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Generalists can survive in many environments, whereas specialists are
restricted to a single environment. Although a classical conceptin ecology,
niche breadth has remained challenging to quantify for microorganisms

because it depends on an objective definition of the environment. Here, by
defining the environment of a microorganism as the community it resides
in, weintegrated information from over 22,000 environmental sequencing
samples to derive a quantitative measure of the niche, which we call social
niche breadth. At the level of genera, we explored niche range strategies
throughout the prokaryotic tree of life. We found that social generalists
include opportunists that stochastically dominate local communities,
whereas social specialists are stable but low in abundance. Social generalists
have amore diverse and open pan-genome than social specialists, but we
found no global correlation between social niche breadth and genome

size. Instead, we observed two distinct evolutionary strategies, whereby
specialists have relatively small genomes in habitats with low local diversity,
butrelatively large genomes in habitats with high local diversity. Together,
our analysis shines data-driven light on microbial niche range strategies.

Culture-independent sequencing studies have greatly expanded our
understanding of the microbial world. They uprooted the tree of life'?,
revolutionized our view of the human microbiome and virome** and
advanced our comprehension of early evolution>®. By using standard-
ized protocols across large numbers of samples’ ', classical ecological
questions can now be addressed on the global scale. A quintessential
questionis that of ecological niche breadth™"?—the range of conditions
under which an organism can live. Although the distinction between
specialists and generalists is afundamental property of life and its evo-
lution, general mechanisms that determine niche breadth are poorly
understood” and quantification has proven challenging™.

Microbial niche breadth has been measured for specific aspects
of the environment (for example, temperature™'®, pH"” and nutri-
ent dependence’"). Niche breadth definitions that assess the full
n-dimensional niche space®® have been based on occurrence in envi-
ronmental samples. Rather than the theoretical fundamental niche,
microbial occurrence represents its empirical realized niche. Because

of complex interactions within microbial communities, the realized
niche canbe bothsmaller (for example, due to competition®) or larger
(for example, due to metabolic dependencies®). Previous studies
defined organisms that are present in many samples or predefined
habitats as generalists, and rare organisms as specialists?* >°, Based on
this definition, Sriswasdi et al.” suggested animportant evolutionary
role for generalist species in maintaining taxonomic diversity, with
generalists having higher speciation rates and persistence advantages
over specialists. Others defined the niche breadth of an organism by the
uniformity of its distribution across habitats®®, suggesting that com-
munity assembly of specialists is driven by deterministic processes,
whereas for generalists neutral processes are more important®>*°,
Notwithstanding these intriguing results, niche breadth studies based
on occurrence in microbiomes have been sensitive to biases due to
habitat definition and sample selection.

Microbiomes are sensitive biomarkers capable of detecting geo-
chemical gradients™, host health status***and metabolitesin agiven
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niche®*. We thus reason that the vast collection of tens of thousands
of environmental sequencing datasets that are available in the public
domain® could be used to implement an unbiased, data-driven and
comprehensive niche breadth definition, based on community simi-
larity between samples where microbial taxa occur. As such, we treat
community composition as a proxy for the realized niche of a micro-
organismthatreflects both the abiotic environment and the microbial
interactions within. Similar reasoning has been used to quantify the
niche range of eukaryotes without the use of external habitat defini-
tions™. In this view, organisms that occur in compositionally similar
samples are social specialists, as their niche is restricted to the same
local neighbours, and organisms that occur in compositionally dis-
similar samples are social generalists, as they are more flexible in their
interaction partners. Using community similarity as a substitute for
ecological range, we developed asocial niche breadth (SNB) score that
allowed us to quantify the social niche range for taxa at all taxonomic
ranks and assess strategies for specialization and niche range expan-
sion throughout the prokaryotic tree of life.

Results

SNB captures global heterogeneity in microbial communities
To compare the niche breadth of microbial taxa, we devised and exten-
sively benchmarked (Supplementary Information) an SNB score that
exploits the abundantly available meta-omics datasets derived from
diverse environments around the world (Fig. 1and Supplementary Data
1and?2).These microbiomes are taxonomically annotated with the same
MGnify pipeline”, which allows for a comparison of vastly different
environments, studies and experiment types (Supplementary Infor-
mation). First, we assessed the biome annotations of these datasets, as
provided by the dataset submitters. The annotations highlighted the
maindrivers of microbiome composition (Fig. 1d and Supplementary
Information), including salinity (t-distributed stochastic neighbour
embedding dimension1(t-SNE 1)) and host association (t-SNE 2)'%*4.,
The 22,518 samples covered a total of 140 annotated biomes that dif-
fered markedly inwithin-sample (o) and between-sample (B) diversity.
Annotated biomes with high mean a diversity, such as soils, had low 3
diversity (Fig. 1f), implying a relatively stable core community across
these high-diversity habitats.

Most samples from the same annotated biome are relatively simi-
lar, as reflected by alow (3 diversity. Nevertheless, annotated biome defi-
nitions are arbitrarily delineated and may be subject to human error.
For example, the plants biome includes both freshwater plants****
and seagrasses*, as well as macroalgae from kelp forests*® (Supple-
mentary Datal). Also, itis difficult to quantify the degree of similarity
between categorical biomesin abiologically meaningful way. We used
the observation that microbiomes are biomarkers®° and developed
SNB, which captures the compositional heterogeneity of samples for
which ataxonis found to quantify niche breadth.

We assume that the small subunit rRNA gene thatis queriedis a
proxy for the genetic content of a taxon that definesits traits. Specific
traits exist at all taxonomic ranks and determine their occurrence
across microbiomes®. Since the taxonomic annotations are based
on a reference taxonomy and the biosphere is relatively unexplored,
sometimes high-ranking taxa do not have low-ranking annotations
like species (Fig. 1e). We considered that members of ataxon are alive
and growing if the taxon represented a relative abundance of at least
1/10,000 of the prokaryotic reads in a sample, and thus ignored the
possibility of migration from other sources and the potential for dead
organic matter contributing DNA to the sequencing results*s. Next, we
defined SNB as the mean pairwise dissimilarity between these micro-
biomes. After benchmarking 150 different ecological dissimilarity
measures for their ability to separate the annotated biomes, we chose
mean pairwise dissimilarity based on the inverse Spearman’s rank cor-
relation of known taxa at taxonomic rank order to quantify SNB (Sup-
plementary Information). Thus, taxawithalow SNB score are foundin

samples with very similar microbial composition (social specialists)
and taxa with a high SNB score are found in dissimilar samples (social
generalists). Our approach accounts for database biases, as some
environments are much more frequently sampled than others (Fig. 1a
and Supplementary Information). Indeed, taxa that are detected in the
same number of samples or annotated biomes may have very differ-
ent SNB scores (Fig. 2a—c). Different from studies that investigate the
co-occurrence of taxa across samples***°, SNB quantifies the range of
communities thatataxoncanoccurin. SNBtreats eachsampleasalocal
niche andinfers that taxa that occur across highly differing communi-
ties are social generalists, while taxa that occur in similar communities
are social specialists. Since SNB is calculated when a taxon is present
over a detection limit of 1/10,000 reads, the relative abundance and
associated variability of a taxon’s distribution are observables and
can be associated with niche range rather than part of the definition,
asinref.28.

