Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds

Abstract

Species sensitivity to forest fragmentation varies latitudinally, peaking in the tropics. A prominent explanation for this pattern is that historical landscape disturbance at higher latitudes has removed fragmentation-sensitive species or promoted the evolution of more resilient survivors. However, it is unclear whether this so-called extinction filter is the dominant driver of geographic variation in fragmentation sensitivity, particularly because climatic factors may also cause latitudinal gradients in dispersal ability, a key trait mediating sensitivity to habitat fragmentation. Here we combine field survey data with a morphological proxy for avian dispersal ability (hand-wing index) to assess responses to forest fragmentation in 1,034 bird species worldwide. We find that fragmentation sensitivity is strongly predicted by dispersal limitation and that other factors—latitude, body mass and historical disturbance events—have relatively limited explanatory power after accounting for species differences in dispersal. We also show that variation in dispersal ability is only weakly predicted by historical disturbance and more strongly associated with intra-annual temperature fluctuations (seasonality). Our results suggest that climatic factors play a dominant role in driving global variation in the impacts of forest fragmentation, emphasizing the need for more nuanced environmental policies that take into account local context and associated species traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypotheses predicting the distribution of fragmentation-sensitive species.
Fig. 2: Global patterns of landscape disturbance and dispersal limitation.
Fig. 3: Fragmentation sensitivity increases with dispersal limitation in bird assemblages.
Fig. 4: Dispersal limitation (nHWI) explains variation in fragmentation sensitivity.
Fig. 5: Predictors of dispersal limitation in birds.

Similar content being viewed by others

Data availability

All data are available at https://github.com/tomlweeks1994/Dispersal_mediates_fragmentation_sensitivity.

Code availability

The code to conduct analyses and replicate figures is available at https://github.com/tomlweeks1994/Dispersal_mediates_fragmentation_sensitivity.

References

  1. Brook, B., Sodhi, N. & Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article  PubMed  Google Scholar 

  2. Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    Article  PubMed  Google Scholar 

  3. Püttker, T. et al. Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol. Conserv. 241, 108368 (2020).

    Article  Google Scholar 

  4. Wade, T. G., Riitters, K. H., Wickham, J. D. & Jones, K. B. Distribution and causes of global forest fragmentation. Conserv. Ecol. 7, 7 (2003).

    Google Scholar 

  5. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

    Article  CAS  Google Scholar 

  7. Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383 (2014).

    Article  Google Scholar 

  11. Banks-Leite, C., Betts, M. G., Ewers, R. M., Orme, C. D. L. & Pigot, A. L. The macroecology of landscape ecology. Trends Ecol. Evol. 37, 480–487 (2022).

    Article  PubMed  Google Scholar 

  12. Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Varpe, Ø. Life history adaptations to seasonality. Integr. Comp. Biol. 57, 943–960 (2017).

    Article  PubMed  Google Scholar 

  14. Salisbury, C. L., Seddon, N., Cooney, C. R. & Tobias, J. A. The latitudinal gradient in dispersal constraints: ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15, 847–855 (2012).

    Article  PubMed  Google Scholar 

  15. Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).

    Article  PubMed  Google Scholar 

  18. Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Stutchbury, B. J. M. & Morton, E. S. Behavioral Ecology of Tropical Birds (Academic Press, 2001).

  20. Tobias, J. A. et al. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74 (2016).

    Article  Google Scholar 

  21. Weeks, B. C. et al. Morphological adaptations linked to flight efficiency and aerial lifestyle determine natal dispersal distance in birds. Funct. Ecol. 36, 1681–1689 (2022).

    Article  Google Scholar 

  22. Terborgh, J. Diversity and the Tropical Rainforest (Scientific American Library, 1992).

  23. Jocque, M., Field, R., Brendonck, L. & De Meester, L. Climatic control of dispersal-ecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? Glob. Ecol. Biogeogr. 19, 244–252 (2010).

    Article  Google Scholar 

  24. Lees, A. C. & Peres, C. A. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118, 280–290 (2009).

    Article  Google Scholar 

  25. Robertson, O. J. & Radford, J. Q. Gap-crossing decisions of forest birds in a fragmented landscape. Austral Ecol. 34, 435–446 (2009).

    Article  Google Scholar 

  26. Tobias, J. A., Şekercioǧlu, Ç. H. & Vargas, H. F. Bird conservation in tropical ecosystems: challenges and opportunities. Key Top. Conserv. Biol. 2, 258–276 (2013).

