Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eighty million years of rapid evolution of the primate Y chromosome

Abstract

The Y chromosome usually plays a critical role in determining male sex and comprises sequence classes that have experienced unique evolutionary trajectories. Here we generated 19 new primate sex chromosome assemblies, analysed them with 10 existing assemblies and report rapid evolution of the Y chromosome across primates. The pseudoautosomal boundary has shifted at least six times during primate evolution, leading to the formation of a Simiiformes-specific evolutionary stratum and to the independent start of young strata in Catarrhini and Platyrrhini. Different primate lineages experienced different rates of gene loss and structural and chromatin change on their Y chromosomes. Selection on several Y-linked genes has contributed to the evolution of male developmental traits across the primates. Additionally, lineage-specific expansions of ampliconic regions have further increased the diversification of the structure and gene composition of the Y chromosome. Overall, our comprehensive analysis has broadened our knowledge of the evolution of the primate Y chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the X and Y assemblies used in this study.
Fig. 2: The evolution of the primate PAR.
Fig. 3: Evolutionary strata of primates.
Fig. 4: Structural and chromatin configuration changes in S4 and S5 during primate sex chromosome evolution.
Fig. 5: Dynamic evolution of primate Y chromosomes.
Fig. 6: Comparison of X-linked (a) and Y-linked (b) families involving AGs across the primates and treeshrew.

Similar content being viewed by others

Data availability

Primate long- and short-read sequencing data were obtained from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) Database (https://www.ncbi.nlm.nih.gov/sra/) under accession code PRJNA785018, PRJNA658635 and PRJEB49549, and the GSA database with project no. PRJCA003786. Sequencing data and curated assemblies used in this study have been deposited in the NCBI Assembly Database (https://www.ncbi.nlm.nih.gov/assembly/) under accession code PRJNA790674 and the CNGB Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with accession number CNP0002500. Human diploid Hi-C mapping data were obtained from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525. Other data are available in the main text or the supplementary data. Analytical data have been deposited into figshare with the link https://doi.org/10.6084/m9.figshare.20115467.v1.

Code availability

Custom scripts are available at: https://github.com/zy041225/primate_sex_chromosome.

References

  1. Bachtrog, D. The Y chromosome as a battleground for intragenomic conflict. Trends Genet. 36, 510–522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kitano, J. et al. A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wright, A. E., Dean, R., Zimmer, F. & Mank, J. E. How to make a sex chromosome. Nat. Commun. 7, 1–8 (2016).

    Article  Google Scholar 

  5. Vicoso, B. & Charlesworth, B. Evolution on the X chromosome: unusual patterns and processes. Nat. Rev. Genet. 7, 645–653 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Ohno, S. Sex Chromosomes and Sex-Linked Genes Vol. 1 (Springer Science & Business Media, 2013).

  7. Cortez, D. et al. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488–493 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825–837 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rozen, S. et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423, 873–876 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hughes, J. F. & Page, D. C. The biology and evolution of mammalian Y chromosomes. Annu Rev. Genet 49, 507–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Trombetta, B., D’Atanasio, E. & Cruciani, F. Patterns of inter-chromosomal gene conversion on the male-specific region of the human Y chromosome. Front. Genet. 8, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tomaszkiewicz, M., Medvedev, P. & Makova, K. D. Y and W chromosome assemblies: approaches and discoveries. Trends Genet. 33, 266–282 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Hughes, J. F. et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483, 82–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes, J. F. et al. Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463, 536–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hallast, P. & Jobling, M. A. The Y chromosomes of the great apes. Hum. Genet. 136, 511–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tomaszkiewicz, M. et al. A time-and cost-effective strategy to sequence mammalian Y chromosomes: an application to the de novo assembly of gorilla Y. Genome Res. 26, 530–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shao., Y. et al. Phylogenomic analyses provide insights into primate genomic and phenotypic evolution. Submitted (2021).

  21. Cechova, M. et al. Dynamic evolution of great ape Y chromosomes. Proc. Natl Acad. Sci. USA 117, 26273–26280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soh, Y. Q. et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 159, 800–813 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bostock, C., Gosden, J. & Mitchell, A. Localisation of a male-specific DNA fragment to a sub-region of the human Y chromosome. Nature 272, 324–328 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang, C. et al. Evolutionary and biomedical insights from a marmoset diploid genome assembly. Nature 594, 227–233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan, Y. et al. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zool. Res. 40, 506 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ye, M. S. et al. Comprehensive annotation of the Chinese tree shrew genome by large-scale RNA sequencing and long-read isoform sequencing. Zool. Res 42, 692–709 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Otto, S. P. et al. About PAR: the distinct evolutionary dynamics of the pseudoautosomal region. Trends Genet. 27, 358–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Ellis, N., Yen, P., Neiswanger, K., Shapiro, L. J. & Goodfellow, P. N. Evolution of the pseudoautosomal boundary in Old World monkeys and great apes. Cell 63, 977–986 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Charchar, F. J. et al. Complex events in the evolution of the human pseudoautosomal region 2 (PAR2). Genome Res. 13, 281–286 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss, J. et al. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol. Cell. Biol. 23, 8084–8091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carmignac, D. et al. SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat. Genet. 36, 247–255 (2004).

    Article  PubMed  Google Scholar 

  34. Berta, P. et al. Genetic evidence equating SRY and the testis-determining factor. Nature 348, 448–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Lahn, B. T. & Page, D. C. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum. Mol. Genet. 9, 311–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Trombetta, B., Cruciani, F., Underhill, P. A., Sellitto, D. & Scozzari, R. Footprints of X-to-Y gene conversion in recent human evolution. Mol. Biol. Evol. 27, 714–725 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Huang, S., Li, Q., Alberts, I. & Li, X. PRKX, a novel cAMP‐dependent protein kinase member, plays an important role in development. J. Cell. Biochem. 117, 566–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Rosser, Z. H., Balaresque, P. & Jobling, M. A. Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. Am. J. Hum. Genet. 85, 130–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cruciani, F., Trombetta, B., Macaulay, V. & Scozzari, R. About the X-to-Y gene conversion rate. Am. J. Hum. Genet. 86, 495–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moorjani, P., Amorim, C. E. G., Arndt, P. F. & Przeworski, M. Variation in the molecular clock of primates. Proc. Natl Acad. Sci. USA 113, 10607–10612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet Dev. 62, 58–64 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Galan, S. et al. CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction. Nat. Genet. 52, 1247–1255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, J. et al. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res. 31, 497–511 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xue, L. et al. Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair. Genome Biol. 22, 203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bachtrog, D. The temporal dynamics of processes underlying Y chromosome degeneration. Genetics 179, 1513–1525 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nguyen, T. A. et al. A cluster of autism-associated variants on X-Linked NLGN4X functionally resemble NLGN4Y. Neuron 106, 759–768 e757 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kappeler, P. M. & Van Schaik, C. P. Sexual Selection in Primates: New and Comparative Perspectives (Cambridge Univ. Press, 2004).

  49. Roldan, E. & Gomendio, M. The Y chromosome as a battle ground for sexual selection. Trends Ecol. Evol. 14, 58–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Williams, T. M. & Carroll, S. B. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat. Rev. Genet. 10, 797–804 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Bhowmick, B. K., Satta, Y. & Takahata, N. The origin and evolution of human ampliconic gene families and ampliconic structure. Genome Res. 17, 441–450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dorus, S., Gilbert, S. L., Forster, M. L., Barndt, R. J. & Lahn, B. T. The CDY-related gene family: coordinated evolution in copy number, expression profile and protein sequence. Hum. Mol. Genet. 12, 1643–1650 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Seboun, E. et al. Gene sequence, localization, and evolutionary conservation of DAZLA, a candidate male sterility gene. Genomics 41, 227–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bachtrog, D., Mahajan, S. & Bracewell, R. Massive gene amplification on a recently formed Drosophila Y chromosome. Nat. Ecol. Evol. 3, 1587–1597 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lahn, B. T., Pearson, N. M. & Jegalian, K. The human Y chromosome, in the light of evolution. Nat. Rev. Genet. 2, 207–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Schaller, F. et al. Y chromosomal variation tracks the evolution of mating systems in chimpanzee and bonobo. PLoS ONE https://doi.org/10.1371/journal.pone.0012482 (2010).

  58. Hughes, J. F. et al. Sequence analysis in Bos taurus reveals pervasiveness of X-Y arms races in mammalian lineages. Genome Res. 30, 1716–1726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jl, W. potts pr. The maGe protein family and cancer. Curr. Opin. Cell Biol. 37, 1–8 (2015).

    Article  Google Scholar 

  60. Nei, M., Xu, P. & Glazko, G. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA 98, 2497–2502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krausz, C., Giachini, C. & Forti, G. TSPY and male fertility. Genes 1, 308–316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Foresta, C., Ferlin, A. & Moro, E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum. Mol. Genet. 9, 1161–1169 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Rowe, N. & Myers, M. All the World’s Primates (Pogonias Press, 2016).

  64. Yu, Y.-H., Lin, Y.-W., Yu, J.-F., Schempp, W. & Yen, P. H. Evolution of the DAZ gene and the AZFc region on primate Y chromosomes. BMC Evol. Biol. 8, 1–10 (2008).

    Article  Google Scholar 

  65. Plavcan, J. M. Sexual dimorphism in primate evolution. Am. J. Phys. Anthropol. 116, 25–53 (2001).

    Article  Google Scholar 

  66. Liu, W.-S. Mammalian sex chromosome structure, gene content, and function in male fertility. Annu. Rev. Anim. Biosci. 7, 103–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Wilson, M. A. The Y chromosome and its impact on health and disease. Hum. Mol. Genet. 30, R296–R300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  69. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wickham, H. Elegant graphics for data analysis. Media 35, 10.1007 (2009).

    Google Scholar 

  72. Vollger, M. R. et al. Long-read sequence and assembly of segmental duplications. Nat. Methods 16, 88–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Kahlke, T. & Ralph, P. J. BASTA—taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol. Evol. 10, 100–103 (2019).

    Article  Google Scholar 

  76. Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoff, K. J. & Stanke, M. Predicting genes in single genomes with AUGUSTUS. Curr. Protoc. Bioinformatics 65, e57 (2019).

    PubMed  Google Scholar 

  78. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lopez-Delisle, L. et al. pyGenomeTracks: reproducible plots for multivariate genomic data sets. Bioinformatics (2021).

  80. Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Harris, R. S. Improved Pairwise Alignment of Genomic DNA (The Pennsylvania State University, 2007).

  82. Loytynoja, A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 1079, 155–170 (2014).

    Article  PubMed  Google Scholar 

  83. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4, 259–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wu, F. & Przeworski, M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 11, e80008–e80008 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hu, F., Lin, Y. & Tang, J. MLGO: phylogeny reconstruction and ancestral inference from gene-order data. BMC Bioinformatics 15, 354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tesler, G. GRIMM: genome rearrangements web server. Bioinformatics 18, 492–493 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics 36, 311–316 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Ramirez, F. et al. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Luo, X. et al. 3D genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis. Cell 184, 723–740. e721 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article  PubMed  Google Scholar 

  94. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Martínez-Pacheco, M. et al. Expression evolution of ancestral XY gametologs across all major groups of placental mammals. Genome Biol. Evol. 12, 2015–2028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Csuros, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

    Article  PubMed  Google Scholar 

  97. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life‐history traits. J. Evol. Biol. 22, 1770–1774 (2009).

    Article  PubMed  Google Scholar 

  99. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Article  Google Scholar 

  100. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all supervisors, collaborators and anyone else involved with the collection and processing of the primary datasets. We thank China National GeneBank for providing the computational resources. This study was supported by grants from Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31020000 to G.Z.), International Partnership Program of Chinese Academy of Sciences (no. 152453KYSB20170002 to G.Z.), Villum Investigator Grant (no. 25900 to G.Z.), National Natural Science Foundation of China (31822048 to D.-D.W.), Yunnan Fundamental Research Project (2019FI010 to D.-D.W.) and The Animal Branch of the Germplasm Bank of Wild Species of Chinese Academy of Science (the Large Research Infrastructure Funding to D.-D.W.).

Author information

Authors and Affiliations

Authors

Contributions

G.Z. conceived the project. D.-D.W., H.K., T.H., Y.-G.Y., La.Z., X.Q., L.K. and T.M.-B. coordinated and were involved in sample collection, extraction and sequencing. Y.Z., X.Z., J.J., Lo.Z., J.B., X.L., M.M.C.R., M.R.B., M.F., J.C. and Q.F. performed the analyses. G.Z., M.H.S. and H.Y. supervised the project. G.Z., D.N.C., M.H.S., Y.Z., M.R.B., J.B., M.M.C.R., Y.-G.Y. and T.M.-B. wrote the manuscript with input from all the authors.

Corresponding author

Correspondence to Guojie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Qi Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes and Supplementary Figs. 1–28.

Reporting Summary

Peer Review File

Supplementary Data 1–3

Include SD1 ‘Dataset overview’, SD2 ‘Y completeness evaluation’ and SD3 ‘Length of different regions among different species’.

Supplementary Data 4 and 5

Include SD4 ‘Gametologue pairs and pairwise dS in 30 species in this study’ and SD5 ‘Per position per year (PPPY) estimates of the autosomal mutation rate μ for different primates and mouse’.

Supplementary Data 6–9

Include SD6 ‘X/Y homologous blocks within S4, S5 and their SSIM and SN’, SD7 ‘Syntenic blocks between prosimian and other species, and their SSIM and SN’, SD8 ‘Syntenic blocks between treeshrew and other species, and their SSIM and SN’ and SD9 ‘TAD boundary conservation between Simiiformes and treeshrew or pygmy slow loris’.

Supplementary Data 10–13

Include SD10 ‘Y gene family cluster results’, SD11 ‘Y loss dynamics of S4/S5 Y-linked genes’, SD12 ‘Life history traits of the primates used in this study’ and SD13 ‘PGLS results’.

Supplementary Data 14–18

Include SD14 ‘X-linked families involved AGs’, SD15 ‘Y-linked families involved AGs’, SD16 ‘Statistics and Fisher exact test of X-linked gene families that contains AGs’, SD17 ‘AG X/Y co-amplification’ and SD18 ‘Data and species used in each analysis’.

Supplementary Data 19–23

Include SD19 ‘Frameshifts check of potential Y pseudogenes with male short reads’, SD20 ‘Frameshifts check of potential X pseudogenes with male short reads’, SD21 ‘Potential Y absent gene confirmation from raw long reads’, SD22 ‘Potential Y absent gene confirmation from male short reads’ and SD23 ‘Potential X absent gene confirmation from raw long reads’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhan, X., Jin, J. et al. Eighty million years of rapid evolution of the primate Y chromosome. Nat Ecol Evol 7, 1114–1130 (2023). https://doi.org/10.1038/s41559-022-01974-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01974-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research