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A social niche breadth score reveals niche 
range strategies of generalists and specialists

F. A. Bastiaan von Meijenfeldt    1,3, Paulien Hogeweg1 & Bas E. Dutilh    1,2 

Generalists can survive in many environments, whereas specialists are 
restricted to a single environment. Although a classical concept in ecology, 
niche breadth has remained challenging to quantify for microorganisms 
because it depends on an objective definition of the environment. Here, by 
defining the environment of a microorganism as the community it resides 
in, we integrated information from over 22,000 environmental sequencing 
samples to derive a quantitative measure of the niche, which we call social 
niche breadth. At the level of genera, we explored niche range strategies 
throughout the prokaryotic tree of life. We found that social generalists 
include opportunists that stochastically dominate local communities, 
whereas social specialists are stable but low in abundance. Social generalists 
have a more diverse and open pan-genome than social specialists, but we 
found no global correlation between social niche breadth and genome 
size. Instead, we observed two distinct evolutionary strategies, whereby 
specialists have relatively small genomes in habitats with low local diversity, 
but relatively large genomes in habitats with high local diversity. Together, 
our analysis shines data-driven light on microbial niche range strategies.

Culture-independent sequencing studies have greatly expanded our 
understanding of the microbial world. They uprooted the tree of life1,2, 
revolutionized our view of the human microbiome and virome3,4 and 
advanced our comprehension of early evolution5,6. By using standard-
ized protocols across large numbers of samples7–10, classical ecological 
questions can now be addressed on the global scale. A quintessential 
question is that of ecological niche breadth11,12—the range of conditions 
under which an organism can live. Although the distinction between 
specialists and generalists is a fundamental property of life and its evo-
lution, general mechanisms that determine niche breadth are poorly 
understood13 and quantification has proven challenging14.

Microbial niche breadth has been measured for specific aspects 
of the environment (for example, temperature15,16, pH17 and nutri-
ent dependence18,19). Niche breadth definitions that assess the full 
n-dimensional niche space20 have been based on occurrence in envi-
ronmental samples. Rather than the theoretical fundamental niche, 
microbial occurrence represents its empirical realized niche. Because 

of complex interactions within microbial communities, the realized 
niche can be both smaller (for example, due to competition21) or larger 
(for example, due to metabolic dependencies22). Previous studies 
defined organisms that are present in many samples or predefined 
habitats as generalists, and rare organisms as specialists23–26. Based on 
this definition, Sriswasdi et al.27 suggested an important evolutionary 
role for generalist species in maintaining taxonomic diversity, with 
generalists having higher speciation rates and persistence advantages 
over specialists. Others defined the niche breadth of an organism by the 
uniformity of its distribution across habitats28, suggesting that com-
munity assembly of specialists is driven by deterministic processes, 
whereas for generalists neutral processes are more important29,30. 
Notwithstanding these intriguing results, niche breadth studies based 
on occurrence in microbiomes have been sensitive to biases due to 
habitat definition and sample selection.

Microbiomes are sensitive biomarkers capable of detecting geo-
chemical gradients31, host health status32–34 and metabolites in a given 
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samples with very similar microbial composition (social specialists) 
and taxa with a high SNB score are found in dissimilar samples (social 
generalists). Our approach accounts for database biases, as some 
environments are much more frequently sampled than others (Fig. 1a 
and Supplementary Information). Indeed, taxa that are detected in the 
same number of samples or annotated biomes may have very differ-
ent SNB scores (Fig. 2a–c). Different from studies that investigate the 
co-occurrence of taxa across samples49,50, SNB quantifies the range of 
communities that a taxon can occur in. SNB treats each sample as a local 
niche and infers that taxa that occur across highly differing communi-
ties are social generalists, while taxa that occur in similar communities 
are social specialists. Since SNB is calculated when a taxon is present 
over a detection limit of 1/10,000 reads, the relative abundance and 
associated variability of a taxon’s distribution are observables and 
can be associated with niche range rather than part of the definition, 
as in ref. 28.

SNB throughout the prokaryotic tree of life
To investigate the distribution of social generalists and specialists 
throughout the prokaryotic tree of life, we calculated SNB for taxa at all 
ranks (Fig. 2d and Supplementary Data 3). For the vast majority of taxa, 
the SNB score is lower than expected based on random permutations 
(Fig. 2a–c), indicating that all microorganisms are social specialists 
to some extent because they occur in a non-random subset of all sam-
ples. Exceptions to this rule include the high-ranking superkingdom 
Bacteria and phylum Proteobacteria, which are widespread, occurring 
in 22,295 and 22,211 of the 22,518 samples, respectively. While there is 
a clear positive correlation between SNB and the number of samples 
in which a taxon occurs (Fig. 2a–c), very rare taxa such as Aminobacter 
(five samples) and Methanimicrococcus (28 samples) still have a high 
SNB (SNB = 0.56 and SNB = 0.51, respectively). Alternatively, some taxa 
that are found in many samples have a relatively low SNB because these 
samples are very similar in composition (for example, Phyllobacterium 
(226 samples; SNB = 0.03) and Geminicoccus (473 samples; SNB = 0.09)).