    Article  Google Scholar 

  27. Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).

    Article  Google Scholar 

  28. Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Claramunt, S., Hong, M. & Bravo, A. The effect of flight efficiency on gap-crossing ability in Amazonian forest birds. Biotropica 54, 860–868 (2022).

    Article  Google Scholar 

  30. Naka, L. N., Costa, B. M. S., Lima, G. R. & Claramunt, S. Riverine barriers as obstacles to dispersal in Amazonian birds. Front. Ecol. Evol. 10, 846975 (2022).

    Article  Google Scholar 

  31. Cheptou, P. O., Hargreaves, A. L., Bonte, D. & Jacquemyn, H. Adaptation to fragmentation: evolutionary dynamics driven by human influences. Phil. Trans. R. Soc. B 372, 20160037 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scheffers, B. R. et al. Vertical (arboreality) and horizontal (dispersal) movement increase the resilience of vertebrates to climatic instability. Glob. Ecol. Biogeogr. 26, 787–798 (2017).

    Article  Google Scholar 

  33. Data zone. BirdLife International http://datazone.birdlife.org/home (2021).

  34. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article  PubMed  Google Scholar 

  35. Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).

    Article  Google Scholar 

  36. Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).

    Article  Google Scholar 

  37. Stephens, S. L. et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 12, 115–122 (2014).

    Article  Google Scholar 

  38. Williams, C. M. et al. Understanding evolutionary impacts of seasonality: an introduction to the symposium. Integr. Comp. Biol. 57, 921–933 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schulte to Bühne, H., Tobias, J. A., Durant, S. M. & Pettorelli, N. Improving predictions of climate change–land use change interactions. Trends Ecol. Evol. 36, 29–38 (2020).

    Article  PubMed  Google Scholar 

  40. Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Article  Google Scholar 

  41. Jirinec, V., Rodrigues, P. F., Amaral, B. R. & Stouffer, P. C. Light and temperature niches of ground-foraging Amazonian insectivorous birds. Ecology 103, e3645 (2022).

    Article  PubMed  Google Scholar 

  42. Stratford, J. A. & Stouffer, P. C. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115 (2015).

    Article  Google Scholar 

  43. Kennedy, C. M., Grant, E. H. C., Neel, M. C., Fagan, W. F. & Marra, P. P. Landscape matrix mediates occupancy dynamics of Neotropical avian insectivores. Ecol. Appl. 21, 1837–1850 (2011).

    Article  PubMed  Google Scholar 

  44. Kennedy, C. M., Marra, P. P., Fagan, W. F. & Neel, M. C. Landscape matrix and species traits mediate responses of Neotropical resident birds to forest fragmentation in Jamaica. Ecol. Monogr. 80, 651–669 (2010).

    Article  Google Scholar 

  45. Sekercioglu, Ç. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl Acad. Sci. USA 99, 263–267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. González-Gómez, P. L., Estades, C. F. & Simonetti, J. A. Strengthened insectivory in a temperate fragmented forest. Oecologia 148, 137–143 (2006).

    Article  PubMed  Google Scholar 

  47. Donoso, D. S., Grez, A. A. & Simonetti, J. A. Effects of forest fragmentation on the granivory of differently sized seeds. Biol. Conserv. 115, 63–70 (2003).

    Article  Google Scholar 

  48. Watson, J., Watson, A., Paull, D. & Freudenberger, D. Woodland fragmentation is causing the decline of species and functional groups of birds in southeastern Australia. Pac. Conserv. Biol. 8, 261–270 (2003).

    Article  Google Scholar 

  49. Lens, L., Van Dongen, S., Norris, K., Githiru, M. & Matthysen, E. Avian persistence in fragmented rainforest. Science 298, 1236–1238 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127 (2017).

    Article  Google Scholar 

  51. Paton, G. D., Shoffner, A. V., Wilson, A. M. & Gagné, S. A. The traits that predict the magnitude and spatial scale of forest bird responses to urbanization intensity. PLoS ONE 14, e0220120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson, W. D., Rourke, B. & Stratford, J. A. Put some muscle behind it: understanding movement capacity of tropical birds. Ornithology 138, ukaa068 (2021).

    Article  Google Scholar 

  53. Ehlers Smith, D. A., Si, X., Ehlers Smith, Y. C. & Downs, C. T. Seasonal variation in avian diversity and tolerance by migratory forest specialists of the patch-isolation gradient across a fragmented forest system. Biodivers. Conserv. 27, 3707–3727 (2018).

