Abstract
Sexual dimorphism is one of the most prevalent, and often the most extreme, examples of phenotypic variation within species, and arises primarily from genomic variation that is shared between females and males. Many sexual dimorphisms arise through sex differences in gene expression, and sex-biased expression is one way that a single, shared genome can generate multiple, distinct phenotypes. Although many sexual dimorphisms are expected to result from sexual selection, and many studies have invoked the possible role of sexual selection to explain sex-specific traits, the role of sexual selection in the evolution of sexually dimorphic gene expression remains difficult to differentiate from other forms of sex-specific selection. In this Review, we propose a holistic framework for the study of sex-specific selection and transcriptome evolution. We advocate for a comparative approach, across tissues, developmental stages and species, which incorporates an understanding of the molecular mechanisms, including genomic variation and structure, governing gene expression. Such an approach is expected to yield substantial insights into the evolution of genetic variation and have important applications in a variety of fields, including ecology, evolution and behaviour.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Darwin, C. The Descent of Man, and Selection in Relation to Sex (Murray, 1871).
Padian, K. Origins of Darwin’s evolution: solving the species puzzle through time and place. By J. David Archibald. Syst. Biol. 67, 741–742 (2018).
Trail, P. W. Why should lek-breeders be monomorphic? Evolution 44, 1837–1852 (1990).
Andersson, M. Female choice selects for extreme tail length in a widowbird. Nature 299, 818–820 (1982).
Madden, J. R. Male spotted bowerbirds preferentially choose, arrange and proffer objects that are good predictors of mating success. Behav. Ecol. Sociobiol. 53, 263–268 (2003).
Toth, C. A. & Parsons, S. Is lek breeding rare in bats? J. Zool. 291, 3–11 (2013).
Clutton-Brock, T. Sexual selection in males and females. Science 318, 1882–1885 (2007).
Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 929–956 (2019).
West-Eberhard, M. J. Sexual selection, social competition, and evolution. Proc. Am. Philos. Soc. 123, 222–234 (1979).
Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds. Blum, M. S. & Blum, N. A.) 166 (Academic Press, 1979).
Shine, R. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q. Rev. Biol. 64, 419–461 (1989).
Gavrilets, S., Arnqvist, G. & Friberg, U. The evolution of female mate choice by sexual conflict. Proc. R. Soc. Lond. B 268, 531–539 (2001).
Gavrilets, S. & Waxman, D. Sympatric speciation by sexual conflict. Proc. Natl Acad. Sci. USA 99, 10533–10538 (2002).
Li Richter, X.-Y. & Hollis, B. Softness of selection and mating system interact to shape trait evolution under sexual conflict. Evolution 75, 2335–2347 (2021).
Hedrick, A. V. & Temeles, E. J. The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol. Evol. 4, 136–138 (1989).
Paczolt, K. A. & Jones, A. G. Post-copulatory sexual selection and sexual conflict in the evolution of male pregnancy. Nature 464, 401–U94 (2010).
Punzalan, D. & Hosken, D. J. Sexual dimorphism: why the sexes are (and are not) different. Curr. Biol. 20, R972–R973 (2010).
Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).
Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).
Mendelson, T. C. & Safran, R. J. Speciation by sexual selection: 20 years of progress. Trends Ecol. Evol. 36, 1153–1163 (2021).
Panhuis, T. M., Butlin, R., Zuk, M. & Tregenza, T. Sexual selection and speciation. Trends Ecol. Evol. 16, 364–371 (2001).
Servedio, M. R. & Bürger, R. The counterintuitive role of sexual selection in species maintenance and speciation. Proc. Natl Acad. Sci. USA 111, 8113–8118 (2014).
Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2010).
van der Bijl, W. & Mank, J. E. Widespread cryptic variation in genetic architecture between the sexes. Evol. Lett. 5, 359–369 (2021).
Chenoweth, S. F., Rundle, H. D. & Blows, M. W. Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. Am. Nat. 171, 22–34 (2008).