The distribution of SNB scores differs per taxonomic rank. 
High-ranking taxa tend to have higher SNB scores than low-ranking taxa 
(Fig. 2d,e), which intrinsically occur in a subset of the samples of their 
parent taxa. High-ranking taxa can have high SNB scores either because 
they contain subtaxa that are specialists in different communities or 
because the subtaxa are also generalists. To compare taxa at different 
ranks, we calculated a rank-specific modified z score (Fig. 2d and Sup-
plementary Data 4), where positive z scores indicate that the SNB of the 
taxon is higher than the median for its rank and the taxon is thus relatively 
generalist and negative z scores indicate that it is relatively specialist. 
For example, the family Flavobacteriaceae and the genus Prevotella 
are social generalists (with z scores of 2.02 and 0.61, respectively), but 
their subtaxa are relatively specialized for their rank (median z score of 
genera in Flavobacteriaceae = −0.53; median z score of species in Prevo-
tella = −0.71). The family Lactobacillaceae on the other hand is generalist 
(z score = 0.46) and its genera are also generalists (median z score = 1.73). 
In addition, high-ranking taxa with high SNB scores often have more 
subtaxa than high-ranking taxa with low SNB scores (Supplementary 
Fig. 16). This suggests that the diversity of taxa, as currently represented 
by taxonomy, reflects their ecological range well. The four best-studied 
phyla, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria, 
which together cover 97% of cultured prokaryotic species51, are dominant 
across a wide range of environments (Supplementary Fig. 17) and have a 
higher SNB than others (Fig. 2d).

There are many phyla that have low SNB scores and con-
tain few classes, orders and families compared with the dominant 
ones described above. Subtaxa of these low-scoring phyla are thus 
under-represented at the class, order and family ranks and we observe 
that the distribution of SNB scores is more skewed towards social 
specialism at the phylum rank (median SNB = 0.36) than at these 
lower ranks (median SNB = 0.38–0.43; see Fig. 2d). Many phyla with 

niche35,36. We thus reason that the vast collection of tens of thousands 
of environmental sequencing datasets that are available in the public 
domain37 could be used to implement an unbiased, data-driven and 
comprehensive niche breadth definition, based on community simi-
larity between samples where microbial taxa occur. As such, we treat 
community composition as a proxy for the realized niche of a micro-
organism that reflects both the abiotic environment and the microbial 
interactions within. Similar reasoning has been used to quantify the 
niche range of eukaryotes without the use of external habitat defini-
tions38. In this view, organisms that occur in compositionally similar 
samples are social specialists, as their niche is restricted to the same 
local neighbours, and organisms that occur in compositionally dis-
similar samples are social generalists, as they are more flexible in their 
interaction partners. Using community similarity as a substitute for 
ecological range, we developed a social niche breadth (SNB) score that 
allowed us to quantify the social niche range for taxa at all taxonomic 
ranks and assess strategies for specialization and niche range expan-
sion throughout the prokaryotic tree of life.

Results
SNB captures global heterogeneity in microbial communities
To compare the niche breadth of microbial taxa, we devised and exten-
sively benchmarked (Supplementary Information) an SNB score that 
exploits the abundantly available meta-omics datasets derived from 
diverse environments around the world (Fig. 1 and Supplementary Data 
1 and 2). These microbiomes are taxonomically annotated with the same 
MGnify pipeline37, which allows for a comparison of vastly different 
environments, studies and experiment types (Supplementary Infor-
mation). First, we assessed the biome annotations of these datasets, as 
provided by the dataset submitters. The annotations highlighted the 
main drivers of microbiome composition (Fig. 1d and Supplementary 
Information), including salinity (t-distributed stochastic neighbour 
embedding dimension 1 (t-SNE 1)) and host association (t-SNE 2)10,39–41. 
The 22,518 samples covered a total of 140 annotated biomes that dif-
fered markedly in within-sample (α) and between-sample (β) diversity. 
Annotated biomes with high mean α diversity, such as soils, had low β 
diversity (Fig. 1f), implying a relatively stable core community across 
these high-diversity habitats.

Most samples from the same annotated biome are relatively simi-
lar, as reflected by a low β diversity. Nevertheless, annotated biome defi-
nitions are arbitrarily delineated and may be subject to human error. 
For example, the plants biome includes both freshwater plants42–44 
and seagrasses45, as well as macroalgae from kelp forests46 (Supple-
mentary Data 1). Also, it is difficult to quantify the degree of similarity 
between categorical biomes in a biologically meaningful way. We used 
the observation that microbiomes are biomarkers31–36 and developed 
SNB, which captures the compositional heterogeneity of samples for 
which a taxon is found to quantify niche breadth.

We assume that the small subunit rRNA gene that is queried is a 
proxy for the genetic content of a taxon that defines its traits. Specific 
traits exist at all taxonomic ranks and determine their occurrence 
across microbiomes47. Since the taxonomic annotations are based 
on a reference taxonomy and the biosphere is relatively unexplored, 
sometimes high-ranking taxa do not have low-ranking annotations 
like species (Fig. 1e). We considered that members of a taxon are alive 
and growing if the taxon represented a relative abundance of at least 
1/10,000 of the prokaryotic reads in a sample, and thus ignored the 
possibility of migration from other sources and the potential for dead 
organic matter contributing DNA to the sequencing results48. Next, we 
defined SNB as the mean pairwise dissimilarity between these micro-
biomes. After benchmarking 150 different ecological dissimilarity 
measures for their ability to separate the annotated biomes, we chose 
mean pairwise dissimilarity based on the inverse Spearman’s rank cor-
relation of known taxa at taxonomic rank order to quantify SNB (Sup-
plementary Information). Thus, taxa with a low SNB score are found in 
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the Candidatus status have a low SNB compared with validly described 
phyla (Supplementary Fig. 17). The connection between the Candidatus 
status and low SNB may reflect a discovery bias of these phyla where 
widespread lineages tend to be discovered and described sooner than 
rare ones, although some candidate phyla are widespread (Supplemen-
tary Fig. 17). Candidate phyla may require specific growth conditions, 
which can be reflected in relatively stable specialized microbial com-
munities, consistent with their low SNB. In addition, several candidate 
phyla, including the bacterial candidate phyla radiation and DPANN 
archaea, may consist of obligate symbionts of specific hosts2. Whereas 
it was recently shown that consortia of obligate symbionts can grow 
on a wider range of carbon sources than their individual members and 
thus expand their metabolic niche22, the individual microorganisms in 
these consortia are social specialists as they require specific partners 
in their local communities.

Taxa with high and low z scores are dispersed throughout the 
prokaryotic tree of life (Fig. 2d), indicating that social specialization 

and niche range expansion happened independently numerous times 
in evolution. Phyla with relatively specialized genera include Proteobac-
teria (median z score = −0.07), Bacteroidetes (median z score = −0.26), 
Actinobacteria (median z score = −0.17), Cyanobacteria (median 
z score = −0.72), Planctomycetes (median z score = −0.37), Acidobac-
teria (median z score = −0.47) and Chloroflexi (median z score = −0.17), 
whereas Firmicutes, Tenericutes and Euryarchaeota have genera that 
are relatively generalist (median z scores of 0.43, 1.18 and 1.06, respec-
tively). Taxa with relatively low SNB for their ranks include known spe-
cialists such as the genus Christensenella27 (z score = −1.01), but also the 
family Pelagibacteraceae (z score = −1.94) and genus Prochlorococcus 
(z score = −1.25), which hold some of the most abundant organisms on 
Earth52,53. These taxa, known for their highly streamlined genomes54, 
are found in aquatic samples with a uniform microbial composition 
(Supplementary Fig. 5b) and thus have a low SNB. While the family 
Pelagibacteraceae contains both marine and freshwater representa-
tives (in the SAR11 and LD12 clades, respectively55), in our dataset it 
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is found primarily in marine samples (Supplementary Fig. 5b). This 
highlights that future sampling of even more habitats, combined with 
more sensitive detection methods, could change or refine SNB scores 
for some taxa. The genus Roseobacter, whose members are consid-
ered marine metabolic generalists with large genomes and a versatile 
metabolism56,57, is found in more diverse samples (Supplementary Fig. 
5b) and has an SNB closer to the median of all genera (z score = −0.30). 
At the generalist end of the spectrum are taxa that are ubiquitously 
present in our dataset (Fig. 2a,b), such as the genera Acinetobacter 
(z score = 2.30) and Pseudomonas (z score = 2.33; however, this genus 
may be ubiquitous in part because it is a common contaminant of 

DNA extraction kits58) (Supplementary Fig. 5b). The family Lachno-
spiraceae (z score = 1.74; found in over half of all samples; n = 11,887) 
and its genera (median z score = 0.79)—obligate anaerobes that were 
previously regarded as habitat specialists27—also have a high SNB for 
their ranks, highlighting the heterogeneity of the communities in 
which they are found.

Generalists dominate, whereas specialists are stable but scarce
Next, we set out to find patterns in SNB. We focused our analysis on 
genera because they balance a high taxonomic resolution with a good 
representation in the dataset (Fig. 1e) and show a broad range of SNB 
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values (Fig. 2d,e), allowing for a comprehensive investigation of niche 
range strategies.

It has been suggested that generalists, being Jacks of all trades, can 
be masters of none11, while specialists are adapted to become dominant 
within their habitats under stable conditions59. The niche range may 
thus reflect a trade-off, where specialists gain local dominance at the 
expense of ecological versatility. Alternatively, computational models 
of microbial metabolism have suggested that metabolically flexible 
generalists have faster growth rates than specialists60. We correlated 
SNB with local abundance and found that social generalists are domi-
nant in most annotated biomes, as indicated by a consistent positive 
correlation across samples, with exceptions including marine host 
organisms such as corals, seagrasses and macroalgae (Fig. 3a). SNB 
positively correlates with abundance within samples, meaning that 
social generalists locally outcompete their more specialist neighbours, 
disputing the expected trade-off mentioned above. While these are 
general results based on correlations across samples, an exception is 
Prochlorococcus, which has a low SNB but a high local abundance (mean 
relative abundance = 0.63%). This genus is among the top 10% of the 
most abundant genera (Supplementary Data 3) and in the majority of its 
samples belongs to the top 20% of genera in terms of local abundance. 
Local dominance of habitat generalists has previously been observed in 
specific environmental settings such as highly dynamic sandy ecosys-
tems61. Some soil microorganisms are both abundant and ubiquitous62 
and only ~500 dominant phylotypes (that is, 2%) represent >40% of soil 
bacterial communities63. Our results show that these observations 
reflect a general pattern wherein generalists are dominant.

Whereas samples are typically dominated by social generalists, 
we find that the relative abundance of generalists is more variable 
across samples than that of specialists, whose abundance is relatively 
stable. This is evident when comparing the niche range of organ-
isms that locally co-occur within samples, where social generalists 
have a higher variability of relative abundance than social specialists  

(Fig. 3a). It is also evident for taxa throughout the prokaryotic tree of 
life, where social specialists have an even relative abundance while 
taxa with a high variability of relative abundance are social generalists  
(Fig. 2c). Even Prochlorococcus, while having a high local dominance for 
a social specialist, still has an even abundance across samples (normal-
ized Shannon entropy of relative abundance = 0.86).

Our data counter the classic Jack of all trades argument, which 
suggests that specialists should have a local fitness advantage at the 
expense of ecological versatility. We explored possible explanations for 
the local dominance of generalists over specialists and their relatively 
variable abundance. First, although generalist genera contained more 
species than specialist genera in the total dataset (Supplementary  
Fig. 18a), we did not find evidence that they also contain a higher num-
ber of species within samples (Supplementary Fig. 18a), but note that 
only a small fraction of genera could be taxonomically classified on the 
species rank (Supplementary Fig. 18b). Alternatively, SNB may reflect 
the classical distinction between r strategists and K strategists64. Social 
specialists have a low but constant abundance near carrying capacity 
(K selected) and some (but not all) social generalists are opportunistic 
taxa that reach high relative abundance when circumstance permits  
(r selected). To test this hypothesis, we compared the SNBs of microor-
ganisms with their predicted maximal growth rates based on the EGGO 
database65 (Fig. 3a) and confirmed that, within samples, social general-
ists have shorter doubling times than social specialists. These results 
support the idea that generalist genera include more opportunistic 
growers than specialist genera.