    Article  Google Scholar 

  54. Harris, R. J. & Reed, J. M. Behavioral barriers to non-migratory movements of birds. Ann. Zool. Fennici 39, 275–290 (2002).

    Google Scholar 

  55. Kormann, U. et al. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc. R. Soc. B 283, 20152347 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Socolar, J. B. & Wilcove, D. S. Forest-type specialization strongly predicts avian responses to tropical agriculture. Proc. R. Soc. B 286, 20191724 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barbaro, L. & Van Halder, I. Linking bird, carabid beetle and butterfly life-history traits to habitat fragmentation in mosaic landscapes. Ecography 32, 321–333 (2009).

    Article  Google Scholar 

  58. Cuervo, J. J. & Møller, A. P. Demographic, ecological, and life-history traits associated with bird population response to landscape fragmentation in Europe. Landsc. Ecol. 35, 469–481 (2020).

    Article  Google Scholar 

  59. Ferraz, G. et al. A large-scale deforestation experiment: effects of patch area and isolation on Amazon birds. Science 315, 238–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O. & Lovejoy, T. E. Dispersal of Amazonian birds in continuous and fragmented forest. Ecol. Lett. 10, 219–229 (2007).

    Article  PubMed  Google Scholar 

  61. Rutt, C. L., Jirinec, V., Cohn-Haft, M., Laurance, W. F. & Stouffer, P. C. Avian ecological succession in the Amazon: a long-term case study following experimental deforestation. Ecol. Evol. 9, 13850–13861 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sigel, B. J., Douglas Robinson, W. & Sherry, T. W. Comparing bird community responses to forest fragmentation in two lowland Central American reserves. Biol. Conserv. 143, 340–350 (2010).

    Article  Google Scholar 

  64. Vetter, D., Hansbauer, M. M., Végvári, Z. & Storch, I. Predictors of forest fragmentation sensitivity in neotropical vertebrates: a quantitative review. Ecography 34, 1–8 (2011).

    Article  Google Scholar 

  65. Watling, J. I. & Donnelly, M. A. Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv. Biol. 20, 1016–1025 (2006).

    Article  PubMed  Google Scholar 

  66. Laforge, A. et al. Landscape composition and life-history traits influence bat movement and space use: analysis of 30 years of published telemetry data. Glob. Ecol. Biogeogr. 30, 2442–2454 (2021).

    Article  Google Scholar 

  67. Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).

    Article  Google Scholar 

  68. Albaladejo-Robles, G., Böhm, M. & Newbold, T. Species life-history strategies affect population responses to temperature and land-cover changes. Glob. Change Biol. 29, 97–109 (2022).

    Article  Google Scholar 

  69. Latimer, C. E. & Zuckerberg, B. Habitat loss and thermal tolerances influence the sensitivity of resident bird populations to winter weather at regional scales. J. Anim. Ecol. 90, 317–329 (2021).

    Article  PubMed  Google Scholar 

  70. Schmiegelow, F. K. A., Machtans, C. S. & Hannon, S. J. Are boreal birds resilient to forest fragmentation? An experimental study of short-term community responses. Ecology 78, 1914–1932 (1997).

    Article  Google Scholar 

  71. Early, R. & Sax, D. F. Analysis of climate paths reveals potential limitations on species range shifts. Ecol. Lett. 14, 1125–1133 (2011).

    Article  PubMed  Google Scholar 

  72. Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    Article  Google Scholar 

  73. Cadotte, M. W., Arnillas, C. A., Livingstone, S. W. & Yasui, S. L. E. Predicting communities from functional traits. Trends Ecol. Evol. 30, 510–511 (2015).

    Article  PubMed  Google Scholar 

  74. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article  PubMed  Google Scholar 

  75. Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018).

    Article  PubMed  Google Scholar 

  76. Lindell, C. A. et al. Edge responses of tropical and temperate birds. Wilson J. Ornithol. 119, 205–220 (2007).

    Article  Google Scholar 

  77. Pfeifer, M. et al. BIOFRAG – a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol. Evol. 4, 1524–1537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hijmans, R. J., Williams, E. & Chris, V. Package ‘Geosphere’. CRAN https://cran.r-project.org/web/packages/geosphere/geosphere.pdf (2017).

