Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A surge in obsidian exploitation more than 1.2 million years ago at Simbiro III (Melka Kunture, Upper Awash, Ethiopia)



Pleistocene archaeology records the changing behaviour and capacities of early hominins. These behavioural changes, for example, to stone tools, are commonly linked to environmental constraints. It has been argued that, in earlier times, multiple activities of everyday life were all uniformly conducted at the same spot. The separation of focused activities across different localities, which indicates a degree of planning, according to this mindset characterizes later hominins since only 500,000 years ago. Simbiro III level C, in the upper Awash valley of Ethiopia, allows us to test this assumption in its assemblage of stone tools made only with obsidian, dated to more than 1.2 million years (Myr) old. Here we first reconstruct the palaeoenvironment, showing that the landscape was seasonally flooded. Following the deposition of an accumulation of obsidian cobbles by a meandering river, hominins began to exploit these in new ways, producing large tools with sharp cutting edges. We show through statistical analysis that this was a focused activity, that very standardized handaxes were produced and that this was a stone-tool workshop. We argue that at Simbiro III, hominins were doing much more than simply reacting to environmental changes; they were taking advantage of new opportunities, and developing new techniques and new skills according to them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Simbiro III site.
Fig. 2: The extensive accumulations of obsidian artefacts in level C.
Fig. 3: Density plots with the length of the whole artefacts from level C and from other assemblages from Melka Kunture14,55.
Fig. 4: Handaxes from level C, with the shaping and retouching sequences.
Fig. 5: Scatter plot of geometric morphometry analysis (CVA results) of the handaxes of layer C and other Acheulean assemblages.

Data availability

The lithic and faunal collections from the MS of Simbiro are kept in the repository of the National Museum of Ethiopia in Addis Ababa and are under the responsibility of the Authority of Research and Conservation for the Cultural Heritage of the Ministry of Culture and Tourism of Ethiopia. Source data are provided with this paper.


  1. Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article  Google Scholar 

  2. Kieffer, G., Raynal, J. P. & Bardin, G. in Studies on the Early Paleolithic site of Melka Kunture, Ethiopia (eds Chavaillon, J. & Piperno, M.) 93–101 (Istituto Italiano di Preistoria e Protostoria, 2004).

  3. Poupeau, G., Kieffer, G., Raynal, J. P., Milton, A. & Delerue, S. in Studies on the Paleolithic site of Melka Kunture, Ethiopia (eds Chavaillon, J. & Piperno, M.) 103–110 (Istituto Italiano di Preistoria e Pratostoria, 2004).

  4. Morgan, L. E. et al. A chronological framework for a long and persistent archaeological record: Melka Kunture, Ethiopia. J. Hum. Evolution 62, 104–115 (2012).

    Article  Google Scholar 

  5. Perini, S., Muttoni, G., Monesi, E., Melis, R. T. & Mussi, M. Magnetochronology and age models of deposition of the Melka Kunture stratigraphic sequence (Upper Awash, Ethiopia) and age assessments of the main archeological levels therein contained. Quat. Sci. Rev. 274, 107259 (2021).

    Article  Google Scholar 

  6. Mussi, M. et al. Une vue d’ensemble sur Melka Kunture, grand complexe de sites pléistocènes dans la vallée supérieure de l’Awash (Ethiopie). L’Anthropologie (2022).

  7. Raynal, J. P., Kieffer, G. & Bardin, G. in Studies on the Early Paleolithic site of Melka Kunture, Ethiopia (eds Chavaillon, J. & Piperno, M.) 137–166 (Istituto Italiano di Preistoria e Protostoria, 2004).

  8. Salvini, R., Riccucci, S. & Francioni, M. Topographic and geological mapping in the prehistoric area of Melka Kunture (Ethiopia). J. Maps 8, 169–175 (2012).

    Article  Google Scholar 

  9. Chavaillon, J. & Berthelet, A. in Studies on the Early Paleolithic Site of Melka Kunture, Ethiopia (eds Chavaillon, J. & M. Piperno, M.) 25–80 (Istituto Italiano di Preistoria e Protostoria, 2004).

  10. Gilbert, H. in Homo erectus, Pleistocene Evidence from the Middle Awash, Ethiopia (eds Gilbert, H. & Asfaw, B.) 44–94 (Univ. California Press, 2008).

  11. Geraads, D., Eisenmann, V. & Petter, G. in Studies on the Early Paleolithic site of Melka Kunture, Ethiopia (eds Chavaillon, J. & Piperno, M.) 169–192 (Istituto Italiano di Preistoria e Protostoria, 2004).

  12. Bonnefille, R., Melis, R. T. & Mussi, M. in The Emergence of the Acheulean in East Africa and Beyond. Contributions in Honor of Jean Chavaillon (eds Gallotti, R. & Mussi, M.) 93–114 (Springer, 2018).