SNB reflects genomic heterogeneity
Next, we used our dataset to assess the suggestion that social generalists 
have large genomes that encode many functions, reflecting a versatile 
metabolism that allows them to colonize diverse habitats25,27. For exam-
ple, bacteria that are found in a diverse range of habitats encode more 
extracellular proteins than bacteria that are restricted to few habitats26, 
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Fig. 3 | Ecological and genomic features correlated with SNB. a, Spearman’s 
rank correlation coefficient (ρ) within samples between SNB and features related 
to local dominance on the rank genus. The violin plots depict the distribution of 
ρ across all samples or those from the annotated biomes with the most samples. 
Annotated biomes are arranged according to mean α diversity. Positive values 
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are given in base pairs (bp) and numbers of coding sequences (CDS). Genomic 
measures with annotations to the right are in numbers of unique functions for 
that specific functional universe. Genome size estimates for a genus are based 
on the genome size of its species, which is defined as the mean size of all strains 
for base pair and coding sequence measures, and as the majority set of functions 
of all strains for the functional universe measures. Pan-genome openness is the 
total pan-genome size divided by the mean genome size. Correlations with time 
to the last common ancestor (LCA) and first common ancestor (FCA) are based on 
the TimeTree database. Numbers to the right of violins show sample sizes. Lines 
within violin plots show the interquartile range and median. Supporting data are 
available in Supplementary Data 6 and 7. N., number; s.d., standard deviation.
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and habitats with temporal variation may select for larger genomes66. In 
contrast, specialization may be associated with a reduction in genome 
size due to a loss of unnecessary genes (as has been observed in mem-
bers of the phylum Planctomycetes transitioning from soil to freshwater 
habitats67) or genome streamlining68 (which is common in oligotrophic 
marine waters69,70). Genomic versatility of high-ranking taxa, reflected 
in a large pan-genome71,72, may either result from small yet diverse 
genomes in individual subtaxa (open pan-genome) or genomically 
versatile yet functionally similar strains (closed pan-genome). We set 
out to identify genomic features associated with SNB using publicly 
accessible genome sequences from the Pathosystems Resource Inte-
gration Center (PATRIC) database73 (Supplementary Data 5). These 
features include the mean genome size of all species in the genus, the 
variation in these genome sizes, the pan-genome size (that is, the total 
number of functions present in all genomes) and the pan-genome open-
ness (calculated as the pan-genome size divided by the mean genome 
size). The PATRIC database contains genome sequences for 1,704 of 
the 2,133 genera that we investigated in our global microbiome dataset 
(Supplementary Data 3). Although these genomes probably belong to 
different strains or species than those observed in MGnify, we decrease 
the inconsistencies in our analysis by assessing their genomic features 
at the genus rank.

We compared genera within samples (Fig. 2e) for an ecological 
view and within their taxonomic families for an evolutionary view. 
Both perspectives gave qualitatively similar results (Fig. 3b), indicating 
that genomic signatures of SNB (see below) are generalizable across 
habitat and phylogeny. Although the number of samples is larger than 
the number of families, the correlation between genomic features and 
SNB is more consistent within samples than within families, possibly 
suggesting that ecology is a stronger driver of (pan)-genome evolution 
than phylogenetic history74.

When comparing taxa across all samples, we found no consist-
ent correlation between SNB and genome size, whether measured 
in the number of nucleotides, genes or unique functions (Fig. 3b). 
We did, however, observe that the genomes in generalist genera are 
more variable in size than the genomes in specialist genera, as seen 
in their standard deviation. Moreover, the pan-genomes of generalist 
genera contain more functions, in line with theoretical models that 
suggest that the ability to migrate to new niches is associated with 
pan-genome size75. The pan-genome size of microorganisms may be 
positively associated with effective population size76, which may be 
larger for social generalists. The same study found that rapidly growing 
microorganisms have large effective population sizes, in line with our 
earlier discussed observation that opportunistic growers are general-
ists. Finally, the pan-genomes of social generalists are more open than 
those of social specialists. These results did not depend on the higher 
number of species in generalist genera (Supplementary Fig. 19).

In conclusion, species in specialist genera are genomically more 
similar than species in generalist genera, which is reflected in more 
similar genome sizes and less variation in functions, and an associ-
ated smaller and more closed pan-genome than generalist genera. We 
hypothesize that the observed genomic flexibility allows members of 
generalist genera to rapidly acquire the genes needed to thrive in a 
given local environment77,78, with their higher growth rate potential 
allowing them to outgrow specialists. The correspondence between 
genomic heterogeneity and the heterogeneity of communities (SNB) 
confirms the strong association between ecological and genomic 
diversification. To further explore this diversification we correlated 
SNB with clade age based on the TimeTree database79. It was previously 
suggested that habitat generalist species are evolutionarily younger 
than habitat specialist species27. Our data do not allow analysis of these 
trends at the species rank, but at the genus rank we found that social 
specialists are younger than generalists, as indicated by a consistent 
positive correlation between SNB and clade age (Fig. 3b). Together, 
these results support a model of continuous diversification whereby 

old generalist clades that share a diverse pan-genome may invade new 
niches, leading to the emergence of specialized subtaxa.

Two contrasting genomic niche range strategies
As discussed above, SNBs of genera were not consistently associated 
with mean genome size. However, we did observe a habitat-dependent 
relationship between genome size and social niche range (Fig. 4a). 
We found two contrasting strategies that broadly depended on the α 
diversity of the samples. In samples with low local diversity (α diver-
sity ≤ 11; Fig. 4b), including most animal-associated and saline habitats, 
there was a mean positive correlation between genome size and SNB. In 
contrast, in samples with high local diversity (α diversity > 11; Fig. 4b), 
including most free-living non-saline habitats and the rhizosphere, the 
correlation was often negative. Because databases contain a majority 
of samples from animal-associated and marine habitats with relatively 
low α diversity (Fig. 4c), and because genome size estimates are often 
based on cultivated microorganisms that differ markedly from envi-
ronmentally derived genomes80, previous suggestions of a positive 
correlation between genome size and niche range may have overlooked 
the contrasting correlations.

In habitats with low α diversity, social generalists tend to have large 
genomes that may encode the functions needed to utilize many differ-
ent resources, whereas social specialists (low-diversity specialists) have 
the smallest genomes known (Fig. 4d,e). The coding density—a signa-
ture of genomic streamlining68—is significantly lower in low-diversity 
specialists than in social generalists (P < 0.003; one-tailed t-test; meas-
ured as the number of coding sequences per base pair, with generalists 
defined as SNB > 0.35 (697 genera) and low-diversity specialists defined 
as present in samples with a mean α diversity ≤ 11 (552 genera)). This 
suggests that genome streamlining is not the common route to genome 
reduction in low-diversity specialists. Instead, their small genomes 
could reflect specialization to habitat-specific metabolites and the loss 
of genes through drift67. In addition, cooperating metabolic specialists 
could supplement each other’s nutrient requirements50 or they could 
depend on the co-occurring generalists.

Although the genomes of social generalists are large compared 
with those of low-diversity specialists (Fig. 4d), the genomes in samples 
with low α diversity are still moderate in size compared with the large 
genomes in samples with high α diversity (Fig. 4e). Samples with high α 
diversity contain many specialists (Fig. 2e) and their high richness may 
be a driver of specialization through competitive exclusion, as has been 
suggested to explain a negative correlation between niche breadth and 
local diversity in eukaryotes81. There is negative correlation between 
genome size and social niche range in samples of high α diversity, where 
social specialists (high-diversity specialists) have larger genomes than 
co-occurring social generalists (Fig. 4b). The largest known prokaryotic 
genomes belong to high-diversity specialists (Fig. 4d); for example, the 
genus Polyangium, with a mean genome size of 12.7 megabases and an 
SNB of 0.21 (z score = −1.36). Selection may favour large genomes in 
habitats with diverse but scarce nutrient availability where slow growth 
is no disadvantage, such as in soils82,83. Moreover, in contrast with the 
earlier-mentioned cooperative taxa, microorganisms in competitive 
consortia carry many metabolic functions50. High-diversity specialists 
may thus reflect a competitive metabolism. Social generalists in these 
habitats may use metabolites that are irregularly available and rapidly 
depleted, consistent with their opportunistic nature and variable 
occurrence. Alternatively, they could exploit metabolic byproducts 
generated by metabolic specialists19. Regardless of the mechanism, it 
appears that adaptation of high-diversity specialists to their habitats 
by genome expansion decreases their competitiveness in differing 
communities.

The pan-genomes of social specialists and generalists
To further characterize generalist and specialist microorganisms, we 
explored differences in genomic content by dividing all genera into 
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two groups based on SNB (Fig. 5a) and performing gene set enrichment 
analysis (GSEA)84 on the genus-level pan-genomes. We performed two 
GSEAs: one with all genera comparing social specialists with social 
generalists (Fig. 5b and Supplementary Data 8); and one comparing 
low-diversity specialists with high-diversity specialists (Fig. 5c and 
Supplementary Data 9).

The functions enriched in social generalists (false discovery 
rate (FDR) < 0.1; Fig. 5b) included associations with genome fluidity, 
such as (pro-)phages and plasmid-related functions, highlighting the 

mechanisms by which they keep an open pan-genome. Other gener-
alist functions reflected an investment in species–species interac-
tions, observation and response to a fluctuating environment. Of 
the 33 generalist-enriched functions, 13 were related to metabolism, 
including functions associated with secondary metabolites, such as 
coenzyme F420 (refs. 25,85). We also found quorum sensing and biofilm 
formation, adhesion, locomotion via the flagellum, and functions 
concerning the cell envelope and transport across it (S-layers, protein 
secretion systems and siderophores) to be generalist enriched. Finally, 
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of α diversity. d, SNB versus genome size on the rank genus. The violin plots show 
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areas show the interquartile range of the regression lines. e, Violin plots depicting 
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the violin plots show the sample size. The lines within the violin plots show the 
interquartile range and median. Supporting data relating to a and b are available 
in Supplementary Data 6.
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pathogenicity islands could point to opportunistic interactions with 
eukaryotic host organisms.

Fewer genomic functions were enriched in social specialists 
than in social generalists (Fig. 5b). Specialist-enriched functions 
include energy-related processes and some specifically related to 

Cyanobacteria, such as heterocyte formation, which is involved in nitro-
gen fixation in one evolutionary lineage of the phylum86. Most functions 
that were enriched in specialists also occurred in the pan-genomes 
of many generalist genera (Fig. 5b), suggesting that the smaller 
pan-genome size of social specialists does not involve consistent loss 
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of functions. The absence of widespread specialist functions highlights 
that there are many ways to be a specialist. There is not a single type 
of social specialist, but instead many different specialists exist, each 
with a functional arsenal that fits its niche.

Comparing low-diversity specialists with high-diversity special-
ists (Fig. 5c), we observed several specific metabolic adaptations to 
these different types of habitat. Half of the 60 enriched functions in 
the GSEA were related to metabolism. High-diversity specialists have 
more enriched functions than low-diversity specialists. For example, 
functions associated with stationary phase, dormancy and persistence 
are enriched in high-diversity specialists, consistent with slow growth 
and persistence in soil. Moreover, functions related to lipid metabolism 
(for example, steroids and hopanoids, (unsaturated) fatty acids, sphin-
golipids and phosopholipids) are enriched in high-diversity specialists. 
Low-diversity specialists, like social generalists, also contain some 
functions associated with genome fluidity (for example, transposable 
elements, (pro-)phages and plasmid-related functions), suggesting 
that their genomes, although small in size, may still be in flux.