  79. Alldredge, M. W., Simons, T. R. & Pollock, K. H. A field evaluation of distance measurement error in auditory avian point count surveys. J. Wildl. Manage. 71, 2759–2766 (2007).

    Article  Google Scholar 

  80. Mayhew, R. J., Tobias, J. A., Bunnefeld, L. & Dent, D. H. Connectivity with primary forest determines the value of secondary tropical forests for bird conservation. Biotropica 51, 219–233 (2019).

    Article  Google Scholar 

  81. Miller, D. A. W. et al. Experimental investigation of false positive errors in auditory species occurrence surveys. Ecol. Appl. 22, 1665–1674 (2012).

    Article  PubMed  Google Scholar 

  82. Robinson, W. D., Lees, A. C. & Blake, J. G. Surveying tropical birds is much harder than you think: a primer of best practices. Biotropica 50, 846–849 (2018).

    Article  Google Scholar 

  83. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  85. Buchanan, G. M., Donald, P. F. & Butchart, S. H. M. Identifying priority areas for conservation: a global assessment for forest-dependent birds. PLoS ONE 6, e29080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    Article  PubMed  Google Scholar 

  88. Ray, N. & Adams, J. M. A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Internet Archaeol. https://doi.org/10.11141/ia.11.2 (2001).

    Article  Google Scholar 

  89. Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Glob. Change 12, 33–53 (2007).

    Article  Google Scholar 

  90. Location of tropical cyclones. Met Office https://www.metoffice.gov.uk/weather/learn-about/weather/types-of-weather/hurricanes/location (2021).

  91. Kipp, F. A. Der Handflügel-Index als flugbiologisches MaB. Vogelwarte 20, 77086 (1959).

    Google Scholar 

  92. Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. Oikos 29, 273–292 (1998).

    Google Scholar 

  93. Claramunt, S. Flight efficiency explains differences in natal dispersal distances in birds. Ecology 102, e03442 (2021).

    Article  PubMed  Google Scholar 

  94. Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the corvides (Aves; Passeriformes). Proc. R. Soc. B 283, 20161922 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

    Article  PubMed  Google Scholar 

  96. Stoddard, M. C. et al. Avian egg shape: form, function and evolution. Science 356, 1249–1254 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. White, A. E. Geographical barriers and dispersal propensity interact to limit range expansions of himalayan birds. Am. Nat. 188, 99–112 (2016).

    Article  PubMed  Google Scholar 

  98. Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).

    Article  Google Scholar 

  99. Sutherland, G. D., Harestad, A. S., Price, K. & Lertzman, K. P. Scaling of natal dispersal distances in terrestrial birds and mammals. Ecol. Soc. 4, 16 (2000).

    Google Scholar 

  100. Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 181–186 (2013).

    Google Scholar 

  101. Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).

    Article  Google Scholar 

  104. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  105. Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    Article  PubMed  Google Scholar 

  106. Bürkner, P. C. Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  107. Gelman, A. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–533 (2006).

    Article  Google Scholar 

  108. Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).

    Article  PubMed  Google Scholar 

  109. Van der Bijl, W. Phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Phil. Trans. R. Soc. B 374, 20190012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nally, M. R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659–660 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the BIOFRAG project for supplying data and numerous data contributors, including V. Arroyo-Rodriguez, D. Cleary, H. Jactel, J. Karubian, J. Lasky, S. Melles, J. C. Morante Filho, V. Proenca, S. Raman, P. Round and J. Terraube. Trait data collection was supported by Natural Environment Research Council grant NE/I028068/1 and UKRI Global Challenges Research Fund grant ES/P011306/1 (J.A.T.). Analysis was funded by the Natural Environment Research Council studentship through the Science and Solutions for a Changing Planet Doctoral Training Programme NE/S007415/1 (T.L.W.). Illustrations were reproduced with permission from the Cornell Lab of Ornithology. For the purpose of open access, T.L.W. has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.

Author information

Authors and Affiliations

Authors

Contributions

T.L.W. and J.A.T. conceived and developed the study, with input from M.G.B., M.P. and C.W.; data from particular sites were contributed by M.B., C.B.-L., L.B., J.B., A.C., C.M.K., U.G.K., C.J.M., P.I.O., B.T.P., H.P.P. and E.M.W.; T.L.W. integrated datasets and ran all analyses with support from C.W. and M.G.B.; and T.L.W. wrote the first version of the manuscript and designed all figures with input from J.A.T. All authors contributed to subsequent drafts and gave final permission for publication.