  13. Gallotti, R. An older origin for the Acheulean at Melka Kunture (Upper Awash, Ethiopia): techno-economic behaviours at Garba IVD. J. Hum. Evolution 65, 594–620 (2013).

    Article  Google Scholar 

  14. Sánchez Dehesa-Galán, S. et al. Age and formation processes of an Acheulean site with extensive accumulation of large cutting tools: Garba I (Melka Kunture, Upper Awash, Ethiopia). Archaeol. Anthropol. Sci. (2022)

  15. Bertran, P., Lenoble, A., Todisco, D., Desrosiers, P. M. & Sørensen, M. Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. J. Archaeol. Sci. 39, 3148–3166 (2012).

    Article  Google Scholar 

  16. Inizan, M. L., Reduron, M., Roche, H. & Tixier, J. Technology and Terminology of Knapped Stone (Cercle de Recherches et d’Etudes Préhistoriques, 1999).

  17. Shipton, C. & Clarkson, C. Flake scar density and handaxe reduction intensity. J. Archaeological Sci.: Rep. 2, 169–175 (2015).

    Article  Google Scholar 

  18. Chavaillon, J. Un site acheuléen près du lac Langano (Ethiopie). Abbay 10, 57–74 (1979).

    Google Scholar 

  19. Stiles, D. in Early Human Behavior in the Global Context: The Rise and Diversity of the Lower Paleolithic Period (eds M. Petraglia, M. & Korisettar, R.) 133–150 (Routledge, 1998).

  20. Kimura, Y. Examining time trends in the Oldowan technology at Beds I and II, Olduvai Gorge. J. Hum. Evolution 43, 291–321 (2002).

    Article  Google Scholar 

  21. Paddayya, K., Jhaldiyal, R. & Petraglia, M. D. in Axe Age: Acheulian Tool-Making from Quarry to Discard (eds Goren-Inbar, N. & Sharon, G.) 45–73 (Equinox Publishing, 2006).

  22. Durkee, H. & Brown, F. H. Correlation of volcanic ash layers between the Early Pleistocene Acheulean sites of Isinya, Kariandusi, and Olorgesailie, Kenya. J. Archaeol. Sci. 49, 510–517 (2014).

    Article  Google Scholar 

  23. Roche, H., Brugal, J.-P., Lefevre, D., Ploux, S. & Texier, P.-J. Isenya: état des recherches sur un nouveau site acheuléen d’Afrique orientale. Afr. Archaeol. Rev. 6, 27–55 (1988).

    Article  Google Scholar 

  24. Kathleen, K. An Acheulean factory site with prepared core technology near Taung, South Africa. South Afr. Archaeol. Bull. 56, 8–22 (2001).

    Article  Google Scholar 

  25. Sampson, C. G. in Axe Age: Acheulian Tool-Making from Quarry to Discard (eds Goren-Inbar, N. & Sharon, G.) 75–107 (Equinox, 2006).

  26. Finkel, M., Gopher, A. & Barkai, R. Extensive Paleolithic flint extraction and reduction complexes in the Nahal Dishon central basin, Upper Galilee, Israel. J. World Prehistory 29, 217–266 (2016).

    Article  Google Scholar 

  27. Tuffreau, A., Lamotte, A. & Marcy, J.-L. Land-use and site function in Acheulean complexes of the Somme Valley. World Archaeol. 29, 225–241 (1997).

    Article  Google Scholar 

  28. Lamotte, A. & Tuffreau, A. Acheulean of the Somme basin (France): assessment of lithic changes during MIS 12 to 9. Quat. Int. 409, 54–72 (2016).

    Article  Google Scholar 

  29. Baena Preysler, J. & Torres Navas, C. Explaining links from the past: material distribution in Charco Hondo 2 Acheulian archeological site (Madrid, Spain). Archaeol. Anthropol. Sci. 11, 4397–4421 (2019).

    Article  Google Scholar 

  30. Bárez del Cueto, S. et al. Acheulian flint quarries in the Madrid Tertiary basin, central Iberian Peninsula: first data obtained from geoarchaeological studies. Quat. Int. 411, 329–348 (2016).

    Article  Google Scholar 

  31. Hérisson, D. et al. Between the northern and southern regions of Western Europe: the Acheulean site of La Grande Vallée (Colombiers, Vienne, France). Quat. Int. 411, 108–131 (2016).

    Article  Google Scholar 

  32. Lhomme, V. Tools, space and behaviour in the Lower Palaeolithic: discoveries at Soucy in the Paris basin. Antiquity 81, 536–554 (2007).

    Article  Google Scholar 

  33. Tuffreau, A., Auguste, P., Balescu, S. & Bahain, J.-J. Gentelles-Le Mont de l’Evangile (département de la Somme, France): un site de plateau occupé de l’Acheuléen au Micoquien. L’Anthropologie (2017).

    Article  Google Scholar 

  34. Roberts, M. B. & Parfitt, S. A. Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry, Boxgrove, West Sussex (English Heritage, 1999).

  35. Brenet, M. Variabilité et signification des productions lithiques au Paléolithique moyen ancien. L’exemple de trois gisements de plein-air du Bergeracois (Dordogne, France) Vol. 2548 (BAR International Series 2548, 2013).

  36. Cliquet, D. et al. Un atelier de production et de consommation d’outils bifaciaux de la fin du Paléolithique moyen à Saint-Brice-sous-Rânes (Orne, France) dans son contexte environnemental. Quaternaire 20, 361–379 (2009).

    Article  Google Scholar 

  37. Dogandžić, T. et al. The results of lithic experiments performed on glass cores are applicable to other raw materials. Archaeol. Anthropol. Sci. 12, 44 (2020).

    Article  Google Scholar 

  38. Merrick, H. V., Brown, F. H. & Nash, W. P. in Society, Culture, and Technology in Africa (ed. Childs, S. T.) 29–44 (MASCA, 1994).

  39. Ambrose, S. H. in Obsidian and Ancient Manufactured Glasses (eds I. Liritzis, I. & C. Stevenson, C.) 56–72 (Univ. New Mexico Press, 2012).

  40. Piperno, M. et al. Obsidian Exploitation and Utilization during the Oldowan at Melka Kunture (Ethiopia) 111–128 (Springer, 2009).

  41. Gallotti, R. & Mussi, M. The unknown Oldowan: ~1.7-million-year-old standardized obsidian small tools from Garba IV, Melka Kunture, Ethiopia. PLoS ONE 10, e0145101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chavaillon, J. & Chavaillon, N. in The Site of Gombore I. Comments and Conclusions on the Lithic Assemblage (eds Chavaillon, J. & Piperno, M.) 437–448 (Istituto Italiano di Preistoria e Protostoria, 2004).

  43. Mussi, M. et al. After the emergence of the Acheulean at Melka Kunture (Upper Awash, Ethiopia): from Gombore IB (1.6 Ma) to Gombore Iγ (1.4 Ma), Gombore Iδ (1.3 Ma) and Gombore II OAM Test Pit C (1.2 Ma). Quat. Int. (2021).

    Article  Google Scholar 

  44. Cropley, A. In praise of convergent thinking. Creativity Res. J. 18, 391–404 (2006).

    Article  Google Scholar 

  45. Guilford, J. P. The Nature of Human Intelligence (McGraw-Hill, 1967).

  46. Cropley, D. H. & Cropley, A. J. The Psychology of Organisational Innovation (Cambridge Univ. Press, 2015).

  47. Stein, M. I. Creativity and culture. J. Psychol. 36, 311–322 (1953).

    Article  Google Scholar 

  48. Ericsson, K. A. & Lehmann, A. C. in Encyclopedia of Creativity (eds Runco, M. A. & Pritzker, S. R.) Expertise, 695–707 (Academic Press, 1999).

  49. Zwir, I. et al. Evolution of genetic networks for human creativity. Mol. Psychiatry 27, 354–376 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Gallotti, R., Raynal, J.-P., Geraads, D. & Mussi, M. Garba XIII (Melka Kunture, Upper Awash, Ethiopia): a new Acheulean site of the late Lower Pleistocene. Quat. Int. 343, 17–27 (2014).

    Article  Google Scholar 

  51. Clark, J. D. & Kurashina, H. Hominid occupation of the East-Central Highlands of Ethiopia in the Plio–Pleistocene. Nature 282, 33–39 (1979).

    Article  Google Scholar 

  52. Clark, J. D. & Kurashina, H. An analysis of earlier Stone Age bifaces from Gadeb (locality 8E), Northern Bale Highlands, Ethiopia. South Afr. Archaeological Bull. 34, 93 (1979).

    Article  Google Scholar 

  53. Oussedik, O. Site de Simburro III à Melka-Kunturé. L’Ethiopie avant l’Histoire 1, 27–33 (1976).

    Google Scholar 

  54. Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C, 18O) of mammal enamel from African Pleistocene hominid sites: implications for the preservation of paleoclimatic isotopic signals. PALAIOS 11, 306–318 (1996).

    Article  Google Scholar 

  55. Méndez-Quintas, E. et al. Gombore II (Melka Kunture, Ethiopia): a new approach to formation processes and spatial patterns of an Early Pleistocene Acheulean site. J. Archaeol. Sci. 108, 104975 (2019).