Pennell, T. M., Haas, F. J. Hde, Morrow, E. H. & Doorn, G. S. V. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution. Proc. Natl Acad. Sci. USA 113, E978–E986 (2016).
Cox, R. & Calsbeek, R. Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 173, 176–187 (2009).
Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).
Van Doorn, G. S. Intralocus sexual conflict. Ann. N. Y. Acad. Sci. 1168, 52–71 (2009).
Hawkes, M. F. et al. Intralocus sexual conflict and insecticide resistance. Proc. R. Soc. B 283, 20161429 (2016).
Stewart, A. D., Morrow, E. H. & Rice, W. R. Assessing putative interlocus sexual conflict in Drosophila melanogaster using experimental evolution. Proc. R. Soc. B 272, 2029–2035 (2005).
Dapper, A. L. & Lively, C. M. Interlocus sexually antagonistic coevolution can create indirect selection for increased recombination. Evolution 68, 1216–1224 (2014).
Kasimatis, K. R., Nelson, T. C. & Phillips, P. C. Genomic signatures of sexual conflict. J. Hered. 108, 780–790 (2017).
Tregenza, T., Wedell, N. & Chapman, T. Sexual conflict: a new paradigm? Philos. Trans. R. Soc. B 361, 229–234 (2006).
Connallon, T. & Chenoweth, S. F. Dominance reversals and the maintenance of genetic variation for fitness. PLoS Biol. 17, e3000118 (2019).
Connallon, T. & Clark, A. G. The resolution of sexual antagonism by gene duplication. Genetics 187, 919–937 (2011).
Meisel, R. P. & Connallon, T. The faster-X effect: integrating theory and data. Trends Genet. 29, 537–544 (2013).
Connallon, T., Cox, R. M. & Calsbeek, R. Fitness consequences of sex-specific selection. Evolution 64, 1671–1682 (2010).
Lande, R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34, 292–305 (1980).
Rice, W. R. & Chippindale, A. K. Intersexual ontogenetic conflict. J. Evol. Biol. 14, 685–693 (2001).
Houle, D. & Cheng, C. Predicting the evolution of sexual dimorphism in gene expression. Mol. Biol. Evol. 38, 1847–1859 (2021).
Grath, S. & Parsch, J. Sex-biased gene expression. Annu. Rev. Genet. 50, 29–44 (2016).
Mank, J. E. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am. Nat. 173, 141–150 (2009).
Mank, J. E. The transcriptional architecture of phenotypic dimorphism. Nat. Ecol. Evol. 1, 0006 (2017).
Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl Acad. Sci. 96, 4482–4487 (1999).
Gout, J.-F., Kahn, D., Duret, L. & Paramecium Post-Genomics Consortium. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet. 6, e1000944 (2010).
Pál, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 927–931 (2001).
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
Rogers, T. F., Palmer, D. H. & Wright, A. E. Sex-specific selection drives the evolution of alternative splicing in birds. Mol. Biol. Evol. 38, 519–530 (2021).
Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698 (2007).
Hunt, B. G., Ometto, L., Keller, L. & Goodisman, M. A. D. Evolution at two levels in fire ants: the relationship between patterns of gene expression and protein sequence evolution. Mol. Biol. Evol. 30, 263–271 (2013).
Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).
Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).
Parrett, J. M. et al. Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nat. Ecol. Evol. 6, 1330–1342 (2022).
Harrison, P. W. et al. Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl Acad. Sci. USA 112, 4393 (2015).
Patlar, B., Jayaswal, V., Ranz, J. M. & Civetta, A. Nonadaptive molecular evolution of seminal fluid proteins in Drosophila. Evolution 75, 2102–2113 (2021).
Dapper, A. L. & Wade, M. J. The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species. Evolution 70, 502–511 (2016).
Dapper, A. L. & Wade, M. J. Relaxed selection and the rapid evolution of reproductive genes. Trends Genet. 36, 640–649 (2020).
Gershoni, M. & Pietrokovski, S. Reduced selection and accumulation of deleterious mutations in genes exclusively expressed in men. Nat. Commun. 5, 4438 (2014).
Dean, R. & Mank, J. E. Tissue specificity and sex-specific regulatory variation permit the evolution of sex-biased gene expression. Am. Nat. 188, E74–E84 (2016).
Mank, J. E., Hultin‐Rosenberg, L., Zwahlen, M. & Ellegren, H. Pleiotropic constraint hampers the resolution of sexual antagonism in vertebrate gene expression. Am. Nat. 171, 35–43 (2008).
Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).
Khodursky, S., Svetec, N., Durkin, S. M. & Zhao, L. The evolution of sex-biased gene expression in the Drosophila brain. Genome Res. 30, 874–884 (2020).
Darolti, I. & Mank, J. E. Sex-biased gene expression at single-cell resolution: Cause and consequence of sexual dimorphism. 2022.11.08.515642 Preprint at https://doi.org/10.1101/2022.11.08.515642 (2022).
Hollis, B., Houle, D., Yan, Z., Kawecki, T. J. & Keller, L. Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat. Commun. 5, 3482 (2014).
Veltsos, P., Fang, Y., Cossins, A. R., Snook, R. R. & Ritchie, M. G. Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat. Commun. 8, 2072 (2017).
Wang, X., Werren, J. H. & Clark, A. G. Genetic and epigenetic architecture of sex-biased expression in the jewel wasps Nasonia vitripennis and giraulti. Proc. Natl Acad. Sci. USA 112, E3545–E3554 (2015).
Schenkel, M. A., Pen, I., Beukeboom, L. W. & Billeter, J.-C. Making sense of intralocus and interlocus sexual conflict. Ecol. Evol. 8, 13035–13050 (2018).
Verta, J.-P. & Jacobs, A. The role of alternative splicing in adaptation and evolution. Trends Ecol. Evol. 37, 299–308 (2021).
Gan, Q. et al. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res. 20, 763–783 (2010).
Singh, A. & Agrawal, A. F. Two forms of sexual dimorphism in gene expression in Drosophila melanogaster: their coincidence and evolutionary genetics. Preprint at https://doi.org/10.1101/2021.02.08.429268 (2021).
Ruzicka, F. et al. Genome-wide sexually antagonistic variants reveal long-standing constraints on sexual dimorphism in fruit flies. PLoS Biol. 17, e3000244 (2019).
Pennell, T. M. & Morrow, E. H. Two sexes, one genome: the evolutionary dynamics of intralocus sexual conflict. Ecol. Evol. 3, 1819–1834 (2013).
Kokko, H. & Jennions, M. D. The relationship between sexual selection and sexual conflict. Cold Spring Harb. Perspect. Biol. 6, a017517 (2014).
Mank, J. E. Population genetics of sexual conflict in the genomic era. Nat. Rev. Genet. 18, 721–730 (2017).
Ruzicka, F. et al. The search for sexually antagonistic genes: practical insights from studies of local adaptation and statistical genomics. Evol. Lett. 4, 398–415 (2020).
Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: insights from Fisher’s geometric model. Genetics 197, 991–1006 (2014).
Fry, J. D. The genomic location of sexually antagonistic variation: some cautionary comments. Evolution 64, 1510–1516 (2010).
Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–408 (2015).
Pearse, D. E. et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. 3, 1731–1742 (2019).
Grieshop, K. & Arnqvist, G. Sex-specific dominance reversal of genetic variation for fitness. PLoS Biol. 16, e2006810 (2018).
Geeta Arun, M. et al. Experimental evolution reveals sex-specific dominance for surviving bacterial infection in laboratory populations of Drosophila melanogaster. Evol. Lett. 5, 657–671 (2021).
Spencer, H. G. & Priest, N. K. The evolution of sex-specific dominance in response to sexually antagonistic selection. Am. Nat. 187, 658–666 (2016).
Grieshop, K., Ho, E. K. H. & Kasimatis, K. R. Dominance reversals, antagonistic pleiotropy, and the maintenance of genetic variation. Preprint at https://doi.org/10.48550/arXiv.2109.01571 (2021).
Foerster, K. et al. Sexually antagonistic genetic variation for fitness in red deer. Nature 447, 1107–1110 (2007).
Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).
Wright, A. E. et al. Male-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. Evol. Lett. 2, 52–61 (2018).
Cheng, C. & Kirkpatrick, M. Sex-specific selection and sex-biased gene expression in humans and flies. PLoS Genet. 12, e1006170 (2016).
Dutoit, L. et al. Sex-biased gene expression, sexual antagonism and levels of genetic diversity in the collared flycatcher (Ficedula albicollis) genome. Mol. Ecol. 27, 3572–3581 (2018).
Flanagan, S. P. & Jones, A. G. Genome-wide selection components analysis in a fish with male pregnancy. Evolution 71, 1096–1105 (2017).
Lucotte, E. A., Laurent, R., Heyer, E., Ségurel, L. & Toupance, B. Detection of allelic frequency differences between the sexes in humans: a signature of sexually antagonistic selection. Genome Biol. Evol. 8, 1489–1500 (2016).
Kasimatis, K. R., Ralph, P. L. & Phillips, P. C. Limits to genomic divergence under sexually antagonistic selection. G3 9, 3813–3824 (2019).
Wang, Z., Sun, L. & Paterson, A. D. Major sex differences in allele frequencies for X chromosomal variants in both the 1000 Genomes Project and gnomAD. PLoS Genet. 18, e1010231 (2022).
Lin, Y. et al. Gene duplication to the Y chromosome in Trinidadian guppies. Mol. Ecol. 31, 1853–1863 (2022).
Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001).
Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl Acad. Sci. USA 114, 3690–3695 (2017).
Wright, A. E., Rogers, T. F., Fumagalli, M., Cooney, C. R. & Mank, J. E. Phenotypic sexual dimorphism is associated with genomic signatures of resolved sexual conflict. Mol. Ecol. 28, 2860–2871 (2019).
Peñalba, J. V. & Wolf, J. B. W. From molecules to populations: appreciating and estimating recombination rate variation. Nat. Rev. Genet. 21, 476–492 (2020).
Arbeithuber, B., Betancourt, A. J., Ebner, T. & Tiemann-Boege, I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc. Natl Acad. Sci. USA 112, 2109–2114 (2015).
Jia, P. et al. MSEA: detection and quantification of mutation hotspots through mutation set enrichment analysis. Genome Biol. 15, 489 (2014).
Rogozin, I. B. & Pavlov, Y. I. Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat. Res. 544, 65–85 (2003).
Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).
Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).
Kim, K.-W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. 1, 1168–1176 (2017).
Cooney, C. R., Mank, J. E. & Wright, A. E. Constraint and divergence in the evolution of male and female recombination rates in fishes. Evolution 75, 2857–2866 (2021).
Úbeda, F., Haig, D. & Patten, M. M. Stable linkage disequilibrium owing to sexual antagonism. Proc. R. Soc. B 278, 855–862 (2011).
Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).
Bain, S. A. et al. Sex-specific expression and DNA methylation in a species with extreme sexual dimorphism and paternal genome elimination. Mol. Ecol. 30, 5687–5703 (2021).
Wang, X. et al. Function and evolution of dna methylation in Nasonia vitripennis. PLoS Genet. 9, e1003872 (2013).
Lemos, B., Branco, A. T. & Hartl, D. L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl Acad. Sci. USA 107, 15826–15831 (2010).
Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).
Arbeitman, M. N. et al. Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270–2275 (2002).
Hale, M. C. et al. Differential gene expression in male and female rainbow trout embryos prior to the onset of gross morphological differentiation of the gonads. BMC Genomics 12, 404 (2011).
Ingleby, F. C., Webster, C. L., Pennell, T. M., Flis, I. & Morrow, E. H. Sex-biased gene expression in Drosophila melanogaster is constrained by ontogeny and genetic architecture. Preprint at https://doi.org/10.1101/034728 (2016).
Kohli, S. et al. Genome and transcriptome analysis of the mealybug Maconellicoccus hirsutus: correlation with its unique phenotypes. Genomics 113, 2483–2494 (2021).
Magnusson, K. et al. Transcription regulation of sex-biased genes during ontogeny in the malaria vector anopheles gambiae. PLoS ONE 6, e21572 (2011).
Muramatsu, M. et al. Sex-specific expression profiles of ecdysteroid biosynthesis and ecdysone response genes in extreme sexual dimorphism of the mealybug Planococcus kraunhiae (Kuwana). PLoS ONE 15, e0231451 (2020).
Omar, M. A. A. et al. The functional difference of eight chitinase genes between male and female of the cotton mealybug, Phenacoccus solenopsis: chitinase genes between sexes of cotton mealybugs. Insect Mol. Biol. 28, 550–567 (2019).
Ometto, L., Shoemaker, D., Ross, K. G. & Keller, L. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28, 1381–1392 (2011).
Perry, J. C., Harrison, P. W. & Mank, J. E. The ontogeny and evolution of sex-biased gene expression in Drosophila melanogaster. Mol. Biol. Evol. 31, 1206–1219 (2014).
Zhao, M. et al. Global expression profile of silkworm genes from larval to pupal stages: toward a comprehensive understanding of sexual differences: sexual differences of global gene expression in silkworm from larval to pupal stages. Insect Sci. 18, 607–618 (2011).
Eads, B. D., Colbourne, J. K., Bohuski, E. & Andrews, J. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8, 464 (2007).
Hosken, D. J., Archer, C. R. & Mank, J. E. Sexual conflict. Curr. Biol. 29, R451–R455 (2019).
Galliard, J.-F. L. & Ferrière, R. Evolution of maximal endurance capacity: natural and sexual selection across age classes in a lizard. Evol. Ecol. Res. 10, 157–176 (2008).
Husak, J. F. Does speed help you survive? A test with collared lizards of different ages. Funct. Ecol. 20, 174–179 (2006).
Preziosi, R. F. & Fairbairn, D. J. Lifetime selection on adult body size and components of body size in a waterstrider: opposing selection and maintenance of sexual size dimorphism. Evolution 54, 558–566 (2000).
Svensson, E. I. & Waller, J. T. Ecology and sexual selection: evolution of wing pigmentation in calopterygid damselflies in relation to latitude, sexual dimorphism, and speciation. Am. Nat. 182, E174–E195 (2013).
Zikovitz, A. E. & Agrawal, A. F. The condition dependency of fitness in males and females: the fitness consequences of juvenile diet assessed in environments differing in key adult resources. Evolution 67, 2849–2860 (2013).
Wright, A. E. & Mank, J. E. The scope and strength of sex‐specific selection in genome evolution. J. Evol. Biol. 26, 1841–1853 (2013).
Arnold, S. J. & Wade, M. J. On the measurement of natural and sexual selection: applications. Evolution 38, 720–734 (1984).
Arnold, S. J. & Wade, M. J. On the measurement of natural and sexual selection: theory. Evolution 38, 709–719 (1984).
Clancey, E., Johnson, T. R., Harmon, L. J. & Hohenlohe, P. A. Estimation of the strength of mate preference from mated pairs observed in the wild. Evolution 76, 29–41 (2022).
Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, 1930).
Kirkpatrick, M. Sexual selection and the evolution of female choice. Evolution 36, 1–12 (1982).
Prum, R. O. The Lande–Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. Evolution 64, 3085–3100 (2010).
Zahavi, A. Mate selection—a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).
Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 218, 384–387 (1982).
West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).
Basolo, A. L. Female preference predates the evolution of the sword in swordtail fish. Science 250, 808–810 (1990).
McGlothlin, J. W., Cox, R. M. & Brodie, E. D. Sex-specific selection and the evolution of between-sex genetic covariance. J. Hered. 110, 422–432 (2019).
Simmons, L. W. Sperm Competition and Its Evolutionary Consequences in the Insects. Sperm Competition and Its Evolutionary Consequences in the Insects (Princeton Univ. Press, 2019).
Plesnar-Bielak, A. & Łukasiewicz, A. Sexual conflict in a changing environment. Biol. Rev. 96, 1854–1867 (2021).
Arbuthnott, D., Dutton, E. M., Agrawal, A. F. & Rundle, H. D. The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in Drosophila melanogaster. Ecol. Lett. 17, 221–228 (2014).
Connallon, T. & Hall, M. D. Genetic correlations and sex-specific adaptation in changing environments. Evolution 70, 2186–2198 (2016).
Delph, L. F. et al. Environment-dependent intralocus sexual conflict in a dioecious plant. N. Phytol. 192, 542–552 (2011).
Connallon, T. & Clark, A. G. Evolutionary inevitability of sexual antagonism. Proc. R. Soc. B 281, 20132123 (2014).
Martinossi-Allibert, I. et al. The consequences of sexual selection in well-adapted and maladapted populations of bean beetles†. Evolution 72, 518–530 (2018).
Yun, L., Chen, P. J., Singh, A., Agrawal, A. F. & Rundle, H. D. The physical environment mediates male harm and its effect on selection in females. Proc. R. Soc. B 284, 20170424 (2017).
García-Roa, R., Chirinos, V. & Carazo, P. The ecology of sexual conflict: Temperature variation in the social environment can drastically modulate male harm to females. Funct. Ecol. 33, 681–692 (2019).
De Lisle, S. P., Goedert, D., Reedy, A. M. & Svensson, E. I. Climatic factors and species range position predict sexually antagonistic selection across taxa. Philos. Trans. R. Soc. B 373, 20170415 (2018).
Connallon, T. The geography of sex-specific selection, local adaptation, and sexual dimorphism. Evolution 69, 2333–2344 (2015).
Mank, J. E., Nam, K., Brunstrom, B. & Ellegren, H. Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol. Biol. Evol. 27, 1570–1578 (2010).
Price, P. D. et al. Detecting signatures of selection on gene expression. Nat. Ecol. Evol. 6, 1035–1045 (2022).
Wiberg, R. A. W., Veltsos, P., Snook, R. R. & Ritchie, M. G. Experimental evolution supports signatures of sexual selection in genomic divergence. Evol. Lett. 5, 214–229 (2021).
Sayadi, A. et al. The genomic footprint of sexual conflict. Nat. Ecol. Evol. 3, 1725–1730 (2019).
Rowe, L., Chenoweth, S. F. & Agrawal, A. F. The genomics of sexual conflict. Am. Nat. 192, 274–286 (2018).
Nuzhdin, S. V., Wayne, M. L., Harmon, K. L. & McIntyre, L. M. Common pattern of evolution of gene expression level and protein sequence in Drosophila. Mol. Biol. Evol. 21, 1308–1317 (2004).
Acknowledgements
We acknowledge Ngāi Tūāhuriri, the Wurundjeri and Boon Wurrung peoples of the Kulin nation, and the xʷməθkʷəy̓əm (Musqueam) people, upon whose lands this work was conducted. This work was supported by the Marsden Fund Council from government funding, managed by Royal Society Te Apārangi (grant UOC1904) and the Australian Research Council (FT190100014 and DP220100245). J.E.M. gratefully acknowledges funding from the Natural Sciences and Engineering Research Council of Canada and a Canada 150 Research Chair. We thank T. Connallon, A. Wright and A. Jones for feedback on early drafts of this manuscript.
Author information
Authors and Affiliations
Contributions
S.P.F. conceived this work and all concepts were shaped by discussions with N.M.T., E.R.B., B.B.M.W. and J.E.M.; S.P.F., N.M.T. and E.R.B. wrote the first draft of the manuscript, and N.M.T., E.R.B., B.B.M.W., J.E.M. and S.P.F. edited subsequent drafts.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tosto, N.M., Beasley, E.R., Wong, B.B.M. et al. The roles of sexual selection and sexual conflict in shaping patterns of genome and transcriptome variation. Nat Ecol Evol 7, 981–993 (2023). https://doi.org/10.1038/s41559-023-02019-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-023-02019-7