Corresponding author

Correspondence to Thomas L. Weeks.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Benjamin Zuckerberg, Don Driscoll and Jacob Socolar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Correlation between disturbance and latitude.

Study landscapes exposed to high levels of historical disturbance (n = 16 landscapes; red) tend to be found at higher latitudes than landscapes exposed to lower levels of historical disturbance (n = 15 landscapes; blue). Disturbance level is estimated from global maps of major historical disturbance (for example fire, glaciation). Absolute latitude is the centroid latitude of all sampling points in each study landscape. Boxplots show the median, interquartile range and whiskers extending to extreme values. Statistics show results of two-sided Wilcoxon rank sum test indicating that disturbance and latitude are correlated (without accounting for spatial auto-correlation).

Extended Data Fig. 2 The latitudinal gradient in average dispersal limitation of bird assemblages.

Data points (coloured by level of historical disturbance) show the community mean values for avian assemblages sampled at 31 study landscapes mapped in Fig. 1. The overall gradient is not explained by landscape disturbance history. Absolute latitude is the centroid latitude of all sampling points in each study landscape. Mean dispersal limitation is the negative (that is inverse) hand-wing index (nHWI) averaged across all species in the assemblage; nHWI is logarithmically scaled (log(1/HWI)) for visualization. Statistics are from a linear model with Gaussian errors; purple line shows model fit (R2 = 0.44); shaded region shows the standard error of the regression coefficient.

Extended Data Fig. 3 Correlation between fragmentation sensitivity and latitude in birds.

Data points (coloured by level of historical disturbance) are community mean values for avian assemblages at 31 study landscapes mapped in Fig. 1. For each assemblage, fragmentation sensitivity is assigned to (a) Forest-specialist species with ‘Forest-core’ habitat preference (Restricted analysis), and (b) Forest-associated species with ‘Forest-core’ habitat preference (Expanded analysis). Absolute latitude is the absolute centroid latitude of all sampling points in each study landscape. Statistics are from generalized linear models with quasi-binomial errors; purple line shows model fit (Restricted analysis: R2 = 0.2559, Expanded analysis: R2 = 0.3208); shaded region shows the 95% confidence intervals.

Extended Data Fig. 4 Correlation between fragmentation sensitivity and dispersal limitation in birds.

Data points (coloured by level of historical disturbance) are community mean values for avian assemblages at 31 study landscapes mapped in Fig. 1. For each assemblage, fragmentation sensitivity is assigned to species with ‘Forest-core’ habitat preference and either a high or medium forest dependency (Expanded analysis). Mean dispersal limitation is the negative (that is inverse) hand-wing index (nHWI) averaged across all species in the assemblage; nHWI is logarithmically scaled (log(1/HWI)) for visualization. Statistics are from a generalized linear model with quasi-binomial errors; purple line shows model fit (R2 = 0.270); shaded region shows 95% confidence intervals. Adjacent boxplots show the same distribution with median value, interquartile range, and whiskers to extreme values (outliers are data points >1.5x quartiles).

Extended Data Fig. 5 Drivers of fragmentation sensitivity with Anthropogenic disturbances.

Results of Bayesian phylogenetic mixed effect models predicting fragmentation sensitivity for 1564 bird populations (n = 1034 species). Populations were classified as fragmentation sensitive if they were identified as ‘Forest-core’ by BIOFRAG. Restricted analysis assigned fragmentation sensitivity only to ‘Forest specialists’ (a); Expanded analysis assigned fragmentation sensitivity to both ‘Forest specialist’ and ‘Forest associated’ species (b; see Methods). Bayesian posterior distribution is shown above the line; effect size estimates with credible intervals (CI) below the line (68%: thick errorbars; 95%: thin errorbars). High effect sizes indicate a positive association with fragmentation sensitivity; low effect sizes indicate a negative association. Finch and hawk silhouettes indicate that both models were run on a complete sample. Historical disturbance is a binary variable (1/0) calculated using anthropogenic disturbance (forest loss) only.

Extended Data Fig. 6 Drivers of fragmentation sensitivity with natural disturbances.