SNB throughout the prokaryotic tree of life

To investigate the distribution of social generalists and specialists
throughoutthe prokaryotic tree of life, we calculated SNB for taxa at all
ranks (Fig. 2d and Supplementary Data 3). For the vast majority of taxa,
the SNB score is lower than expected based on random permutations
(Fig. 2a-c), indicating that all microorganisms are social specialists
to some extent because they occurin anon-random subset of all sam-
ples. Exceptions to this rule include the high-ranking superkingdom
Bacteria and phylum Proteobacteria, which are widespread, occurring
in22,295and 22,211 of the 22,518 samples, respectively. While there is
aclear positive correlation between SNB and the number of samples
inwhichataxonoccurs (Fig.2a-c), very rare taxa such as Aminobacter
(five samples) and Methanimicrococcus (28 samples) still have a high
SNB (SNB = 0.56 and SNB = 0.51, respectively). Alternatively, some taxa
thatare found inmany samples have arelatively low SNB because these
samples are very similarin composition (for example, Phyllobacterium
(226 samples; SNB = 0.03) and Geminicoccus (473 samples; SNB = 0.09)).

The distribution of SNB scores differs per taxonomic rank.
High-ranking taxatend to have higher SNB scores than low-ranking taxa
(Fig. 2d,e), which intrinsically occur in a subset of the samples of their
parent taxa. High-ranking taxa can have high SNB scores either because
they contain subtaxa that are specialists in different communities or
because the subtaxa are also generalists. To compare taxa at different
ranks, we calculated a rank-specific modified z score (Fig. 2d and Sup-
plementary Data4), where positive z scores indicate that the SNB of the
taxonis higher thanthe median forits rank and the taxonis thusrelatively
generalist and negative z scores indicate that it is relatively specialist.
For example, the family Flavobacteriaceae and the genus Prevotella
are social generalists (with zscores of 2.02 and 0.61, respectively), but
their subtaxa are relatively specialized for their rank (median z score of
generain Flavobacteriaceae = —0.53; median z score of species in Prevo-
tella=-0.71). The family Lactobacillaceae on the other hand is generalist
(zscore =0.46) and itsgeneraare also generalists (medianzscore =1.73).
In addition, high-ranking taxa with high SNB scores often have more
subtaxa than high-ranking taxa with low SNB scores (Supplementary
Fig.16). Thissuggests that the diversity of taxa, as currently represented
by taxonomy, reflects their ecological range well. The four best-studied
phyla, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria,
which together cover 97% of cultured prokaryotic species®, are dominant
across awiderange of environments (Supplementary Fig.17) and have a
higher SNB than others (Fig. 2d).

There are many phyla that have low SNB scores and con-
tain few classes, orders and families compared with the dominant
ones described above. Subtaxa of these low-scoring phyla are thus
under-represented at the class, order and family ranks and we observe
that the distribution of SNB scores is more skewed towards social
specialism at the phylum rank (median SNB = 0.36) than at these
lower ranks (median SNB = 0.38-0.43; see Fig. 2d). Many phyla with
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Fig.1| A diverse and global microbial dataset. a, Samples were received from
vastly different annotated biomes and study designs. The numbersin
parentheses indicate the number of samples within the annotated biome.
Annotated biomes with fewer than 347 samples have been grouped as other.
For ahierarchical tree of allannotated biomes, see Supplementary Fig. 1b.

b, Geographical distribution of the samples. ¢, Total number of taxonomically
annotated reads per sample (n =22,518 samples). The box plot shows the
interquartile range and median. No samples with fewer than 50,000 reads were
selected. d, Samples from similar annotated biomes cluster together based on
taxonomic profile in a t-SNE visualization (perplexity = 500), with the same
ecological dissimilarity measure used as for SNB (namely, the Spearman’s rank

t-SNE1 o diversity

correlation coefficient (0.5 — (p/2)) of known taxa at taxonomic rank order). For
aPCoA visualization of the same data and the positions of all 140 annotated
biomes on the PCoA, see Supplementary Figs. 2 and 3, respectively. Most samples
from the plants biome were derived from seagrasses and macroalgae from kelp
forests. e, Taxa richness differs per annotated biome and taxonomic rank. The
low number of annotated species is a consequence of a relatively unexplored
biosphere. su., superkingdom; p., phylum; c., class; o., order; f., family; g., genus;
s., species. f, Annotated biomes with high mean a diversity have low  diversity,
whereas both low and high 3 diversity is found among annotated biomes with low
mean a diversity. freshw., freshwater; wetl., wetlands.

the Candidatusstatus have alow SNB compared with validly described
phyla (Supplementary Fig.17). The connection between the Candidatus
status and low SNB may reflect a discovery bias of these phyla where
widespread lineagestend tobe discovered and described sooner than
rare ones, although some candidate phyla are widespread (Supplemen-
tary Fig.17). Candidate phylamay require specific growth conditions,
which can be reflected in relatively stable specialized microbial com-
munities, consistent with their low SNB. Inaddition, several candidate
phyla, including the bacterial candidate phyla radiation and DPANN
archaea, may consist of obligate symbionts of specific hosts’. Whereas
it was recently shown that consortia of obligate symbionts can grow
onawiderrange of carbon sources than their individual members and
thus expand their metabolic niche?, the individual microorganismsin
these consortia are social specialists as they require specific partners
intheirlocal communities.