Discussion
We present an SNB score for microbial taxa that is based on the com-
munity similarity of the samples in which they occur. Integrating 
information from over 22,000 samples, SNB represents a global and 
comprehensive view on niche range throughout the prokaryotic tree 
of life. With continued and ever-deeper sequencing efforts and associ-
ated expansion of public databases, the environmental and taxonomic 
resolution of our picture of the microbial world increases, as does our 
understanding of the processes shaping microbial niche breadth. In 
contrast with earlier suggestions, we found that most habitats are domi-
nated by generalists. Specialists occur at low but stable abundances.

Generalist genera are older than specialist genera and have large 
and open pan-genomes with which they have adapted to different 
habitats. Individual genome size and SNB are differentially related 
depending on the diversity of the habitat, with social generalists hav-
ing larger genomes than social specialists in low-diversity habitats 
and smaller genomes than social specialists in high-diversity habi-
tats. High-diversity specialists may need a large genetic repertoire as 
they are continually exposed to many different interaction partners 
and possibly high environmental variability at small spatial scales. 
Low-diversity specialists have decreased genome sizes due to the loss 
of unnecessary functions. Large genomes may thus reflect increased 
environmental versatility in two different settings. In habitats with low 
local diversity, generalists are relatively versatile, as they can survive in 
a range of different communities. In habitats with high local diversity, 
specialists are relatively versatile, allowing them to persist in their local 
complex community. Since social generalists and social specialists 
are dispersed throughout the prokaryotic tree of life, these genomic 
adaptations have repeatedly occurred and represent fundamental 
eco-evolutionary processes.

Methods
Sample selection
We downloaded taxonomic profiles deposited in the MGnify microbiome 
resource37 on 20 August 2019. MGnify contains taxonomic profiles based 
on studies that amplify taxonomic marker gene regions (amplicons), 
shotgun metagenomics studies and shotgun metatranscriptomics 
studies. We selected taxonomic profiles that were constructed with the 
pipeline 4.1 version of MGnify and based on the small subunit ribosomal 
RNA gene, contained at least 50,000 taxonomically annotated reads at 
the rank superkingdom and had <10% of those reads classified as eukary-
otic. We randomly picked one taxonomic profile per sample in cases 
where there were multiple. To balance the large over-representation of 
several environments in the database (for example, human gut, soil and 
ocean), at most 1,000 samples were randomly selected per annotated 
biome. The 22,518 selected samples (Supplementary Data 1) spanned 

140 different annotated biomes across a wide geographical range and 
consisted of amplicon, metagenomic, metatranscriptomic and unknown 
experiment types (Supplementary Fig. 1).

We removed eukaryotic classifications including those classified 
as mitochondria and chloroplast from the taxonomic profiles, as well 
as those not classified at the taxonomic rank superkingdom. When 
relative abundances were used, they were calculated as the number of 
reads assigned to a taxon divided by the total number of prokaryotic 
reads, unless otherwise stated in the section ‘Ecological dissimilarity 
measures’.

Ecological dissimilarity measures
We calculated ecological dissimilarity between all sample pairs based 
on their taxonomic profiles (compositional dissimilarity) at different 
taxonomic ranks using ten commonly used ecological measures: Aitch-
ison distance; Bray–Curtis dissimilarity; Sørensen–Dice coefficient; 
Jaccard distance; weighted Jaccard distance; Kendall’s τb coefficient; 
Pearson correlation coefficient; Spearman’s rank correlation coeffi-
cient; unweighted UniFrac distance; and weighted UniFrac distance. 
Some are true distance or dissimilarity measures, whereas others can 
be readily converted to a scale from 0–1, with 0 being compositionally 
similar. The three correlation measures were converted to dissimilarity 
with the formula 0.5 − (coefficient/2) and we used 1 − Sørensen–Dice 
coefficient.

Taxa that were represented by fewer than five reads in the sample 
were removed before dissimilarity calculations. This was done per rank; 
therefore, the total number of included reads for a sample could differ 
depending on the rank considered. To ensure that the pairwise calcula-
tions were based on the deepest attainable resolution, we decided on 
a low absolute read cut-off as opposed to a relative abundance cut-off. 
For each pairwise calculation, we only included taxa that were present 
in the union of the two samples, thus avoiding the vast scarcity (that 
is, the presence of zeros in the abundance matrix) often associated 
with microbiome studies. This scarcity is especially likely because our 
study compares many different habitats. Those taxa that were only 
present in one of the samples were given an abundance of zero in the 
other for all ecological dissimilarity measures except the Aitchison 
distance, which cannot handle zeros. For the Aitchison distance, a 
pseudocount was added. This pseudocount differed per pair of samples 
and was based on the lowest relative abundance that could be reached 
by an undetected taxon (namely, one read in the sample with the high-
est number of taxonomically annotated reads). We defined N1 as the 
sum of reads represented by the taxa in sample 1 and N2 as the sum of 
reads represented by the taxa in sample 2, with N1 ≥ N2. A pseudocount 
of one read was added to all taxa in sample 1 and a pseudocount of 
1/N1 × N2 reads was added in sample 2.

We calculated the ecological dissimilarity measures at all ranks up 
to phylum with three different methods for dealing with unknowns in 
the data. For the UniFrac distances, we used a different method (see 
below). For approach (1), we considered any taxon on the specific rank. 
If there was no classification at that rank but the taxon contained lower 
rank classifications, the first classified rank below was used. If there was 
no classification at the specific rank and no lower rank classification, 
we used the first classified rank above. For approach (2), we exclusively 
considered taxa that were classified at the specific rank. Taxa that were 
classified at lower or higher ranks alone were removed. For approach 
(3), we treated taxa that were not classified at the specific rank but did 
have lower rank classifications the same as in approach (1). If taxa had 
no classification at the specific rank or at a lower rank, we used the first 
classified rank above, unless the taxon was present in both samples. In 
this case, the taxon was removed. The rationale is that for these taxa it is 
unknown whether they are the same or different for the rank of interest.

UniFrac distance takes relatedness between taxa into account. We 
used distance across the taxonomic tree as a measure for relatedness, 
with the distance between successive ranks defined as 1. We used the 
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EMDUnifrac implementation87, which is suited for samples with many 
unknowns because it allows for the placement of taxa at different ranks 
in the tree. UniFrac distances were calculated at the ranks species, fam-
ily and class. For taxa that had no classification at the specific rank but 
did have a lower rank classification, we used an artificial classification 
based on the first classified rank below, ensuring uniqueness of the 
taxon and appropriate distance to the root. Taxa that did not have a 
classification at the specific rank or a lower rank were placed at the 
first classified rank above in the tree.

For the ecological dissimilarity calculations that took the number 
of reads into account, the numbers of reads per taxon were converted to 
relative abundance values by dividing by the sum of reads represented 
by the taxa in the sample (for example, for Bray–Curtis dissimilarity cal-
culations and the addition of pseudocounts before Aitchison distance 
calculations). As explained above, the taxa considered in a sample may 
have differed per method of dealing with unknowns, and so may the 
relative abundance of a taxon.

Because the taxonomic profiles contain many unknowns at lower 
ranks, pairwise comparisons are sometimes based on only few taxa. 
For each rank and method of dealing with unknowns, samples were 
removed that did not contain any taxon at that rank. If the pairwise 
comparison was based on one taxon, we set the dissimilarity to 0. We 
removed samples from the correlation measures whose correlation 
coefficient with itself could not be calculated.

Permutatational multivariate analysis of variance
Permutatational multivariate analysis of variance pseudo F statis-
tics were calculated for all ecological dissimilarity measures with the 
scikit-bio version 0.5.5 implementation (http://scikit-bio.org/). As 
predefined groups, we used either the annotated biomes of the sam-
ples or their experiment types. P values were based on 99 random 
permutations and we calculated the coefficient of determination (R2) 
with the formula:

R2 = F

F + N−G
G−1

were F is the pseudo F statistic, N is the sample size and G is the number 
of groups.

Diversity measures
Diversity measures were calculated for the subset of samples belong-
ing to an annotated biome and in which a taxon was found. If a subset 
contained fewer than three samples, it was excluded from analysis. Taxa 
were removed whose relative abundance was less than 1/10,000. We 
used approach (2) to deal with unknowns, as explained in the section 
‘Ecological dissimilarity measures’.

Zeroth-order α diversity (that is, richness—the mean number of 
taxa found in a set of samples) was calculated for all ranks. Zeroth-, 
first- and second-order α diversity (qDα) and β diversity (qDβ) were 
calculated on the taxonomic rank order and based on relative abun-
dances, with qDβ defined as the total effective number of taxa (qDγ) 
divided by qDα. qDγ was calculated based on the summed relative abun-
dance of the individual samples. For the first- and second-order diver-
sity measures, two samples were excluded that did not contain any 
classification at order rank after the relative abundance threshold.

When the terms α and β diversity are used, we refer to first-order 
diversity measures on the rank order unless otherwise stated. For 
a more in-depth discussion of these diversity measures, see ref. 88. 
The Shannon entropy and Gini–Simpson index, which were used for 
diversity calculations, were calculated with the scikit-bio version 0.5.5 
implementation.

Local dominance and Shannon entropy across samples
For each taxon, we calculated local dominance and Shannon entropy. 
Local dominance was defined as the mean relative abundance across 

all samples in which the taxon was found. Shannon entropy (base e) 
was used as a measure for the randomness of its relative abundances 
across these samples (N) and was normalized by dividing by ln[N].

SNB definition
SNB was defined as the mean of the pairwise dissimilarity between the 
samples in which a taxon was found, n:

SNB =
∑n

i=1∑
n

j=1 dij, i ≠ j
n2 − n

with the dissimilarity dij based on the Spearman’s rank correlation 
coefficient (0.5 − (ρ/2)) on the rank order with method (2) for dealing 
with unknowns (see the section ‘Ecological dissimilarity measures’). A 
taxon was considered present in a sample if it had a relative abundance 
of at least 1 × 10−4. A taxon with a low score was thus found in samples 
with similar taxonomic profiles (social specialists) and a taxon with a 
high score was found in dissimilar samples (social generalists). Taxa 
that were present in fewer than five samples were removed from analy-
ses unless otherwise stated.

To benchmark SNB, we also calculated SNB with different detec-
tion thresholds of 1 × 10−3 and 1 × 10−5. SNB was moreover calculated 
for imaginary taxa (iSNB) that were present in all samples from a given 
annotated biome, in half of the samples from a given annotated biome 
(100 random permutations per annotated biome) and in all samples 
from pairs of annotated biomes. In addition, iSNB was calculated for 
randomly picked sets of samples of equal size to the encountered taxa 
(100 random permutations per sample size). Lastly, we calculated SNB 
for real taxa only based on the marine and human hierarchical subsets 
of the samples.

Selection of genomes
We downloaded all genomes from the PATRIC genome database73 that 
had a quality marked as good and were not plasmids on 14 November 
2019. We only included genomes for which we had a valid taxonomy ID 
in our NCBI taxonomy89 files that were downloaded on the same date. 
PATRIC contains identical genomes with different identifiers. We identi-
fied replicate genomes based on concatenated DNA sequences and 
concatenated sorted DNA sequences and removed all but one. In cases 
where identical genomes had different taxonomic annotations, all were 
discarded. Completeness and contamination estimates were generated 
with CheckM version 1.0.7 (ref. 90) in the lineage-specific workflow.  
We excluded genomes for which completeness − 5 × contamination < 70. 
The final selection consisted of 225,101 prokaryotic genomes represent-
ing 34,304 species, from both cultures and environmental sequencing 
projects (Supplementary Data 5).

Inferences about (pan)-genome size and genomic functions (see 
below) and number of subtaxa were made at all taxonomic ranks and 
reconstructions at higher ranks were based on lower-rank taxa in the 
PATRIC database that were not always present in the MGnify dataset.

Genome size estimates and GC content
Genome size (in number of base pairs and number of coding sequences) 
and GC content were obtained from the metadata in the PATRIC data-
base. We corrected genome size estimates by taking completeness and 
contamination into account, via multiplication with a scaling factor s:

s = 100
completeness + contamination

For each measure including the number of coding sequences per 
million base pairs, we reconstructed species by averaging the values 
of its genomes. For higher ranks, mean values were calculated for all 
species belonging to the taxon. Some high-ranking taxa contain many 
low-ranking taxa from the same taxonomic group, such as genus or fam-
ily. To correct for this over-representation and possible skew towards 
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the values of these taxa, we also calculated mean values by averag-
ing over the taxonomy at all ranks (taxonomy-corrected values). For 
example, the size of a family is the mean of the sizes of its genera and 
the size of a genus is the mean of the sizes of its species. These values 
were calculated for the ranks family and higher and are available in 
Supplementary Data 5.

Genome functions
Functional profiles of the genomes were created based on the PAT-
RIC annotations of coding sequences for three functional universes: 
subsystems, gene ontologies and pathways. For gene ontologies, the 
profiles were based on the exact terms found in the annotation files, 
whereas for subsystems we made different profiles for the name and 
subclass level of the hierarchy. Genomes with ≤20 unique functions 
were discarded from further analyses for subsystem names, gene 
ontologies and pathways. For the included list of genomes in each 
analysis, see Supplementary Data 5.

Functional genome size was defined as the number of unique 
functions present in a species. A function was considered present in a 
species if at least 50% of the genomes with this species annotation con-
tained it in the PATRIC database. Mean functional genome sizes were 
calculated for all taxa, as well as the standard deviation. Pan-genomes 
were defined at all ranks as the total set of unique functions present in 
the genomes of a taxon.

Pan-genomes can be open or closed, meaning that they can be 
more or less susceptible to changes in gene content71,72. We devised a 
score that represents pan-genome openness for all ranks higher than 
species. Pan-genome openness was defined as the total pan-genome 
size divided by the mean pan-genome size of a species. Because taxa 
with many subtaxa tend to have large pan-genomes, we also calculated 
pan-genome features for a random subset of three daughter species 
(1,000 random permutations per taxon) to correct for this effect of tax-
onomy. This measure thus reflects how many functions are on average 
added to the pan-genome by including two more species. Permutated 
measures were calculated for all taxa with at least three species.

GSEA of pan-genomes
To detect functions that were significantly enriched in social special-
ists and generalists, we deployed GSEA84 based on the pan-genomes of 
genera. We performed a GSEA on all genera sorted by SNB to compare 
specialists with generalists, and on specialist genera (SNB < 0.35) sorted 
by α diversity to compare low-diversity specialists with high-diversity 
specialists. We used the classical Kolmogorov–Smirnov statistic for 
the enrichment score (p = 0). Enrichment score normalizations and 
P values were based on 100,000 random permutations of the gene set. 
Multiple hypothesis correction was carried out via the FDR as suggested 
in ref. 84. GSEA computations were done with a modified version of the 
algorithm.py script from GSEApy version 0.7.3.

Growth rate and clade age estimates
We downloaded the maximal growth rate predictions of Ref-
Seq genomes from the EGGO database65 and defined species- and 
genus-rank maximal growth rates as the mean of their genomes.

Clade ages were based on the TimeTree database79. Times to the 
first and last common ancestor were extracted from the species rank 
phylogenies of bacteria and archaea using ete3 version 3.1.1 (ref. 91),

Software packages used for calculations and visualizations
Calculations were done with the Python 3 standard library, NumPy92 
and the SciPy library93 unless otherwise stated. Visualizations were 
done with Python 3 and Matplotlib94 in JupyterLab (https://jupyter.
org/), with the use of NumPy, pandas95 and seaborn (https://seaborn.
pydata.org/). Principal coordinates analysis (PCoA) was performed 
with the scikit-bio version 0.5.5 implementation. t-SNE was performed 
with scikit-learn version 0.21.3 (ref. 96). Samples were drawn on the 

world map with Cartopy version 0.17.0 (http://scitools.org.uk/cartopy/) 
using Natural Earth data (https://www.naturalearthdata.com). The 
taxonomic tree was visualized with iTOL97 and the hierarchical tree of 
annotated biomes was visualized with ete3 version 3.1.1 (ref. 91).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All of the data analysed during this study are included in this article 
and Supplementary Data 1–9 or available in public repositories. The 
selected samples from the MGnify resource (https://www.ebi.ac.uk/
metagenomics/) are described in Supplementary Data 1. The cleaned 
taxonomic profiles based on these data are available in Supplemen-
tary Data 2. The selected genomes from the PATRIC database (https://
www.bv-brc.org/) are described in Supplementary Data 5. Measures 
derived from the PATRIC genomes and the EGGO (https://github.com/
jlw-ecoevo/eggo) and TimeTree (https://timetree.org/) databases are 
available in Supplementary Data 3.

Code availability
All of the code used for this manuscript is available from Zenodo at 
https://doi.org/10.5281/zenodo.7651594. A stand-alone script to cal-
culate SNB is available from https://github.com/MGXlab/social_niche_ 
breadth.
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