    Article  Google Scholar 

  56. Gallotti, R. et al. The Early Middle Pleistocene Site of Gombore II (Melka Kunture, Upper Awash, Ethiopia) and the Issue of Acheulean Bifacial Shaping Strategies. Afr. Archaeological Rev. 27, 291–322 (2010).

    Article  Google Scholar 

  57. Moncel, M.-H. et al. The Acheulean workshop of la Noira (France, 700 ka) in the European technological context. Quat. Int. 393, 112–136 (2016).

    Article  Google Scholar 

  58. Brenet, M. et al. in Les techno-complexes au début du Paléolithique moyen en Aquitaine septentrionale: complexité, complémentarité des productions de débitage et de façonnage et implications comportementales (eds Jaubert, J. et al.) 81–101 (Société préhistorique française, 2013).

Download references


Fieldwork in 2015–2019 was funded by grants of Sapienza University (Grandi Scavi di Ateneo grant nos. C26S15ZHET and SA116154E374B49C) and of Ministero degli Affari Esteri e della Cooperazione Internazionale (grant nos. ARC-001149 and ARC-001666), awarded to M.M. Fieldwork in 2019 was funded by a grant from the PALARQ Foundation, awarded to J.P. and M.M. E.M.-Q. is funded by a Post-Doc Xunta de Galicia grant (no. ED481D-2022/023) and A.S.D. in 2020 by a I-Portunus grant. In 2021, G.B. received a DAAD grant no. 57552336. We are grateful to J. Chavaillon’s relatives for the archive documents. The Ethiopian Authority for Research and Conservation of Cultural Heritage (ARCCH) granted permits for fieldwork and laboratory analysis while the Oromia Region facilitated the research in many ways. We are grateful to A. Cropley for useful discussion on convergent thinking and the generation of novelty.

Author information

Authors and Affiliations



M.M. coordinated the research. D.B. and R.B. did the phytolith analysis and researched the paleo vegetation. H.B. and G.B. did the stable isotopes analysis. D.G. determined the faunal remains. R.T.M. investigated the geology and geomorphology. E.M.-Q., J.P. and S.R.J. did the archaeological analysis. L.P. researched the volcanology. A.S.D. assembled and filed the collections. All authors discussed the paper and participated to the extension of the final manuscript, which was written by M.M. and E.M.-Q.

Corresponding author

Correspondence to Margherita Mussi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Marie-Helene Moncel, Michael Petraglia, Ralf Vogelsang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Location map.

Simbiro III and sites in the Garba and Gombore gullies, within the Melka Kunture cluster of archaeological sites.

Extended Data Fig. 2

General views of the Monumental Section at Simbiro III.

Extended Data Fig. 3 The MS and the Tuka Meja Formation.

The MS, on the right, which belongs to the Melka Formation, and the Tuka Meja Formation, on the left, with the dated 40Ar/39Ar sample at the top of the sedimentary sequence.

Extended Data Fig. 4 Orthophoto and schematic cross-section of the MS.

1: tuff; 2: pyroclastic density current deposits (PDC) in the floodplain; 3: channel and point bar deposits; 4: channel-fill deposits with mud chips; 5: crevasse splay deposits; 6: crevasse splay deposits with lapilli; 7: conglomeratic lag deposits with lithic artefacts; 8: channel/crevasse splay deposits with obsidian artefacts; 9: paleosol; 10: unconformity; A, B, C, D, E: archaeological levels.

Extended Data Fig. 5 The Pelorovis oldowayensis discovered in 1973.

a) braincase with complete right horncore; b) posterior view, and details of the occiput and cranial basis.

Extended Data Fig. 6

Level C: maps of the excavations and density of remains per square meter.

Extended Data Fig. 7 Obsidian handaxes and core.

Obsidian handaxes (1-3) and core (4) with cortical remains typically found on non-abraded cobbles and pebbles.

Extended Data Table 1 The raw materials recorded in some of the main Melka Kunture sites56
Extended Data Table 2 The main technological types recorded in the assemblage of level C
Extended Data Table 3 Sites with specialized knapping activity57,58

Supplementary information

Supplementary Information

A. History of studies, Figs. A1–A6. B. Paleoenvironmental data (fauna, phytoliths, stable isotopes), Tables B1–B3 and Figs. B1–B13. C. The archaeological record Figs. C1–C18 and Tables C1 and C2 and refs. 1–49.

Reporting Summary

Source data

Source Data Fig. 5

Morphometric data of the handaxes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussi, M., Mendez-Quintas, E., Barboni, D. et al. A surge in obsidian exploitation more than 1.2 million years ago at Simbiro III (Melka Kunture, Upper Awash, Ethiopia). Nat Ecol Evol 7, 337–346 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing