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Climate co-benefits of tiger conservation

Aakash Lamba    1,2  , Hoong Chen Teo    1,2, Rachakonda Sreekar1,2, 
Yiwen Zeng    1,2,3,4, Luis Roman Carrasco    1,2 & Lian Pin Koh    1,2,4 

Biodiversity conservation is increasingly being recognized as an 
important co-benefit in climate change mitigation programmes that 
use nature-based climate solutions. However, the climate co-benefits of 
biodiversity conservation interventions, such as habitat protection and 
restoration, remain understudied. Here we estimate the forest carbon 
storage co-benefits of a national policy intervention for tiger (Panthera 
tigris) conservation in India. We used a synthetic control approach to 
model avoided forest loss and associated carbon emissions reductions in 
protected areas that underwent enhanced protection for tiger conservation. 
Over a third of the analysed reserves showed significant but mixed effects, 
where 24% of all reserves successfully reduced the rate of deforestation 
and the remaining 9% reported higher-than-expected forest loss. The 
policy had a net positive benefit with over 5,802 hectares of averted forest 
loss, corresponding to avoided emissions of 1.08 ± 0.51 MtCO2 equivalent 
between 2007 and 2020. This translated to US$92.55 ± 43.56 million in 
ecosystem services from the avoided social cost of emissions and potential 
revenue of US$6.24 ± 2.94 million in carbon offsets. Our findings offer an 
approach to quantitatively track the carbon sequestration co-benefits of a 
species conservation strategy and thus help align the objectives of climate 
action and biodiversity conservation.

Biodiversity conservation and climate change mitigation are intimately 
linked, but have historically been addressed as separate challenges1. 
However, there is an urgent need to align both goals and synergize 
resource allocation for achieving these objectives given the rapid pace of 
global biodiversity declines and the rising impacts of climate change2,3. 
Nature-based solutions, particularly through habitat protection and 
restoration, are an important approach that can help accomplish both 
goals simultaneously4. Biodiversity conservation is recognized and 
valued as a key co-benefit of climate change mitigation projects that 
implement nature-based climate solutions. For example, forest carbon 
offsetting projects that integrate biodiversity co-benefits into their 
stated goals perform substantially better in terms of market preference 
compared with those projects that focus only on carbon reductions5,6.

At the same time, land-management interventions with the express 
goal of conserving biodiversity could provide ancillary climate change 

mitigation benefits. This juxtaposition of biodiversity conservation as 
the primary benefit, instead of climate change mitigation, represents 
an important paradigm for the preservation of natural carbon stocks7–9. 
We argue that a biodiversity-first approach, which helps quantify  
the downstream benefits of biodiversity preservation on climate  
mitigation targets, can help further incentivize species conserva-
tion programmes while achieving climate action through the avoided  
social cost of the loss of natural ecosystems.

Furthermore, this paradigm potentially unlocks unforeseen 
opportunities for funding conservation programmes using financial  
instruments, such as carbon offsets8, which have been growing 
immensely as a source of funding for nature-based climate solutions10. 
In theory, protected areas are gazetted for biodiversity conservation, 
rendering them not additional11, and hence not eligible for carbon 
credits. In practice, however, some protected areas across the tropics 
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the voluntary carbon market, which represents one of the most 
well-established mechanisms for payment for ecosystem services 
(see Methods for details)10,26,27.

Results
Forest loss across reserves
For the period 2001–2020, the total forest loss in 162 protected areas 
with tiger presence, which includes both treated and untreated 
reserves used in the analyses, was 61,648 ha or 3,082 ha of loss per 
year. Over 77% of these losses (47,719 ha) were from untreated reserves 
(n = 117), with a mean [95% confidence interval] cumulative forest loss 
of 408 [190–626] ha per reserve. Protected areas designated as Tiger 
Reserves (n = 45) contributed to 23% of the total forest loss in the study 
period (13,289 ha), with a mean [95% confidence interval] cumulative  
forest loss of 309 [127–496] ha per reserve. More than half of the treated 
reserves (51%) underwent treatment in 2007, whereas 2015 was the 
most recent intervention year used in the analyses. Regarding the 
performance of protected areas, the highest observed deforestation 
occurred in the Kotgarh Wildlife Sanctuary in the state of Odisha, which 
lost over 8,927 ha of forest (28% of forest area since 2000). Bor Wildlife  
Sanctuary in Maharashtra was the only treatment reserve that did  
not exhibit any deforestation between 2001 and 2020.

Synthetic control analysis
Of the 45 tiger reserves that underwent the conservation policy inter-
vention, 15 showed significant but mixed results (P < 0.05) after reserves 
with anticipation effects were excluded from analyses (only Pench Tiger 
Reserve; Supplementary Table 3 and Supplementary Figs. 6 and 7).  
Reserves that showed a significant effect of the tiger conservation 
policy on deforestation represented a net avoided forest loss value of 
5,802 ha. Eleven of these 15 tiger reserves exhibited significant avoided 
deforestation of 6,558 ha since 2007 (Fig. 2 and Extended Data Fig. 1).  
Nawegaon–Nagzira Tiger Reserve showed the highest averted  
forest loss (2,645 ha) since its notification as a tiger reserve in 2013. 
However, four reserves exhibited increased forest loss despite the 
intervention, where the observed cumulative forest loss trajectories 
were significantly higher than the modelled counterfactuals. These 
reserves experienced 756 ha of additional forest loss compared  
with their counterfactuals (Fig. 3). Pilibhit Tiger Reserve lost the  
highest forest compared with its synthetic counterfactual, with over 
300 ha of additional forest lost since its treatment year in 2008.  
No tiger reserve in the Northeast Hills and Brahmaputra regions  
avoided deforestation.

There was no statistical difference between the mean square  
prediction errors (MSPE) in the pre-intervention period between 
reserves that showed significant results (n = 15) and those with insignifi-
cant results (n = 30) (bootstrap hypothesis testing, P = 0.21), indicating 
a comparable quality of fit. Similarly, there was no statistical differ-
ence in pre-intervention MSPE values in northeastern tiger reserves 
compared with those in other regions (bootstrap hypothesis test-
ing, P = 0.49). Moreover, the synthetic controls visually matched the  
observations in the pre-intervention period for both groups. The  
distribution of variables associated with the drivers of forest loss 
between donor and treatment reserves was comparable, suggesting  
no significant structural difference between both groups (Supple-
mentary Fig. 3). In addition, our results were robust to area-based 
trimming of donor pools (see robustness checks in Methods). Effects 
of the intervention with trimmed donor pools exhibited the same 
direction for all modelled scenarios; that is, whether the effect was 
consistent in terms of avoided loss or increased loss (Supplementary 
Table 4). In addition, 73% (11 of 15) and 75% (6 of 8) of the results with 
a trimmed donor pool of 10% and 25%, respectively, were within our 
±20% final findings. Similarly, over 87% (13 of 15) and 62% (5 of 8) of 
the results still exhibited significant effects based on placebo tests 
(Supplementary Table 4).

are also known to function as ‘paper parks’, with continued degradation 
within boundaries often conferring limited biodiversity conservation 
benefits12. This can stem from a variety of reasons, including a short-
fall in funding13. Revenues from the trade of fungible carbon offsets, 
which represent standardized and internationally tradable reductions  
in emissions, arising from the recognition of the climate change  
mitigation benefits associated with biodiversity conservation can  
serve as a means of closing this funding gap14.

To demonstrate this approach, we evaluated the forest carbon 
storage co-benefits of a nationwide policy intervention for a species 
conservation programme, specifically the conservation of the tiger 
(Panthera tigris) in India. The tiger is one of the most charismatic and 
highly protected wild species in India. As the range country with the 
highest proportion of the world’s wild tigers, India’s conservation poli-
cies are crucial to the long-term survival of tigers and the persistence 
of their associated habitats, which provide a suite of economic and 
sociocultural services15. Although Project Tiger was launched in 1973 to 
save India’s wild tigers from the brink of extinction, the National Tiger 
Conservation Authority (NTCA) was established in 2005 to oversee 
and further improve the national tiger conservation strategy in India 
(https://www.ntca.gov.in/). As part of this initiative, key protected areas 
were designated as tiger reserves in India. This gazette notification 
entails enhanced management through better protection, monitoring 
and funding for these protected areas16. As of 2022, over 52 reserves 
have undergone this additional level of conservation management in 
India (https://www.ntca.gov.in/).

Although preserving and increasing tiger populations is the  
primary objective of this policy, it could also provide enhanced  
benefits to forest protection and associated carbon emission reduc-
tions through avoided deforestation. Reserves that fall under this  
policy must prepare a Tiger Conservation Plan, which includes  
measures for regulating the extraction of forest products, reducing 
deforestation drivers and encouraging alternative livelihoods for  
communities that live within tiger conservation landscapes17. We 
hypothesized that the implementation of this policy and the result-
ant improved protected area management, particularly through better  
enforcement, would lead to a decrease in forest loss in affected pro-
tected areas due to a reduction in deforestation drivers.

To model the effects of these enhanced conservation measures on 
forest loss rates, we applied a synthetic control approach, which allows 
the simulation of counterfactual baseline deforestation trajectories 
in protected areas that underwent this policy intervention (hereon 
referred to as tiger reserves). This causal inference method matches 
the response variable, in this case, cumulative forest loss of the ‘treat-
ment’ group (reserves with tiger reserve status) to a weighted model 
of untreated protected areas, or a ‘donor’ pool (protected areas with 
known tiger presence but not designated as tiger reserves by the NTCA), 
before the policy intervention took place18 (see Fig. 1 for locations of 
tiger reserves and untreated protected areas). To model the underlying 
structural drivers of forest cover loss we included reserve-level vari-
ables associated with deforestation, which included anthropogenic 
disturbances, history of protection, poverty indices, geographical 
attributes, forest quality at the start of the study period and climatic 
variables as covariates in the matching process (see Methods for details 
on covariates for drivers of forest loss)19–24. We extrapolated these 
synthetic counterfactual models to the period after the implementa-
tion of the conservation policy to evaluate the difference between  
the cumulative forest loss in tiger reserves and their respective syn-
thetic counterfactual models. We translated the forest change due 
to the designation of tiger reserves to equivalent CO2 (CO2e) emis-
sions averted using average aboveground and belowground biomass  
carbon densities for each reserve for the year the intervention was 
implemented25. We consequently converted these emissions into an 
ecosystem services value based on the avoided social cost of carbon  
emissions in India and potential revenue from carbon offsets in 
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Averted emissions and associated value
The net avoided emissions from the 15 reserves that exhibited  
significant results corresponded to 1.08 ± 0.51 MtCO2e (see Fig. 1  
for avoided emissions for each reserve). Of these avoided emis-
sions, 0.85 ± 0.33 and 0.23 ± 0.18 MtCO2e came from aboveground  
and belowground carbon stocks, respectively. This translated to eco-
system service provisioning of US$92.55 ± 43.56 million based on a 
US$86 per ton social cost of carbon estimate in India26. In addition, 

these avoided emissions corresponded to a total carbon offset value 
of US$6.24 ± 2.94 million based on US$5.8 per ton of CO2e, the average  
price of carbon in the voluntary carbon market10. Avoided emis-
sions from reserves that exhibited avoided deforestation (n = 11) was 
1.28 ± 0.59 MtCO2e. At a social cost of carbon value of US$86 per ton 
of CO2e (ref. 26), these reserves provided ecosystem services through 
climate change mitigation of US$110.29 ± 50.87 million and represent 
US$7.44 ± 3.43 million (Table 1). The three most valuable reserves in 
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Fig. 1 | The locations and avoided carbon emissions of analysed tiger reserves. 
Top left: map of India with the reserves analysed in the study (boundaries from 
OSM43). Light grey donor reserves are protected areas with tiger presence that 
did not undergo enhanced conservation policy and were used to generate 
synthetic counterfactuals for tiger reserves. Dotted bounded boxes represent 
geographical areas used for donor matching. To ensure robust significance 
testing, more than 20 donor reserves or placebos were needed per geographical 
grouping. Therefore, contiguous tiger conservation landscapes54 were combined 
into the following groups: Shivalik–Gangetic, Central India, Eastern Ghats and 
Sunderbans regions (A); Western Ghats (B); and Northeast Hills and Brahmaputra 
region (C). For significance testing, we used a two-sided Fisher’s exact test  
to compare the ratios of pre-intervention and post-intervention mean squared 
prediction errors between the treated synthetic reserve and placebo units  
for each tiger reserve (see Extended Data Fig. 1 for unadjusted P values of  
tiger reserve with significant effects). Green reserves represent tiger reserves 

that exhibited significantly avoided deforestation while yellow reserves are 
treated reserves where the observed deforestation was significantly higher 
than the synthetic counterfactual (P < 0.05). Dark grey reserves represent tiger 
reserves that yielded insignificant results (see Supplementary Table 2 for list 
of P values). Top right: total avoided emissions per reserve. Data are presented 
as mean avoided emissions ± uncertainty values (based on mean cumulative 
standard errors reported by ref. 25) in ktCO2e. Error bars were derived by 
multiplying avoided deforestation, an emissions factor of 3.67 and mean values 
of the cumulative standard errors in predictions of above- and belowground 
carbon biomass densities reported by ref. 25 for each reserve. Reserves are 
numbered and colour coded to indicate locations on maps. Bottom, zoomed- 
in geographical zones with the number of tiger reserves and donor reserves  
used for deriving counterfactuals and statistical significance included for  
each zone. Map boundaries from OpenStreetMap43 under a Creative Commons 
license CC BY-SA 2.0.
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terms of ecosystem service valuation were Nawegaon–Nagzira in 
Maharashtra, Similipal–Hadagarh in Orissa and Udanti–Sitanandi in 
Chhattisgarh. Reserves that showed higher deforestation than their 
synthetic counterfactuals (n = 4) corresponded to additional emis-
sions of 0.21 ± 0.09 MtCO2e, which equate to US$17.74 ± 7.32 million in  
damages due to the social cost of carbon emissions and over 
US$1.2 ± 0.49 million loss in potential carbon revenue in the volun-
tary carbon market. The three worst performing reserves in terms  
of additional emissions were Pilibhit in Uttar Pradesh, Anamalai in 
Tamil Nadu and Dampa in Mizoram (Figs. 1 and 3).

Discussion
Our study provides a comprehensive appraisal of the national  
tiger conservation policy in India, demonstrating there are impor-
tant ancillary climate co-benefits of enhanced protection in tiger  
reserves. Using a robust causal inference methodology, we could  
effectivity attribute avoided forest loss and consequently avoided 
emissions to a species-focused conservation intervention. There-
fore, our findings offer empirical evidence at a broad geographical  
scale to support a biodiversity-first approach to climate change  
mitigation.
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Fig. 2 | Trend lines for cumulative forest loss in tiger reserves that exhibited 
significant avoided deforestation. All reserves displayed here exhibited 
significant avoided deforestation (unadjusted P < 0.05) based on a two-
sided Fisher’s exact test to compare the ratios of pre-intervention and post-
intervention mean squared prediction errors between placebo and treated units 
(see Methods for details). Significance levels (unadjusted P values) were reported 
for each synthetic counterfactual in the displayed plots. Only reserves that 
exhibited avoided forest loss of more than 10 ha are displayed here (see Extended 

Data Fig. 1 for trend lines for all 11 tiger reserves with significant avoided forest 
loss in the study period). The dotted pink line represents the cumulative forest 
loss for the synthetic control model, whereas the dotted grey line represents 
observed deforestation in hectares. The vertical dashed line represents the 
year of implementation of the enhanced conservation policy. For each of these 
reserves, the synthetic control line closely tracks the observed cumulative forest 
loss values before the intervention.
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Overall, the designation of tiger reserves had a net positive impact 
on forest protection, given the significant avoidance of forest loss  
in a majority of these reserves (11 of 15 significant results) during the  
study period. In general, reserves with higher starting forest cover 
tended to have higher change over time, with the most positive  
change associated with reserves in Central India. The observed avoided 
deforestation in these reserves is an important outcome of India’s  
tiger conservation policy because many of these protected areas  
are highly beneficial to ensuring connectivity in tiger habitats. For 
example, Nawegaon–Nagzira, which was the best-performing reserve 
in our analyses, has a vital role in ensuring landscape connectivity in 
tiger habitats in Central India28.

Benefits in habitat protection through avoided forest loss prob-
ably stem from three key developments in tiger conservation strat-
egy. First, the NTCA enacted better mechanisms for managing funds, 
which prevented delays in the disbursement of resources through 
the creation of local fund repositories in the form of tiger conserva-
tion foundations16. Next, conservation benefit sharing, particularly 
from ecotourism revenues, with communities was probably pivotal in  
reducing local pressures on forest areas16. Finally, the adoption of 
enhanced conservation monitoring technologies, especially GPS-based 
mobile tools, would have probably helped park managers in ensuring 
that forest guards patrolled protected areas more effectively16.

However, for some tiger reserves, the rate of forest loss was higher 
than expected compared with their synthetic counterfactual. Half 
of these reserves (two of four) fall in Northeast India. We postulate 
that this may have been caused by the prevalence of reserve-specific 
deforestation drivers, such as encroachment, shifting agricultural 
practices, illegal timber trade and mining, which have historically  
been reported in the peripheries of notable tiger reserves, such 
as Kaziranga and Dampa29,30. Moreover, the remoteness and lower 
development of reserves in northeastern India have probably led to less 
effective enforcement and a higher risk of deforestation31. Therefore, 
our study highlights important priority areas for managers to mitigate 
local threats and, consequently, enhance habitat protection meas-
ures in these reserves. Overall, there were no reserves in northeastern 
India that had any avoided deforestation, despite reliable model fits, 

which indicates the conservation policies were plausibly inadequate in 
countering the intrinsically high rates of deforestation in the region24.

The other two reserves that underperformed, compared with their 
synthetic counterfactuals, were Anamalai Tiger Reserve in Tamil Nadu 
and Pilibhit Tiger Reserve in Uttar Pradesh. Anamalai appears to have 
had a spike in deforestation starting in 2010, with over 80% of the total 
forest loss occurring after 2010. Extensive monoculture plantations 
within the region may be a driver for increased forest fragmentation32. 
The high rates of deforestation in Pilibhit could be explained by the 
fact that the reserve was notified more recently, in 2014. The age of a 
protected area is an important factor negatively correlated with forest 
loss33. Despite the higher-than-expected forest loss in Pilibhit, however, 
the tiger populations have been steadily growing in the reserve, with 
the reserve having more than doubled its population of wild tigers 
since its establishment34.

This population growth despite forest loss suggests that address-
ing human–wildlife conflict may have been a more important determi-
nant of tiger numbers in Pilibhit compared with the extent of available 
habitat16. It is unclear whether the prevalence of conflict is correlated 
with the performance of a tiger reserve in avoiding forest loss, but it 
is conceivable that there is an association because reserves showing 
no effect on avoiding forest loss, such as Nagarhole, have previously 
reported high costs of human–tiger conflict from livestock damage  
and human casualties35. Therefore, investigating the relationship 
between conflict and deforestation should be an important priority 
for future research because, to our knowledge, no publicly available 
dataset has comprehensive information on damages from human–tiger 
conflict across all the tiger reserves in India.

However, despite some reserves experiencing a higher-than- 
expected forest loss, the designation of tiger reserves in India had a net 
positive climate benefit. A combined estimate, which included both the 
reserves that experienced carbon stock loss and the high-performing 
reserves that averted forest loss, yielded approximately US$93 million  
in ecosystem services from the avoided social costs of emissions. 
Although the avoided emissions from the intervention, approxi-
mately 0.08 MtCO2e per year, are small compared with India’s annual 
emissions and its nationally determined contributions as part of the 
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Paris Agreement, this is nonetheless an important contribution given  
that India ranks as the country that is most vulnerable to the 
impacts of climate change in terms of the social cost of carbon, with  
each additional ton of emissions leading to a loss of US$86 to the  
Indian economy26.

Moreover, the budget for Project Tiger in 2020–2021 was just 
under US$27 million based on 2020 conversion rates (www.moef. 
gov.in/). More than a quarter of this budget was paid back in over  
US$7 million per year between 2007 and 2020 from the avoided social 
cost of emissions. Although these annual returns are a fraction of 
the annual management costs of these reserves, they demonstrate 
that resources invested in biodiversity conservation can reimbursed  
in the form of economic benefits from ecosystem services. In addi-
tion, had these enhanced protection measures been enacted in  
the untreated protected areas with tiger presence, an additional  
US$38 million could have been gained from ecosystem services due 
to avoided emissions (based on a 0.21% rate of forest loss avoidance 
per hectare of forest cover since the baseline year across all analysed 
tiger reserves). These estimates provide a realistic image of the scale 
and associated timeframes associated with the climate co-benefits of 
biodiversity conservation to key stakeholders such as communities, 
researchers and policymakers.

Apart from the avoided social costs from emissions, carbon  
markets could be an important means of realizing the value associated 
with the ecosystem services provided by biodiversity conservation 
initiatives. Carbon markets are one of the most well-established and 
popular payment systems for ecosystem services27. The voluntary 
carbon market has grown rapidly in the recent past, with nature-based 
climate solutions, particularly through forest protection and restora-
tion, emerging as one of the most rapidly growing types of carbon 
offset10. Here we estimate that the avoided emissions from the tiger 
conservation policy in India corresponded to more than US$6 million 
between 2007 and 2020.

However, major barriers to mobilizing such forms of conserva-
tion funding remain. Additionality, or the requirement that an inter-
vention must provide additional climate benefits compared with a 
business-as-usual scenario (without the intervention), is a necessary 
and vital component of carbon markets36. The implementation of 
the national tiger conservation strategy does not necessarily meet 
the current requirements of additionality in its current form11. Tiger 
reserves were already protected before the enhanced conservation 
policy and are, therefore, technically ineligible for receiving funds from 
carbon markets because they do not meet the fundamental criterion of 
additionality. This implies that the US$6.2 million saving will probably 

remain untapped through existing avoided emissions methodologies. 
A plausible alternative could be to recognize the potential for improved 
management of protected areas to provide additional carbon benefits. 
Regardless of the strategy used, realizing this value could meet a sub-
stantial proportion of the financial costs associated with safeguarding 
individual reserves.

There is an urgent need for additional financial resources to close 
the funding gap for species conservation13, and we show that there are 
clear synergies between such biodiversity conservation policies and 
carbon markets. This represents a missed opportunity, where adjust-
ments to the carbon markets could divert money to fund conservation 
and benefit local communities. However, given the historical costs 
of conservation policies borne by local communities around tiger 
reserves, particularly through displacement37,38, it is crucial that future 
attempts to integrate tiger conservation policy into carbon markets 
be cognizant of the cultural, social and economic needs of local com-
munities, whose participation is crucial in equitable and effective 
conservation39.

We acknowledge some caveats in our study. First, the carbon  
benefits of this approach apply primarily to species found in high- 
carbon ecosystems. However, given the large overlap of the world’s high 
biodiversity areas with carbon-rich protected areas, it is all the more 
urgent that such evaluations be carried out to create an evidence base 
for channelling more resources into the protection of such reserves40. 
Second, we relied on protected area boundaries obtained from  
OpenStreetMap (OSM), which may introduce uncertainties in our 
analyses given that these maps are created by publicly available, 
user-generated data. This is, to our knowledge, the most updated 
and representative publicly available dataset—for instance, the most 
recent version of the World Database on Protected Areas includes 
shapefiles of less than 5% of India’s published reserves41. Moreover, 
our findings mark an important first step in recognizing the potential 
scale of climate benefits of a biodiversity-first approach, which we 
hope that protected area managers can further build on using our 
framework along with high-resolution, on-ground data to aid more 
effective habitat protection. Lastly, our study offers only a conservative 
estimate of avoided carbon emissions because we focus on only forest 
loss, whereas degradation may be an important driver of carbon loss 
in terrestrial forests42. The development of a regional forest degrada-
tion dataset, which spans the varied forest types represented in India’s  
tiger reserves, is a pressing priority for future research.

Despite these limitations, however, our findings demonstrate  
that there are important ancillary climate co-benefits of enhanced 
biodiversity protection measures through additional avoided 

Table 1 | Avoided deforestation and associated climate co-benefits of tiger reserves

Tiger reserve Treatment year Avoided forest  
loss (ha)

Avoided emissions 
(ktCO2e)

Avoided social cost 
(US$1,000)

Carbon offset value 
(US$1,000)

Nawegaon–Nagzira 2013 2,645 416.95 ± 239.67 35,858.08 ± 20,611.8 2,418.34 ± 1,390.1

Similipal–Hadagarh 2007 1,570 395.9 ± 124.66 34,047.31 ± 10,720.65 2,296.21 ± 723.02

Udanti 2009 1,611 285.78 ± 140.68 24,577.02 ± 12,098.34 1,657.52 ± 815.93

Valmiki 2012 315 119.56 ± 55.51 10,282.23 ± 4,773.6 693.45 ± 321.94

Nagarjuna Sagar–Srisailam 2007 167 19.09 ± 10.14 1,641.99 ± 872.11 110.74 ± 58.82

Palamau 2012 143 28.01 ± 13.34 2,409.03 ± 1,147.02 162.47 ± 77.36

Satkosia Gorge 2007 39 8.09 ± 3.42 695.52 ± 294.01 46.91 ± 19.83

Bandipur 2007 25 2.94 ± 1.58 252.41 ± 135.93 17.02 ± 9.17

Biligiri Rangaswamy Temple 2011 22 3.68 ± 1.35 316.86 ± 115.97 21.37 ± 7.82

Sariska 2007 14 0.68 ± 0.45 58.21 ± 38.36 3.93 ± 2.59

Satpura 2007 9 1.75 ± 0.76 150.5 ± 64.93 10.15 ± 4.38

Total avoided forest loss in hectares, avoided emissions in ktCO2e, the value of ecosystem services provided in units of $US1,000 at a social cost of carbon estimate of US$86 per ton of CO2e, 
and a potential carbon market revenue based on US$5.8 per ton CO2e. Values are listed for the 11 reserves out of the 15 significant results that exhibited avoided deforestation.
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deforestation in carbon-rich ecosystems, such as terrestrial forests. 
Using a robust causal inference methodology, our study provides 
a framework to show climate change mitigation additionality of 
enhanced conservation within protected areas. Our findings suggest 
that integrating species conservation programmes into global carbon 
markets can help unlock additional opportunities for funding the pro-
tection and restoration of natural habitats. Finally, our study reiterates 
that biodiversity conservation is at the core of climate change mitiga-
tion and underscores the need for aligning the goals of biodiversity 
preservation and climate impact.

Methods
Compilation of protected areas
We extracted protected area boundaries from OSM, which is an open- 
source repository of spatial data shared under the Open Data  
Commons Open Database License43. We observed that OSM shapefiles 
were substantially better in terms of coverage and accuracy compared 
with the World Database on Protected Areas, which is one of the most 
widely used databases for spatial analyses of protected areas41. We used 
OSM for both treatment and donor reserves to avoid spatial biases 
in our synthetic control models. We extracted OSM data using the 
QuickOSM plugin in QGIS v.3.22 (https://docs.3liz.org/QuickOSM/).  
In this study, we considered only reserves with the presence of tigers. To 
select the reserves with tiger presence, we intersected reserve bounda-
ries with the International Union for Conservation of Nature global 
range map for P. tigris44. We obtained information on reserve estab-
lishment dates from the Environmental Information System (ENVIS) 
Centre on Wildlife and Protected Areas website hosted by the Wildlife 
Institute of India (http://wiienvis.nic.in/). We did not include tiger 
reserves that underwent intervention after 2015 to allow an adequate 
post-intervention period. Similarly, we also excluded tiger reserves that 
underwent the policy intervention before 2007 to allow an adequate 
training period for weighting the synthetic control models. We con-
sidered a total of 162 reserves in the study, out of which 45 underwent 
the tiger conservation intervention and the remaining 117 untreated 
protected areas were used as donor reserves in the synthetic control 
analysis (see Supplementary Table 1 for the final reserve list).

Forest loss and spatial covariates
We used cumulative tree cover loss for each reserve between 2001 and 
2020 as a response variable in our synthetic model. We compiled the 
cumulative tree cover loss data for each year using the Google Earth 
Engine platform (https://earthengine.google.com/) and Forest Cover 
Change dataset45. We collected human population density, precipita-
tion, elevation, slope, aspect, aboveground biomass in the baseline 
year (2000), road length within each reserve, local purchasing power 
parity and minimum travel time to a city as additional covariates for 
matching and weighting our synthetic control models to model the 
underlying structural drivers of forest loss in our synthetic models. We 
collected the population demographic data between 2001 and 2020 
from the WorldPop Global Population dataset46. We obtained mean 
precipitation in millimetres per year between 2001 and 2020 from the 
fifth generation of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) Re-Analysis (ERA5) dataset47. We obtained geo-
graphic data for the average elevation, slope and aspect of each reserve 
from the Shuttle Radar Tomography Mission Digital Elevation Model 
in Google Earth Engine48. We obtained mean aboveground biomass 
for each reserve in 2000 as a proxy for forest intactness at the start of 
the study period from Global Forest Watch (https://globalforestwatch.
org) for the baseline year 200022,49. We obtained the road lengths within 
each protected area from the Socioeconomic Data and Applications 
Center Global Roads Open Access Data Set (gROADS) using QGIS50. 
We obtained the mean local purchasing power parity per reserve for 
2000 (start of the study period) in US dollars from the Socioeconomic 
Data and Applications Center Global Gridded Geographically Based 

Economic Data (G-Econ v.4) dataset51. We quantified accessibility for 
each reserve as the minimum travel time to a city with a population 
>50,000 for the year52. We checked for collinearity between predictor 
variables by determining their pairwise Pearson correlation coeffi
cients. We did not exclude any predictor variable from the analysis 
because all the correlation values were <0.8 (Supplementary Fig. 2).

Synthetic control analyses
We implemented synthetic control analysis using the tidysynth package 
in R53, where we developed a synthetic counterfactual model for each 
reserve that underwent the tiger reserve status (n = 45) between 2001 
and 2020. We used this method to match the cumulative forest loss of 
the treatment group (reserves with tiger reserve status) to a weighted 
model of untreated protected areas or a donor pool (protected areas 
with known tiger presence but not designated as tiger reserves by the 
NTCA, n = 117) before the policy intervention took place (see Supple-
mentary Fig. 1 for an illustration of this approach). To model the under-
lying structural drivers of forest cover loss, we included the following 
reserve-level attributes associated with deforestation in protected 
areas as additional covariates in our matching process: human popula-
tion density, road length within each reserve, precipitation, elevation, 
slope, aspect, aboveground biomass density in the baseline year to 
quantify forest intactness (2000), local purchasing power parity, age 
of the protected areas and minimum travel time to a city19–24. For tiger 
reserves that were an aggregate of pre-existing protected areas before 
the intervention, the age of the reserve was grounded on time since 
the establishment of the oldest constituent protected area. Match-
ing in the pre-intervention period was grounded on the covariates  
listed above and the average mean cumulative forest loss before enact-
ment of the policy19. We extrapolated these synthetic counterfactual 
models to the post-intervention period to estimate the difference 
between the forest loss in the synthetic reserves and observed defor-
estation, which represented the effect of the intervention on cumula-
tive forest loss.

We used placebo units for significance testing. A placebo repre-
sents the synthetic model created using one of the donor units. In this 
case, a donor unit is treated as the treated unit and the actual treated 
unit is added to the donor pool. For the intervention to have an effect, 
that is, to reject the null hypothesis that there was no effect of the 
intervention on the cumulative forest loss, the differences in the per-
formance of the donor units and the treated unit should be statistically 
different18. The ratio of the MSPE of the counterfactual unit, compared 
with observed values, is calculated before and after the intervention 
takes place. The MSPE ratios for the placebo units and the treated unit 
must be significantly different based on a two-sided Fisher’s exact test 
to rule out whether the observed effect of the intervention on the out-
come variable was a chance event18 (Supplementary Table 2 and Supple
mentary Fig. 4). Therefore, more than 20 donor units are needed per 
synthetic unit to be able to yield a significance score of less than 0.05.

We separated reserves into distinct tiger landscape complexes as 
follows: (1) Shivalik–Gangetic (SG), (2) Northeast Hills and Brahmaputra 
(NEB), (3) Western Ghats (WG), (4) Central India (CI), (5) Eastern Ghats 
(EG) and (6) Sunderbans (SB)54. Donor reserves were chosen from within 
the same landscapes to ensure that representative untreated reserves 
within a comparable region were used to model synthetic controls19. 
To ensure that at least 20 donor units were available per model, we 
merged contiguous landscapes: (1) SG + CI + EG + SB, (2) NEB and (3) 
WG. Each one of these three groupings corresponded to 44, 29 and 
44 donor reserves per grouping, respectively. We used non-metric 
multidimensional scaling (NMDS) to visualize structural differences 
in the covariates representing the underlying drivers of forest loss 
between the treatment and donor reserve groups for each of the three 
regions analysed. In addition, we used the analysis of similarities test to  
assess whether there were significant differences within clusters repre-
senting the treatment and donor pools for the three analysed regions. 
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Both NMDS and analysis of similarities tests were implemented using 
the vegan package in R55 (see Supplementary Fig. 3 for NMDS plots).

We used the LowRankQP optimization function for fitting syn-
thetic models given its higher accuracy and speed compared with the 
default ipop optimizer provided in the tidysynth package53,56. We used 
total reserve area in the synthetic control analyses to assist with model 
convergence. Synthetic control models were visually inspected for 
goodness of fit with respect to observed cumulative forest loss trajec-
tories in the pre-intervention period. We only considered models with 
an unadjusted P value of less than 0.05; that is, these synthetic control 
models performed better than at least 95% of placebo reserves created 
using protected areas from the donor pool in terms of the MSPE ratios 
described above and were retained for further analyses to estimate 
averted forest loss and avoided emissions. We calculated the averted 
forest loss per reserve as the difference between the cumulative forest 
loss value of the synthetic control unit and the observed loss for 2020.