Taxa with high and low z scores are dispersed throughout the
prokaryotic tree of life (Fig. 2d), indicating that social specialization

and niche range expansion happened independently numerous times
inevolution. Phylawithrelatively specialized generainclude Proteobac-
teria (medianzscore =-0.07), Bacteroidetes (median z score =-0.26),
Actinobacteria (median zscore =-0.17), Cyanobacteria (median
zscore =—-0.72), Planctomycetes (median z score = —0.37), Acidobac-
teria (medianzscore =-0.47) and Chloroflexi (median z score = -0.17),
whereas Firmicutes, Tenericutes and Euryarchaeota have genera that
arerelatively generalist (median z scores of 0.43,1.18 and 1.06, respec-
tively). Taxawithrelatively low SNB for their ranks include known spe-
cialists such as the genus Christensenella” (z score = -1.01), but also the
family Pelagibacteraceae (z score = -1.94) and genus Prochlorococcus
(zscore =-1.25), which hold some of the most abundant organisms on
Earth®*%, These taxa, known for their highly streamlined genomes®*,
are found in aquatic samples with a uniform microbial composition
(Supplementary Fig. 5b) and thus have a low SNB. While the family
Pelagibacteraceae contains both marine and freshwater representa-
tives (in the SAR11 and LD12 clades, respectively®), in our dataset it
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Fig.2|SNB throughout the prokaryotic tree of life and across samples.

a-c, Relationship between SNB and the number of samplesin which a taxonis
found, coloured by rank (a), number of annotated biomes (b) and normalized
Shannon entropy of relative abundance (c). The grey bars on top show the range
of SNB scores of imaginary taxa that were present in100 randomly picked subsets
of samples of the specific size. The locations of some outlier taxa are indicated.
Numbers within brackets indicate the number of taxa measured at each rank.

The normalized Shannon entropy of relative abundance across samplesis
represented as shading for each taxonin c. Both colour coding and the size of the
markers represent the Shannon entropy. Note that higher entropy is indicated

with smaller markers. Relative abundance across samples was more constant
for social specialists than for social generalists. Ca., Candidatus. d, SNB of taxa
throughout the prokaryotic tree of life. SNB scores are standardized per rank
based on the median absolute deviation (modified z scores), with low z scores
representing taxa that are relatively specialist for their rank and high z scores
representing taxa that are relatively generalist. The distributions of SNBs at
different taxonomic ranks are shown as histograms, for which the numbers on
the distributions show the number of taxa at that rank. The most diverse phyla
are colour coded. e, Distribution of SNBs within samples at different taxonomic
ranks. The adiversity of asample was calculated on the rank order.

is found primarily in marine samples (Supplementary Fig. 5b). This
highlights that future sampling of even more habitats, combined with
more sensitive detection methods, could change or refine SNB scores
for some taxa. The genus Roseobacter, whose members are consid-
ered marine metabolic generalists with large genomes and a versatile
metabolism*®**, is found in more diverse samples (Supplementary Fig.
5b) and has an SNB closer to the median of allgenera (z score = -0.30).
At the generalist end of the spectrum are taxa that are ubiquitously
present in our dataset (Fig. 2a,b), such as the genera Acinetobacter
(zscore =2.30) and Pseudomonas (z score = 2.33; however, this genus
may be ubiquitous in part because it is a common contaminant of

DNA extraction kits*®) (Supplementary Fig. 5b). The family Lachno-
spiraceae (zscore =1.74; found in over half of all samples; n=11,887)
and its genera (median z score = 0.79)—obligate anaerobes that were
previously regarded as habitat specialists”’—also have a high SNB for
their ranks, highlighting the heterogeneity of the communities in
which they are found.

Generalists dominate, whereas specialists are stable but scarce
Next, we set out to find patterns in SNB. We focused our analysis on
generabecause they balance a high taxonomic resolution with agood
representation in the dataset (Fig. 1e) and show a broad range of SNB
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across all samples and across all families with at least five genera. Genome sizes

Feature is positively correlated with social generalists

are givenin base pairs (bp) and numbers of coding sequences (CDS). Genomic
measures with annotations to the right are in numbers of unique functions for
that specific functional universe. Genome size estimates for a genus are based
onthe genomesize of its species, which is defined as the mean size of all strains
for base pair and coding sequence measures, and as the majority set of functions
of all strains for the functional universe measures. Pan-genome openness is the
total pan-genome size divided by the mean genome size. Correlations with time
to the last common ancestor (LCA) and first common ancestor (FCA) are based on
the TimeTree database. Numbers to the right of violins show sample sizes. Lines
within violin plots show the interquartile range and median. Supporting data are
available in Supplementary Data 6 and 7. N., number; s.d., standard deviation.

values (Fig. 2d,e), allowing for acomprehensive investigation of niche
range strategies.

Ithasbeen suggested that generalists, beingJacks of all trades, can
be masters of none'’, while specialists are adapted to become dominant
within their habitats under stable conditions*’. The niche range may
thus reflect a trade-off, where specialists gain local dominance at the
expense of ecological versatility. Alternatively, computational models
of microbial metabolism have suggested that metabolically flexible
generalists have faster growth rates than specialists®’. We correlated
SNB with local abundance and found that social generalists are domi-
nant in most annotated biomes, as indicated by a consistent positive
correlation across samples, with exceptions including marine host
organisms such as corals, seagrasses and macroalgae (Fig. 3a). SNB
positively correlates with abundance within samples, meaning that
social generalists locally outcompete their more specialist neighbours,
disputing the expected trade-off mentioned above. While these are
general results based on correlations across samples, an exception is
Prochlorococcus, which has alow SNB but a high local abundance (mean
relative abundance = 0.63%). This genus is among the top 10% of the
mostabundant genera (Supplementary Data3) and in the majority of its
samples belongs to the top 20% of generain terms of local abundance.
Local dominance of habitat generalists has previously been observedin
specific environmental settings such as highly dynamic sandy ecosys-
tems®'. Some soil microorganisms are both abundant and ubiquitous®
and only ~-500 dominant phylotypes (that s, 2%) represent >40% of soil
bacterial communities®. Our results show that these observations
reflect ageneral pattern wherein generalists are dominant.

Whereas samples are typically dominated by social generalists,
we find that the relative abundance of generalists is more variable
across samples than that of specialists, whose abundance s relatively
stable. This is evident when comparing the niche range of organ-
isms that locally co-occur within samples, where social generalists
have a higher variability of relative abundance than social specialists

(Fig. 3a). Itis also evident for taxa throughout the prokaryotic tree of
life, where social specialists have an even relative abundance while
taxawith a high variability of relative abundance are social generalists
(Fig.2c).Even Prochlorococcus, while having a high local dominance for
asocial specialist, stillhas an even abundance across samples (normal-
ized Shannon entropy of relative abundance = 0.86).