Results of Bayesian phylogenetic mixed effect models predicting fragmentation sensitivity for 1564 bird populations (n = 1034 species). Populations were classified as fragmentation sensitive if they were identified as ‘Forest-core’ by BIOFRAG. Restricted analysis assigned fragmentation sensitivity only to ‘Forest specialists’ (a); Expanded analysis assigned fragmentation sensitivity to both ‘Forest specialist’ and ‘Forest associated’ species (b; see Methods). Bayesian posterior distribution is shown above the line; effect size estimates with credible intervals (CI) below the line (68%: thick errorbars; 95%: thin errorbars). High effect sizes indicate a positive association with fragmentation sensitivity; low effect sizes indicate a negative association. Finch and hawk silhouettes indicate that both models were run on a complete sample. Historical disturbance is a binary variable (1/0) calculated using natural disturbance (for example fires, storms & glaciation) layers only.

Extended Data Fig. 7 Predictors of dispersal limitation in birds.

Results shown are outputs of phylogenetic least squares model predicting dispersal limitation (nHWI) across all bird species sampled, including long-distance migrants (swallow image, dark bars; n = 1034); only resident species and short distance/partial migrants (thrush image, medium bars; n = 921); or resident species only (pitta image, pale bars; n = 858). Panels present three sets of models with increasing complexity: a univariate model with single predictor (a,d), and multivariate models with two (b,e) and three (c,f) predictors. Each predictor is calculated at the species level by averaging across landscapes where each species is present. Disturbance (red) is calculated as the proportion of species breeding range which overlaps areas of high natural (e.g. storms, glaciers, fires) or anthropogenic (e.g. forest loss) disturbance. Absolute latitude (yellow) is calculated as the centroid latitude of the species breeding range. Seasonality (blue) is calculated as the standard deviation of mean monthly temperature values throughout the year, averaged across all grid cells in the breeding range. ac, Effect size estimates are given with 95% confidence intervals; a negative effect indicates reduced dispersal limitation (that is increased dispersal ability). R2 and AIC values are calculated for full sample models only. df, Proportion of independent variation explained by each model covariate, calculated using hierarchical partitioning.

Extended Data Fig. 8 Relationship between dispersal limitation (nHWI) and diet.

Data shown for (a) 276 bird species sampled across 18 temperate study landscapes, and (b) 817 bird species sampled across 13 tropical study landscapes. Dietary classes with <5 species were removed from the analysis. Diet classifications are from Tobias and Pigot110. F-statistic and P-value are calculated with a two-way ANOVA. Boxplots show median, interquartile range, and whiskers to extreme values (outliers are data points >1.5x quartiles).

Extended Data Fig. 9 Correlation between seasonality and disturbance.

At the local landscape level (a), seasonality is calculated as the standard deviation of mean monthly temperature values throughout the year at the landscape centroid (n = 31). High disturbance means 50% of the study landscape area overlaps areas of high natural (for example storms, glaciers, fires) or Anthropogenic (for example forest loss). Boxplots show median, interquartile range, and whiskers to extreme values (outliers are data points >1.5x quartiles). Statistics are from a two-sided Wilcoxon test. At the species level (b), community mean values (n = 31), are calculated using species’ distributional seasonality and disturbance scores. Disturbance is calculated as the proportion of the species breeding range which overlaps areas of high natural (for example storms, glaciers, fires) or anthropogenic (for example forest loss) disturbance. Seasonality is calculated as the standard deviation of mean monthly temperature values throughout the year, averaged across all grid cells in the species’ breeding range. Statistics are from a linear regression with Gaussian errors; purple line shows model fit; shaded area is 95% confidence intervals.

Extended Data Table 1 Predictors of fragmentation sensitivity using all disturbance layers

Supplementary information

Supplementary Information

Supplementary Methods, Analyses, Tables 1–7, Figs. 1–4 and References.

Reporting Summary

Supplementary Data 1

Supplementary dataset containing all data to recreate analyses and figures. Sheet 1. All species data (n = 1,034), with corresponding taxonomic, life-history, morphological and distributional data. Sheet 2. Landscape data (n = 31), with sample period, sample method and sample structure, geographical data, local seasonality and disturbance values, biome and matrix descriptions. Sheet 3. Species list per landscape (n = 1,564), with habitat preference classifications for each population within each landscape.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weeks, T.L., Betts, M.G., Pfeifer, M. et al. Climate-driven variation in dispersal ability predicts responses to forest fragmentation in birds. Nat Ecol Evol 7, 1079–1091 (2023). https://doi.org/10.1038/s41559-023-02077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02077-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing