) were 
adjusted as follows:

RE
∗ = REα exp [−ΔEa

kB
( 1T − 1

Tref
)] , (4)

where RE
∗ (μmol m−2 s−1) is the adjusted estimate of ecosystem respira-

tion, ΔEa (eV) is the adjustment to Ea needed to minimize the mismatch 
and α > 0 is a dimensionless scaling factor for the baseline respiration 
rate.

Like the original estimates of Ea, the adjustments ΔEa were esti-
mated over the North American domain and for major biomes. The 
parameter α accounted for the adjustment to the magnitude of ecosys-
tem respiration (Extended Data Fig. 7), thereby allowing the bias from 
temperature sensitivity and that from the seasonal cycle amplitude to 
be separately constrained.

To obtain an estimate of the overall optimal Ea for North America 
(and for individual biomes) across models, we fitted linear relationships 
between ΔEa adjustments and the original Ea estimates for individual 
models using the orthogonal distance regression. Orthogonal distance 
regression was used because it accounts for errors in both the regressor 
and the response109. The fitting was performed using the SciPy ODR 
function110,111. An optimal value of Ea, that is, ̂Ea,opt was derived at the 
intersection of ΔEa = 0 and the best fit line for each domain (North 
America or individual biomes; Fig. 2).

Evaluating carbon flux estimates using observations
We used in situ measurements of atmospheric CO2 mixing ratio and the 
transport footprints to determine the extent to which regional-scale 
estimates of GPP and NEE are consistent with observations. As in Sun 
et al.73, we calculated the transported signal of GPP or NEE estimates 
for each individual model and assessed how well the transported signal 
explains the biospheric component of the observed CO2 space–time 
variability using the coefficient of determination (R2).

We used the explanatory power of shortwave radiation, R2
SW = 0.23, 

as a minimum benchmark to exclude a small subset of models with very 
low explanatory power (N = 3) from the subsequent analysis on eco-
system respiration. Shortwave radiation data were obtained from the 
North American Regional Reanalysis data89. Because shortwave radia-
tion is a first-order climatic driver of GPP112 and influential in determin-
ing NEE space–time variability113, we would expect carbon flux estimates 
to explain at least as much portion of observed atmospheric CO2  
variability as the shortwave radiation.

Evaluating temperature sensitivity-corrected NEE estimates
We assessed how updating the temperature sensitivity of respiration 
(‘Optimizing the temperature sensitivity of respiration’) impacted the 
explanatory power of NEE estimates.

To do so, we adjusted ecosystem respiration estimates for each 
model according to the optimal ΔEa and α derived for that model in 
the optimization procedure (equation (4)). Note that correction to the 
baseline respiration rate through α changes the mean ecosystem respi-
ration magnitude (equation (4)), which avoids erroneously adjusting 
the temperature sensitivity in response to a bias in overall magnitude.

In a second analysis, we instead adjusted Ea of all models to the 
optimal value over North America ( ̂Ea,opt = 0.43 eV) estimated from the 
model ensemble. The adjustment of RE was conducted by multiplying 
RE by the temperature sensitivity adjustment, exp(− ΔEa

kBT
), followed by 

rescaling the magnitude to conserve the mean RE. We also capped the 
adjusted RE at its original maximum value max(RE) within a relative toler-
ance level (≤1%) to prevent unrealistically high values being produced 
by the exponential function.

The performance of the two sets of adjusted NEE estimates in 
explaining the space–time variability in atmospheric CO2 measure-
ments was evaluated using the same approach as described in the 
previous section.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Results presented in this study are available at https://doi.org/10.5281/
zenodo.7874439. The ObsPack GLOBALVIEWplus CO2 data product is 
available at https://www.esrl.noaa.gov/gmd/ccgg/obspack. The Car-
bonTracker–Lagrange WRF–STILT footprints are available at https://
gml.noaa.gov/ccgg/carbontracker-lagrange/. The FFDAS v2 data 
product is available at https://ffdas.rc.nau.edu/. The North American 
Regional Reanalysis data can be obtained at https://psl.noaa.gov/data/
gridded/data.narr.html. The MsTMIP v2 model ensemble is available 
at https://nacp.ornl.gov/. The TRENDY v6 model ensemble is available 
at https://blogs.exeter.ac.uk/trendy/. The FLUXCOM model ensemble 
is available at http://www.fluxcom.org/.

Code availability
Code used to generate figures and results is available at  
https://doi.org/10.5281/zenodo.7874439.
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Extended Data Fig. 1 | Estimates of global terrestrial ecosystem respiration 
vary more widely among terrestrial biosphere models than among data-
driven models. Terrestrial biosphere model (TBM) estimates of the global 
total ecosystem respiration (RE) are shown from the MsTMIP v2 (pink) and 
TRENDY v6 (brown) model intercomparison projects for the period 2007–2010. 
Data-driven estimates of global total RE include those from three FLUXCOM 
models (orange) for the same period (2007–2010). In addition, three remote-
sensing based estimates from different periods are also included as data-driven 
estimates, namely, estimates from Yuan et al.24 for 2000–-2003 (blue), Ai et al.25 

for 2001–2010 (green), and Konings et al.23 for 2010–2012 (beige). Note that the 
global estimate from Ai et al.25 is rescaled to be consistent with the global domain 
in Yuan et al.24, assuming the same ratio between global RE and the total RE for land 
south of 65 ∘N and excluding mosaic crops and natural vegetation. The estimate 
of total ecosystem respiration from Konings et al.23 is calculated as the sum of 
heterotrophic and autotrophic respiration estimates presented in their data 
product. The top axis shows RE in equivalent flux units if averaged over the global 
land area (1.49 × 108 km2).
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Extended Data Fig. 2 | Atmospheric CO2 measurements from existing 
observational networks are most sensitive to fluxes from mesic biomes in 
temperate and boreal North America. (a) The distribution of major biomes 
in North America: croplands (CRO; olive), evergreen needleleaf forests (ENF; 
purple), and deciduous broadleaf and mixed forests (DBMF; green). (b) Average 

sensitivity of atmospheric CO2 measurements to surface fluxes (ppm [μmol m−2 
s−1]−1) over North America during 2007–2010. Hotspots indicate sites of the CO2 
continuous-monitoring network (Supplementary Table 4). The base map was 
generated using matplotlib v3.7.1 (https://matplotlib.org) and Cartopy v0.21.1 
(https://scitools.org.uk/cartopy).
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Extended Data Fig. 3 | Using atmospheric observations to constrain the 
temperature sensitivity of respiration for North American biomes reduces 
the spread in estimates across models and suggests that the large-scale 
sensitivity is lower than that implied by the metabolic theory of ecology and 
by plot-scale studies. Similar to Fig. 1, but for individual biomes. Histograms 
of the original (left) and optimized (right) aggregate temperature sensitivity 
of ecosystem respiration for croplands (CRO; a, b), evergreen needleleaf 
forests (ENF; c, d), and deciduous broadleaf and mixed forests (DBMF; e, f), as 
represented by N = 32 independent estimates of the activation energy (Ea), for 
TBMs in the MsTMIP v2 (pink) and TRENDY v6 (brown) ensembles and data-
driven models in the FLUXCOM ensemble (orange). Grey boxplots summarize the 

estimates across models, with the centre line, bounds of box, whiskers, and dots 
representing the median, first and third quartiles, smallest and largest estimates 
falling within 1.5× of the interquartile range from the nearest quartiles, and 
outliers beyond that range, respectively. Green diamonds and vertical dashed 
lines indicate the reference value of 0.65 eV based on the metabolic theory of 
ecology29,59,114 and plot-scale estimates52. Similar to Fig. 1, t statistics and  
p values in (b, d, f) indicate differences between model-represented temperature 
sensitivities before and after optimization against atmospheric CO2 observations 
for CRO, ENF, and DBMF, respectively, according to two-tailed, paired two-
sample t tests.
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Extended Data Fig. 4 | Fitted temperature responses of model estimates of 
ecosystem respiration. The natural log of ecosystem respiration (RE) varies 
linearly with the reciprocal of temperature (1/T), according to the Arrhenius 

equation. Each line is derived from ecosystem respiration estimates from a model 
simulation in the ensemble and is colour-coded according to the fitted activation 
energy (Ea, colourbar).
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Extended Data Fig. 5 | The relationship between the apparent Q10 and the activation energy (Ea) of a reaction is temperature dependent. For a chemical reaction 
with a certain activation energy (Ea), Q10 becomes lower as the temperature increases. See Methods for a derivation of this relationship.
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Extended Data Fig. 6 | For some models, NEE estimates do not outperform the 
same models’ GPP estimates in explaining observed atmospheric CO2 
variability. Fractions of observed CO2 variability explained by NEE estimates 
(R2

NEE) vs. those explained by GPP estimates (R2
GPP) from simulations from the 

MsTMIP v2 (pink squares), TRENDY v6 (brown circles), and FLUXCOM (orange 
diamonds) model ensembles for 2007–2010. A model that falls below the 
one-to-one dashed line has GPP estimates that explain observed atmospheric 

CO2 variability better than that same model’s NEE estimates. Similar to Fig. 3, 
symbols that are half filled to the left (right) indicate models whose GPP (NEE) 
estimates explain a higher fraction of CO2 variability than does incoming 
shortwave radiation (R2

SW = 0.23; green dotted line). Data points that represent 
the same model participating in different ensembles (for example, LPJ-wsl in 
MsTMIP and TRENDY) are linked with thin lines.
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Extended Data Fig. 7 | Attribution of respiration bias to the temperature 
sensitivity and the baseline respiration rate based on maximal consistency 
with atmospheric CO2 observations for (a) the North American domain,  
(b) croplands, (c) evergreen needleleaf forests, and (d) deciduous broadleaf 
and mixed forests. TBMs and the FLUXCOM models are colour-coded circles, 
as in the legend. Note that a negative ΔEa adjustment means that the original Ea 
parameter of the model has a high bias, and a positive ΔEa adjustment means a 

low bias in Ea. Similarly, for the baseline respiration adjustment, a ratio greater 
than one indicates a low bias in the original baseline respiration of the model, 
and a ratio smaller than one indicates a high bias in baseline respiration. For most 
TBMs, a low bias in Ea is compensated by a high bias in the baseline respiration 
(the 2nd quadrant), or a high bias in Ea is compensated by a low bias in the baseline 
respiration (the 4th quadrant). However, FLUXCOM models tend to show a low 
bias in the baseline respiration and a small to no bias in temperature sensitivity.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We did not use software in data collection. Publicly available data were provided by individual PIs.

Data analysis Code used to generate figures and results is archived at https://doi.org/10.5281/zenodo.7874439. 
The following software environment is required to run the code: 
Python >= 3.8 (Python 2 not supported) 
jupyterlab >= 3.2.1 
numpy >= 1.21.2 
scipy >= 1.7.2 
pandas >= 1.3.4 
xarray >= 0.19.0 
statsmodels >= 0.13.0 
matplotlib >= 3.5.0 
cartopy >= 0.18.0 
seaborn >= 0.11.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Results presented in this study are available at https://doi.org/10.5281/zenodo.7874439. The ObsPack GLOBALVIEWplus CO2 data product is available at https://
www.esrl.noaa.gov/gmd/ccgg/obspack. The CarbonTracker-Lagrange WRF-STILT footprints are available at https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-
lagrange/. The FFDAS v2 data product is available at https://ffdas.rc.nau.edu/. The North American Regional Reanalysis data can be obtained at https://
psl.noaa.gov/data/gridded/data.narr.html. The MsTMIP v2 model ensemble is available at https://nacp.ornl.gov/. The TRENDY v6 model ensemble is available at 
https://sites.exeter.ac.uk/trendy/. The FLUXCOM model ensemble is available at http://www.fluxcom.org/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We use observations of atmospheric CO2 concentrations from a network of towers together with carbon flux estimates from state-
of-the-art terrestrial biosphere models to characterize the large-scale temperature sensitivity of ecosystem respiration for various 
North American biomes.

Research sample 39,217 observations of atmospheric CO2 concentration from a network of 44 towers over North America during 2007–2010; 
29 terrestrial biosphere model simulations from 24 independent models; 
3 data-driven models for carbon flux estimates in the FLUXCOM ensemble

Sampling strategy We used all available data after filtering and quality control.

Data collection Atmospheric CO2 concentrations were collected by individual site PIs across North America. The WRF-STILT transport footprints were 
provided by the NOAA CarbonTracker-Lagrange Team. Terrestrial biosphere model and data-driven model simulations were provided 
by individual modelers.

Timing and spatial scale The study domain covers the North American continent and individual biomes therein. Atmospheric CO2 concentration data were 
reported at three-hourly time scale from 44 sites across North America, spanning the period 2007–2010. The WRF-STILT transport 
footprints were at three-hourly time scale and 1° × 1° spatial resolution. Carbon flux estimates from terrestrial biosphere models 
were at the monthly time scale. All carbon flux estimates from terrestrial biosphere models were harmonized at 1° × 1° spatial 
resolution.

Data exclusions We used all relevant data to derive estimates of temperature sensitivity for individual models. For the derivation of an overall 
temperature sensitivity across models, three terrestrial biosphere models were excluded due to low explanatory power of their 
estimates of gross primary productivity. This practice has been documented in the methods and reporting.

Reproducibility Uncertainty ranges of estimates were reported. We have also released the code used to perform the analysis in a publicly accessible 
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Reproducibility repository.

Randomization Randomization is not relevant as we examined the effect over the entire study domain.

Blinding Blind is not relevant because the work was not experimental in nature.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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