Our data counter the classic Jack of all trades argument, which
suggests that specialists should have a local fitness advantage at the
expense of ecological versatility. We explored possible explanations for
thelocal dominance of generalists over specialists and their relatively
variable abundance. First, although generalist genera contained more
species than specialist genera in the total dataset (Supplementary
Fig.18a), we did not find evidence that they also contain a higher num-
ber of species within samples (Supplementary Fig.18a), but note that
onlyasmallfraction of genera could be taxonomically classified onthe
species rank (Supplementary Fig. 18b). Alternatively, SNB may reflect
the classical distinction between rstrategists and K strategists®*. Social
specialists have alow but constant abundance near carrying capacity
(K'selected) and some (but not all) social generalists are opportunistic
taxa that reach high relative abundance when circumstance permits
(rselected). To test this hypothesis, we compared the SNBs of microor-
ganisms with their predicted maximal growth rates based on the EGGO
database® (Fig. 3a) and confirmed that, within samples, social general-
ists have shorter doubling times than social specialists. These results
support the idea that generalist genera include more opportunistic
growers than specialist genera.

SNB reflects genomic heterogeneity

Next, we used our dataset to assess the suggestionthat social generalists
have large genomes that encode many functions, reflecting a versatile
metabolism that allows them to colonize diverse habitats®*?’. For exam-
ple, bacteriathat are foundina diverse range of habitats encode more
extracellular proteins than bacteria that are restricted to few habitats®,
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and habitats with temporal variation may select for larger genomes®®.In
contrast, specialization may be associated withareductionin genome
size duetoalossof unnecessary genes (as hasbeen observed inmem-
bers of the phylum Planctomycetes transitioning from soil to freshwater
habitats®’) or genome streamlining®® (which is common in oligotrophic
marine waters®”’°). Genomic versatility of high-ranking taxa, reflected
in a large pan-genome’’?, may either result from small yet diverse
genomes in individual subtaxa (open pan-genome) or genomically
versatile yet functionally similar strains (closed pan-genome). We set
out to identify genomic features associated with SNB using publicly
accessible genome sequences from the Pathosystems Resource Inte-
gration Center (PATRIC) database” (Supplementary Data 5). These
featuresinclude the mean genomessize of all speciesin the genus, the
variationinthese genomesizes, the pan-genome ssize (that is, the total
number of functions present in allgenomes) and the pan-genome open-
ness (calculated as the pan-genome size divided by the mean genome
size). The PATRIC database contains genome sequences for 1,704 of
the 2,133 generathat weinvestigated in our global microbiome dataset
(Supplementary Data 3). Although these genomes probably belong to
differentstrains or species than those observed in MGnify, we decrease
theinconsistenciesin our analysis by assessing their genomic features
atthe genus rank.

We compared genera within samples (Fig. 2e) for an ecological
view and within their taxonomic families for an evolutionary view.
Both perspectives gave qualitatively similar results (Fig. 3b), indicating
that genomic signatures of SNB (see below) are generalizable across
habitatand phylogeny. Although the number of samplesis larger than
the number of families, the correlation between genomic features and
SNB is more consistent within samples than within families, possibly
suggesting that ecology is a stronger driver of (pan)-genome evolution
than phylogenetic history™.

When comparing taxa across all samples, we found no consist-
ent correlation between SNB and genome size, whether measured
in the number of nucleotides, genes or unique functions (Fig. 3b).
We did, however, observe that the genomes in generalist genera are
more variable in size than the genomes in specialist genera, as seen
intheir standard deviation. Moreover, the pan-genomes of generalist
genera contain more functions, in line with theoretical models that
suggest that the ability to migrate to new niches is associated with
pan-genome size”. The pan-genome size of microorganisms may be
positively associated with effective population size”, which may be
larger for social generalists. The same study found that rapidly growing
microorganisms have large effective population sizes, inline with our
earlier discussed observation that opportunistic growers are general-
ists. Finally, the pan-genomes of social generalists are more open than
those of social specialists. These results did not depend on the higher
number of species in generalist genera (Supplementary Fig. 19).

In conclusion, species in specialist genera are genomically more
similar than species in generalist genera, which is reflected in more
similar genome sizes and less variation in functions, and an associ-
ated smaller and more closed pan-genome than generalist genera. We
hypothesize that the observed genomic flexibility allows members of
generalist genera to rapidly acquire the genes needed to thrive in a
given local environment’”’®, with their higher growth rate potential
allowing them to outgrow specialists. The correspondence between
genomic heterogeneity and the heterogeneity of communities (SNB)
confirms the strong association between ecological and genomic
diversification. To further explore this diversification we correlated
SNBwith clade age based on the TimeTree database’. It was previously
suggested that habitat generalist species are evolutionarily younger
than habitat specialist species”. Our data do not allow analysis of these
trends at the species rank, but at the genus rank we found that social
specialists are younger than generalists, as indicated by a consistent
positive correlation between SNB and clade age (Fig. 3b). Together,
these results support a model of continuous diversification whereby

old generalist clades that share a diverse pan-genome may invade new
niches, leading to the emergence of specialized subtaxa.

Two contrasting genomic niche range strategies

As discussed above, SNBs of genera were not consistently associated
with mean genome size. However, we did observe a habitat-dependent
relationship between genome size and social niche range (Fig. 4a).
We found two contrasting strategies that broadly depended on the o
diversity of the samples. In samples with low local diversity (a diver-
sity <11; Fig. 4b), including most animal-associated and saline habitats,
there was amean positive correlation between genome size and SNB. In
contrast, insamples with high local diversity (a diversity > 11; Fig. 4b),
including most free-living non-saline habitats and the rhizosphere, the
correlation was often negative. Because databases contain a majority
of samples from animal-associated and marine habitats with relatively
low adiversity (Fig. 4c), and because genome size estimates are often
based on cultivated microorganisms that differ markedly from envi-
ronmentally derived genomes®, previous suggestions of a positive
correlation between genome size and niche range may have overlooked
the contrasting correlations.

In habitats withlow a diversity, social generalists tend to have large
genomes that may encode the functions needed to utilize many differ-
entresources, whereas social specialists (low-diversity specialists) have
the smallest genomes known (Fig. 4d,e). The coding density—a signa-
ture of genomic streamlining®®*—is significantly lower in low-diversity
specialists thanin social generalists (P < 0.003; one-tailed t-test; meas-
ured asthe number of coding sequences per base pair, with generalists
defined as SNB > 0.35 (697 genera) and low-diversity specialists defined
as present in samples with a mean a diversity <11 (552 genera)). This
suggests that genome streamlining is not the common route to genome
reduction in low-diversity specialists. Instead, their small genomes
couldreflect specialization to habitat-specific metabolites and the loss
of genes through drift®. In addition, cooperating metabolic specialists
could supplement each other’s nutrient requirements® or they could
depend on the co-occurring generalists.

Although the genomes of social generalists are large compared
withthose of low-diversity specialists (Fig. 4d), the genomes insamples
with low a diversity are stillmoderate in size compared with the large
genomesinsampleswith high a diversity (Fig. 4e). Samples with higha
diversity contain many specialists (Fig. 2e) and their high richness may
beadriver of specialization through competitive exclusion, as has been
suggested to explainanegative correlation between niche breadth and
local diversity in eukaryotes®. There is negative correlation between
genomessize and social niche range in samples of high a diversity, where
social specialists (high-diversity specialists) have larger genomes than
co-occurringsocial generalists (Fig. 4b). The largest known prokaryotic
genomes belong to high-diversity specialists (Fig.4d); for example, the
genus Polyangium, with amean genome size of 12.7 megabases and an
SNB of 0.21 (zscore = -1.36). Selection may favour large genomes in
habitats with diverse but scarce nutrient availability where slow growth
is no disadvantage, such as in soils®>*>, Moreover, in contrast with the
earlier-mentioned cooperative taxa, microorganisms in competitive
consortia carry many metabolic functions®. High-diversity specialists
may thus reflect acompetitive metabolism. Social generalistsin these
habitats may use metabolites that areirregularly available and rapidly
depleted, consistent with their opportunistic nature and variable
occurrence. Alternatively, they could exploit metabolic byproducts
generated by metabolic specialists'®. Regardless of the mechanism, it
appears that adaptation of high-diversity specialists to their habitats
by genome expansion decreases their competitiveness in differing
communities.

The pan-genomes of social specialists and generalists
To further characterize generalist and specialist microorganisms, we
explored differences in genomic content by dividing all generainto
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ontherank genus plotted on the t-SNE (Fig. 1d). Positive values indicate an
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and mean genome size of all samples in a specific bin of a diversity. The shaded
areas show the interquartile range of the regression lines. e, Violin plots depicting
the distribution of mean genome size of the top 25% social specialist taxa (left)
and top 25% social generalist taxa (right) within a sample across all samples

or those from the annotated biomes with the most samples. The annotated
biomes are arranged according to mean a diversity. The numbers at the top of
the violin plots show the sample size. The lines within the violin plots show the
interquartile range and median. Supporting data relating to aand b are available
inSupplementary Data 6.

two groups based on SNB (Fig. 5a) and performing gene set enrichment
analysis (GSEA)®* on the genus-level pan-genomes. We performed two
GSEAs: one with all genera comparing social specialists with social
generalists (Fig. 5b and Supplementary Data 8); and one comparing
low-diversity specialists with high-diversity specialists (Fig. 5c and
Supplementary Data9).

The functions enriched in social generalists (false discovery
rate (FDR) < 0.1; Fig. 5b) included associations with genome fluidity,
such as (pro-)phages and plasmid-related functions, highlighting the

mechanisms by which they keep an open pan-genome. Other gener-
alist functions reflected an investment in species-species interac-
tions, observation and response to a fluctuating environment. Of
the 33 generalist-enriched functions, 13 were related to metabolism,
including functions associated with secondary metabolites, such as
coenzymeF ,,, (refs. 25,85). We also found quorum sensing and biofilm
formation, adhesion, locomotion via the flagellum, and functions
concerningthe cell envelope and transport across it (S-layers, protein
secretion systems and siderophores) to be generalist enriched. Finally,
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pathogenicity islands could point to opportunistic interactions with  Cyanobacteria, such asheterocyte formation, whichisinvolved innitro-
eukaryotic host organisms. genfixationinoneevolutionary lineage of the phylum®. Most functions

Fewer genomic functions were enriched in social specialists that were enriched in specialists also occurred in the pan-genomes
than in social generalists (Fig. 5b). Specialist-enriched functions of many generalist genera (Fig. 5b), suggesting that the smaller
include energy-related processes and some specifically related to  pan-genome size of social specialists does not involve consistent loss

Nature Ecology & Evolution | Volume 7 | May 2023 | 768-781

775


http://www.nature.com/natecolevol

Article

https://doi.org/10.1038/s41559-023-02027-7

of functions. The absence of widespread specialist functions highlights
that there are many ways to be a specialist. There is not a single type
of social specialist, but instead many different specialists exist, each
with a functional arsenal that fits its niche.

Comparing low-diversity specialists with high-diversity special-
ists (Fig. 5¢), we observed several specific metabolic adaptations to
these different types of habitat. Half of the 60 enriched functions in
the GSEA were related to metabolism. High-diversity specialists have
more enriched functions than low-diversity specialists. For example,
functions associated with stationary phase, dormancy and persistence
areenrichedin high-diversity specialists, consistent with slow growth
and persistencein soil. Moreover, functions related to lipid metabolism
(forexample, steroids and hopanoids, (unsaturated) fatty acids, sphin-
golipids and phosopholipids) are enriched in high-diversity specialists.
Low-diversity specialists, like social generalists, also contain some
functions associated with genome fluidity (for example, transposable
elements, (pro-)phages and plasmid-related functions), suggesting
that their genomes, although small in size, may still be in flux.

Discussion
We present an SNB score for microbial taxa that is based on the com-
munity similarity of the samples in which they occur. Integrating
information from over 22,000 samples, SNB represents a global and
comprehensive view on niche range throughout the prokaryotic tree
of life. With continued and ever-deeper sequencing efforts and associ-
ated expansion of public databases, the environmental and taxonomic
resolution of our picture of the microbial world increases, as does our
understanding of the processes shaping microbial niche breadth. In
contrast with earlier suggestions, we found that most habitats are domi-
nated by generalists. Specialists occur at low but stable abundances.
Generalist genera are older than specialist genera and have large
and open pan-genomes with which they have adapted to different
habitats. Individual genome size and SNB are differentially related
depending on the diversity of the habitat, with social generalists hav-
ing larger genomes than social specialists in low-diversity habitats
and smaller genomes than social specialists in high-diversity habi-
tats. High-diversity specialists may need a large genetic repertoire as
they are continually exposed to many different interaction partners
and possibly high environmental variability at small spatial scales.
Low-diversity specialists have decreased genome sizes due to theloss
of unnecessary functions. Large genomes may thus reflect increased
environmental versatility in two different settings. In habitats with low
local diversity, generalists arerelatively versatile, as they can survivein
arange of different communities. In habitats with high local diversity,
specialists are relatively versatile, allowing themto persistin their local
complex community. Since social generalists and social specialists
are dispersed throughout the prokaryotic tree of life, these genomic
adaptations have repeatedly occurred and represent fundamental
eco-evolutionary processes.

Methods

Sample selection

We downloaded taxonomic profiles deposited in the MGnify microbiome
resource” on20 August 2019. MGnify contains taxonomic profiles based
on studies that amplify taxonomic marker gene regions (amplicons),
shotgun metagenomics studies and shotgun metatranscriptomics
studies. We selected taxonomic profiles that were constructed with the
pipeline 4.1version of MGnify and based on the small subunit ribosomal
RNA gene, contained atleast 50,000 taxonomically annotated reads at
the rank superkingdom and had <10% of those reads classified as eukary-
otic. We randomly picked one taxonomic profile per sample in cases
where there were multiple. To balance the large over-representation of
several environmentsin the database (for example, humangut, soiland
ocean), at most 1,000 samples were randomly selected per annotated
biome. The 22,518 selected samples (Supplementary Data 1) spanned

140 different annotated biomes across a wide geographical range and
consisted of amplicon, metagenomic, metatranscriptomic and unknown
experiment types (Supplementary Fig.1).

Weremoved eukaryotic classifications including those classified
as mitochondria and chloroplast from the taxonomic profiles, as well
as those not classified at the taxonomic rank superkingdom. When
relative abundances were used, they were calculated as the number of
reads assigned to a taxon divided by the total number of prokaryotic
reads, unless otherwise stated in the section ‘Ecological dissimilarity
measures’.

Ecological dissimilarity measures

We calculated ecological dissimilarity between all sample pairs based
on their taxonomic profiles (compositional dissimilarity) at different
taxonomic ranks using ten commonly used ecological measures: Aitch-
ison distance; Bray-Curtis dissimilarity; Sgrensen-Dice coefficient;
Jaccard distance; weighted Jaccard distance; Kendall’s 7, coefficient;
Pearson correlation coefficient; Spearman’s rank correlation coeffi-
cient; unweighted UniFrac distance; and weighted UniFrac distance.
Some are true distance or dissimilarity measures, whereas others can
bereadily converted to ascale from 0-1, with 0 being compositionally
similar. The three correlation measures were converted to dissimilarity
with the formula 0.5 — (coefficient/2) and we used 1 - Sgrensen-Dice
coefficient.

Taxathat were represented by fewer than five readsin the sample
were removed before dissimilarity calculations. This was done per rank;
therefore, the total number of included reads for asample could differ
dependingontherank considered. To ensure that the pairwise calcula-
tions were based on the deepest attainable resolution, we decided on
alowabsolute read cut-off as opposed to arelative abundance cut-off.
For each pairwise calculation, we only included taxa that were present
in the union of the two samples, thus avoiding the vast scarcity (that
is, the presence of zeros in the abundance matrix) often associated
with microbiome studies. This scarcity is especially likely because our
study compares many different habitats. Those taxa that were only
present in one of the samples were given an abundance of zero in the
other for all ecological dissimilarity measures except the Aitchison
distance, which cannot handle zeros. For the Aitchison distance, a
pseudocount was added. This pseudocount differed per pair of samples
and was based on the lowest relative abundance that could be reached
by anundetected taxon (namely, oneread inthe sample with the high-
est number of taxonomically annotated reads). We defined N, as the
sum of reads represented by the taxain sample 1and N, as the sum of
reads represented by the taxainsample 2, with N; > N,. Apseudocount
of one read was added to all taxa in sample 1 and a pseudocount of
1/N; x N,reads was added in sample 2.

We calculated the ecological dissimilarity measures at all ranks up
to phylum with three different methods for dealing with unknownsin
the data. For the UniFrac distances, we used a different method (see
below).Forapproach (1), we considered any taxon on the specific rank.
Ifthere was no classification at that rank but the taxon contained lower
rank classifications, the first classified rank below was used. If there was
no classification at the specific rank and no lower rank classification,
we used the first classified rank above. For approach (2), we exclusively
considered taxathat were classified at the specific rank. Taxa that were
classified at lower or higher ranks alone were removed. For approach
(3), we treated taxa that were not classified at the specific rank but did
have lower rank classifications the same asin approach (1). If taxa had
no classification at the specific rank or at alower rank, we used the first
classified rank above, unless the taxon was present inboth samples. In
this case, the taxon was removed. The rationale is that for these taxait is
unknownwhether they are the same or different for the rank of interest.

UniFracdistance takes relatedness between taxainto account. We
used distance across the taxonomic tree as ameasure for relatedness,
with the distance between successive ranks defined as 1. We used the
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EMDUnifracimplementation®, whichis suited for samples with many
unknowns because it allows for the placement of taxa at different ranks
inthetree. UniFrac distances were calculated at the ranks species, fam-
ily and class. For taxathat had no classification at the specific rank but
did have alower rank classification, we used an artificial classification
based on the first classified rank below, ensuring uniqueness of the
taxon and appropriate distance to the root. Taxa that did not have a
classification at the specific rank or a lower rank were placed at the
first classified rank abovein the tree.

For the ecological dissimilarity calculations that took the number
ofreadsintoaccount, the numbers of reads per taxon were converted to
relative abundance values by dividing by the sum of reads represented
by the taxainthe sample (for example, for Bray—Curtis dissimilarity cal-
culations and the addition of pseudocounts before Aitchison distance
calculations). As explained above, the taxa considered inasample may
have differed per method of dealing with unknowns, and so may the
relative abundance of a taxon.

Because the taxonomic profiles contain many unknowns at lower
ranks, pairwise comparisons are sometimes based on only few taxa.
For each rank and method of dealing with unknowns, samples were
removed that did not contain any taxon at that rank. If the pairwise
comparison was based on one taxon, we set the dissimilarity to 0. We
removed samples from the correlation measures whose correlation
coefficient with itself could not be calculated.

Permutatational multivariate analysis of variance
Permutatational multivariate analysis of variance pseudo F statis-
tics were calculated for all ecological dissimilarity measures with the
scikit-bio version 0.5.5 implementation (http://scikit-bio.org/). As
predefined groups, we used either the annotated biomes of the sam-
ples or their experiment types. P values were based on 99 random
permutations and we calculated the coefficient of determination (R?)
with the formula:

F

R =
F+

?|7
Lo

were Fisthe pseudo F statistic, Nisthe sample size and Gis the number
of groups.

Diversity measures

Diversity measures were calculated for the subset of samples belong-
ing to an annotated biome and in which a taxon was found. If a subset
contained fewer than three samples, it was excluded from analysis. Taxa
were removed whose relative abundance was less than 1/10,000. We
used approach (2) to deal with unknowns, as explained in the section
‘Ecological dissimilarity measures’.

Zeroth-order a diversity (that is, richness—the mean number of
taxa found in a set of samples) was calculated for all ranks. Zeroth-,
first- and second-order a diversity (7D,) and B diversity (“D;) were
calculated on the taxonomic rank order and based on relative abun-
dances, with 7D defined as the total effective number of taxa (7D,)
divided by D,. 9D, was calculated based on the summed relative abun-
dance of the individual samples. For the first-and second-order diver-
sity measures, two samples were excluded that did not contain any
classification at order rank after the relative abundance threshold.

When the terms « and 3 diversity are used, we refer to first-order
diversity measures on the rank order unless otherwise stated. For
amore in-depth discussion of these diversity measures, see ref. 88.
The Shannon entropy and Gini-Simpson index, which were used for
diversity calculations, were calculated with the scikit-bio version 0.5.5
implementation.

Local dominance and Shannon entropy across samples
For each taxon, we calculated local dominance and Shannon entropy.
Local dominance was defined as the mean relative abundance across

all samples in which the taxon was found. Shannon entropy (base €)
was used as a measure for the randomness of its relative abundances
across these samples (N) and was normalized by dividing by In[N].

SNB definition
SNB was defined as the mean of the pairwise dissimilarity between the
samplesin which a taxon was found, n:

SNB = Z,,';l Z;Z:l dij’ ’#J
n2z-n

with the dissimilarity d; based on the Spearman’s rank correlation
coefficient (0.5 — (p/2)) on the rank order with method (2) for dealing
with unknowns (see the section ‘Ecological dissimilarity measures’). A
taxonwas considered presentinasampleifithad arelative abundance
of atleast1x 107, A taxon with a low score was thus found in samples
with similar taxonomic profiles (social specialists) and a taxon with a
high score was found in dissimilar samples (social generalists). Taxa
that were presentin fewer than five samples were removed from analy-
sesunless otherwise stated.

To benchmark SNB, we also calculated SNB with different detec-
tion thresholds of 1x 107 and 1 x 107°. SNB was moreover calculated
forimaginary taxa (iSNB) that were presentinall samples froma given
annotated biome, in half of the samples froma given annotated biome
(100 random permutations per annotated biome) and in all samples
from pairs of annotated biomes. In addition, iISNB was calculated for
randomly picked sets of samples of equal size to the encountered taxa
(100 random permutations per sample size). Lastly, we calculated SNB
forreal taxaonly based on the marine and human hierarchical subsets
ofthe samples.

Selection of genomes

We downloaded allgenomes from the PATRIC genome database” that
had a quality marked as good and were not plasmids on 14 November
2019. We only included genomes for which we had a valid taxonomy ID
in our NCBI taxonomy®’ files that were downloaded on the same date.
PATRIC containsidentical genomes with different identifiers. We identi-
fied replicate genomes based on concatenated DNA sequences and
concatenated sorted DNA sequences and removed allbut one. In cases
whereidentical genomes had different taxonomic annotations, all were
discarded. Completeness and contamination estimates were generated
with CheckM version 1.0.7 (ref. 90) in the lineage-specific workflow.
Weexcluded genomes for which completeness — 5 x contamination < 70.
Thefinalselection consisted of 225,101 prokaryotic genomes represent-
ing 34,304 species, fromboth cultures and environmental sequencing
projects (Supplementary Data5).

Inferences about (pan)-genome size and genomic functions (see
below) and number of subtaxa were made at all taxonomic ranks and
reconstructions at higher ranks were based on lower-rank taxa in the
PATRIC database that were not always present in the MGnify dataset.

Genome size estimates and GC content

Genomesize (innumber of base pairs and number of coding sequences)
and GC content were obtained from the metadatain the PATRIC data-
base. We corrected genome size estimates by taking completeness and
contaminationinto account, viamultiplication with ascaling factors:

.o 100
completeness + contamination

For eachmeasure including the number of coding sequences per
million base pairs, we reconstructed species by averaging the values
of its genomes. For higher ranks, mean values were calculated for all
species belonging to the taxon. Some high-ranking taxa containmany
low-ranking taxa from the same taxonomic group, suchas genus or fam-
ily. To correct for this over-representation and possible skew towards
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the values of these taxa, we also calculated mean values by averag-
ing over the taxonomy at all ranks (taxonomy-corrected values). For
example, the size of a family is the mean of the sizes of its genera and
the size of a genus is the mean of the sizes of its species. These values
were calculated for the ranks family and higher and are available in
Supplementary Data5.

Genome functions

Functional profiles of the genomes were created based on the PAT-
RIC annotations of coding sequences for three functional universes:
subsystems, gene ontologies and pathways. For gene ontologies, the
profiles were based on the exact terms found in the annotation files,
whereas for subsystems we made different profiles for the name and
subclass level of the hierarchy. Genomes with <20 unique functions
were discarded from further analyses for subsystem names, gene
ontologies and pathways. For the included list of genomes in each
analysis, see Supplementary Data 5.

Functional genome size was defined as the number of unique
functions presentin aspecies. A function was considered presentina
speciesifatleast 50% of the genomes with this species annotation con-
tained it in the PATRIC database. Mean functional genome sizes were
calculated for all taxa, as well as the standard deviation. Pan-genomes
were defined at all ranks as the total set of unique functions presentin
the genomes of a taxon.

Pan-genomes can be open or closed, meaning that they can be
more or less susceptible to changes in gene content”’%, We devised a
score that represents pan-genome openness for all ranks higher than
species. Pan-genome openness was defined as the total pan-genome
size divided by the mean pan-genome size of a species. Because taxa
withmany subtaxa tend to have large pan-genomes, we also calculated
pan-genome features for a random subset of three daughter species
(1,000 random permutations per taxon) to correct for this effect of tax-
onomy. This measure thus reflects how many functions are on average
added tothe pan-genome by including two more species. Permutated
measures were calculated for all taxa with at least three species.

GSEA of pan-genomes

To detect functions that were significantly enriched in social special-
istsand generalists, we deployed GSEA®** based on the pan-genomes of
genera. We performed a GSEA on all generasorted by SNB to compare
specialists with generalists, and on specialist genera (SNB < 0.35) sorted
by adiversity to compare low-diversity specialists with high-diversity
specialists. We used the classical Kolmogorov-Smirnov statistic for
the enrichment score (p = 0). Enrichment score normalizations and
Pvalues werebased on100,000 random permutations of the gene set.
Multiple hypothesis correction was carried out viathe FDR as suggested
inref. 84. GSEA computations were done withamodified version of the
algorithm.py script from GSEApy version 0.7.3.

Growthrate and clade age estimates

We downloaded the maximal growth rate predictions of Ref-

Seq genomes from the EGGO database® and defined species- and

genus-rank maximal growth rates as the mean of their genomes.
Clade ages were based on the TimeTree database’. Times to the

first and last common ancestor were extracted from the species rank

phylogenies of bacteria and archaea using ete3 version 3.1.1 (ref. 91),

Software packages used for calculations and visualizations

Calculations were done with the Python 3 standard library, NumPy*>
and the SciPy library® unless otherwise stated. Visualizations were
done with Python 3 and Matplotlib® in JupyterLab (https://jupyter.
org/), with the use of NumPy, pandas® and seaborn (https://seaborn.
pydata.org/). Principal coordinates analysis (PCoA) was performed
with the scikit-bio version 0.5.5implementation. t-SNE was performed
with scikit-learn version 0.21.3 (ref. 96). Samples were drawn on the

world map with Cartopy version 0.17.0 (http://scitools.org.uk/cartopy/)
using Natural Earth data (https://www.naturalearthdata.com). The
taxonomic tree was visualized with iTOL®”” and the hierarchical tree of
annotated biomes was visualized with ete3 version 3.1.1 (ref. 91).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All of the data analysed during this study are included in this article
and Supplementary Data 1-9 or available in public repositories. The
selected samples from the MGnify resource (https://www.ebi.ac.uk/
metagenomics/) are described in Supplementary Data 1. The cleaned
taxonomic profiles based on these data are available in Supplemen-
tary Data 2. The selected genomes from the PATRIC database (https://
www.bv-brc.org/) are described in Supplementary Data 5. Measures
derived fromthe PATRIC genomes and the EGGO (https://github.com/
jlw-ecoevo/eggo) and TimeTree (https://timetree.org/) databases are
availablein Supplementary Data 3.

Code availability

All of the code used for this manuscript is available from Zenodo at
https://doi.org/10.5281/zenodo.7651594. A stand-alone script to cal-
culate SNBis available from https://github.com/MGXlab/social_niche_
breadth.
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Policy information about availability of computer code

Data collection  The MGnify API (https://www.ebi.ac.uk/metagenomics/api/latest/) assessed via Python 3 using the jsonapi_client library (https://github.com/
gvantel/jsonapi-client).

Data analysis CheckM v1.0.7; iTOL; Python 3 using the following libraries: Numpy, Scipy, matplotlib, pandas, seaborn, scikit-learn v0.21.3, EMDUnifrac,
scikit-bio v0.5.5, GSEApy v0.7.3, ete3 v3.1.1, Cartopy v0.17.0.
All custom code used for this manuscript is available on Zenodo at DOI: 10.5281/zenodo.7651594. A stand-alone script to calculate SNB is
available on https://github.com/MGXlab/social_niche_breadth.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data analysed during this study are included in this article and its Supplementary Data Files, or available in public repositories. The selected samples from the
MGnify resource (https://www.ebi.ac.uk/metagenomics/) are described in Supp. Data File 1. The cleaned taxonomic profiles based on this data are available in
Supp. Data File 2. The selected genomes from the PATRIC database (https://www.bv-brc.org/) are described in Supp. Data file 5. Measures derived from the PATRIC
genomes, and the EGGO (https://github.com/jlw-ecoevo/eggo) and TimeTree (https://timetree.org/) database are available in Supp. Data File 3.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for
sharing of individual-level data, provide overall numbers in this Reporting Summary. Please state if this information has not
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |:| Behavioural & social sciences |X| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Generalists can survive in many environments whereas specialists are restricted to a single environment. Although a classical concept
in ecology, niche breadth has remained challenging to quantify for microbes because it depends on an objective definition of the
environmental conditions. Here, by defining the environment of a microbe as the community it resides in, we integrated information
from over 22 thousand environmental sequencing samples to derive a quantitative measure of the niche, which we call ‘social niche
breadth’. At the level of genera, we explored niche range strategies throughout the prokaryotic tree of life. We found that social
generalists include opportunists that stochastically dominate local communities, while social specialists are stable but low in
abundance. Social generalists have a more diverse and open pan genome than social specialists, but we found no global correlation
between social niche breadth and genome size. Instead, we observed two distinct evolutionary strategies, where specialists have
relatively small genomes in habitats with low local diversity, but relatively large genomes in habitats with high local diversity.
Together, our analysis shines data-driven light on microbial niche range strategies.

Research sample 22,518 selected from the MGnify database.
Sampling strategy A maximum of 1,000 random samples per biome annotated with pipeline version 4.1 of MGnify.

Data collection MGnify API.
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Timing and spatial scale  2019-08-20

Data exclusions None

Reproducibility We only used publicly available data.

Randomization Not applicable, because we analysed the full set of environmental sequencing datasets together.

Blinding Not applicable, because our data-driven approach was specifically designed to avoid interpreting data according to categorical

annotations, which we show in the paper are both arbitrary and redundant.

Did the study involve field work? [ yes No
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

X X X X X X
Oooodod
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