Robustness checks
We used additional robustness checks to verify the results of our syn-
thetic control analyses. First, to account for potential anticipation 
effects, we split the pre-intervention period into a training and testing 
period57. For reserves that exhibited significant results (unadjusted 
P < 0.05), we simulated a backdated hypothetical intervention occurring 
in 2005, which is the year when the NTCA was constituted. Reserves that 
also exhibited significant effects from this pseudo-intervention were 
excluded from the analyses due to the influence of potential anticipa-
tion effects. Second, as tiger reserves tended to be larger than donor 
reserves, we used area-based trimming of the donor pool to assess the 
robustness of our results19. We used two thresholds: first, we ensured 
that donor reserves were at least a tenth of the size of a tiger reserve to be 
included in the donor pool for modelling the synthetic counterfactual; 
second, we used a more conservative threshold, where a donor reserve 
must be at least a quarter of the size of a tiger reserve to be included in 
the donor pool. We evaluated the direction, significance and magnitude 
of our modelled reserves with these adjusted donor pools to check for 
robustness of our final results. We defined direction as whether the 
effect of the intervention on avoided forest loss had the same sign as that 
observed in the untrimmed donor pool. We assessed magnitude using 
the condition that the effect of the intervention on avoided forest loss 
was within 20% of the values observed in the untrimmed donor pool. Sig-
nificance testing was grounded on the placebo tests described above. 
As at least 20 donor units are required to obtain significance values of 
less than 0.05, we produced counterfactuals for 8 of the 15 tiger reserves 
described in our main results for the 25% threshold. Finally, to compare 
the quality of model fit between different groups of treated reserves, 
we used a bootstrap hypothesis testing approach for two independent 
samples, with replacement, using 9,999 iterations58 to assess whether 
there were significant differences between the pre-intervention mean 
square error between the two groups.

Estimating avoided emissions
To translate averted forest loss into avoided emissions, we collected 
mean aboveground carbon and belowground biomass carbon densi-
ties and mean uncertainty estimates for each reserve25. We scaled 
biomass density values to the intervention year using the difference 
between forest coverage in 2010 and the intervention year because 
the dataset we used represents carbon biomass estimates for 2010 (ref. 
25). These values were multiplied by the averted forest loss in hectares 
for each reserve to obtain the mean, minimum and maximum (based 
on uncertainty estimates in ref. 25) total aboveground biomass in tons 
per reserve. We used a 10-year linear decay rate for the estimation of 
belowground carbon pools in forests10. We did not assume a hypo-
thetical future land-use scenario in lost forest areas owing to the high 
degree of uncertainty associated with land-use change predictions. We 
then converted the net averted forest biomass value into a tCO2e using 

a standard Intergovernmental Panel on Climate Change emissions  
factor of 3.67 (ref. 10). Avoided emissions were interpreted in terms of 
ecosystem services through the avoided social cost of carbon due to 
the emissions avoided from the conservation intervention. We valued 
these services based on a social cost of carbon estimate of US$86 per 
tCO2e for India to obtain a present-day value for avoided emissions26. 
The social cost of carbon represents the economic damage from an 
extra ton of carbon emissions and is a commonly used measure for 
estimating the avoided economic damages of climate mitigation strat-
egies26. Additionally, we based the estimates of the potential carbon 
offset value of avoided emissions on a market estimate of US$5.8 per 
tCO2e used in pre-existing literature6. This value represents what a ton 
of carbon offsets or negative emissions are traded at in the voluntary 
carbon market10. A carbon offset generated from an emissions reduc-
tion initiative, subject to a set of conditions, can be purchased and 
retired by a buyer to counterbalance their climate impact27.

Inclusion and ethics statement
Our study includes multiple authors from the region in which this 
study is based. These authors were instrumental in the study design, 
implementation, data analyses and manuscript preparation. In addi-
tion, we have referred to locally relevant research extensively while 
preparing our manuscript.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Our study relies on publicly available datasets for forest loss and pro-
tected area covariates. Protected area boundaries were collected using 
OpenStreetMap, which is shared under the Open Data Commons Open 
Database License (https://www.openstreetmap.org/copyright). All 
data compiled from the study are available in the Zenodo repository 
(https://doi.org/10.5281/zenodo.7711520).

Code availability
All code used in the study is available in the Zenodo repository (https://
doi.org/10.5281/zenodo.7711520).
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Extended Data Fig. 1 | Trend lines for cumulative forest loss in Tiger Reserves 
where the conservation policy exhibited significant effects on deforestation. 
Cumulative forest loss for Tiger Reserves that exhibited significant results 
(unadjusted p-value < 0.05) based on a two-sided Fisher’s exact test to compare 
the ratios of pre-intervention and post-intervention mean squared prediction 
errors between treated reserves and placebo units (see Methods section for more 
details). Significance levels from placebo testing have been reported for each 
synthetic counterfactual in the displayed plots. Overall, 15 out of the 45 reserves 
exhibited significant effects after Tiger Reserves with anticipation effects ruled 

out (See Supplementary Figs. 5, 6 and Supplementary Table 3). Of these 15 Tiger 
Reserves, 11 demonstrated avoided deforestation. The remaining four reserves 
demonstrated higher than anticipated forest loss (highlighted in the dashed red 
box). The dotted pink line represents the cumulative forest loss for the synthetic 
control model while the dotted grey line represents observed deforestation 
in hectares. The vertical dashed line represents the year of implementation of 
the enhanced conservation policy. For each of these reserves, the synthetic 
control line closely tracks the observed cumulative forest loss values before the 
intervention.
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