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Increases in intraspecific body size variation 
are common among North American 
mammals and birds between 1880 and 2020

Shilu Zheng    1, Juntao Hu    1, Zhijun Ma    1, David Lindenmayer    2 & 
Jiajia Liu    1,3 

Many studies have documented the average body size of animals declining 
over time. Compared to mean body size, less is known about long-term 
changes in intraspecific trait variation (ITV), which is also important to 
understanding species’ ability to cope with environmental challenges. On 
the basis of 393,499 specimen records from 380 species collected in North 
America between 1880 and 2020, we found that body size ITV increased by 
9.59% for mammals (n = 302) and 30.67% for birds (n = 78); human-harvested 
species had higher probability of ITV increase. The observed increasing 
ITV in many species suggests possible niche expansion and potential 
buffering effects against downsizing but it risks increased maladaptation 
to rapidly changing environments. The results demonstrate that trait mean 
and variance do not necessarily respond in similar ways to anthropogenic 
pressures and both should be considered.

Species morphological traits have been experiencing rapid shifts due 
to global environmental change in the past centuries1,2. This includes 
the general shrinkage of animal body size that has been widely reported 
in mammals, birds, fishes and invertebrates2–4. Theory predicts that 
smaller individuals have stronger ability to dissipate heat via a larger 
body surface area to volume ratio relative to larger individuals5. Thus, 
warming-induced selection is considered as one of the most prominent 
drivers of animal body size decline6. In addition, disproportionate 
harvesting of large individuals by humans is also driving a rapid decline 
in animal body size, especially in commercially exploited species7. 
Such downsizing trends have far-reaching consequences on indi-
vidual fitness8, which could disrupt trophic interactions3 and further 
affect human welfare2. However, most studies to date focused on the 
long-term changing trends of average value of morphological traits1,2,9, 
leaving trait variation within species unexplored.

The importance of intraspecific trait variation (ITV) has increas-
ingly been acknowledged in ecological and evolutionary studies10,11. ITV 
is part of the raw material on which natural selection acts; higher ITV 

implies greater niche breadth and may provide a species with improved 
chances of persistence in variable environments10. For example, vari-
ability in life-history traits was found to be negatively associated with 
extinction risk in mammals12. Bird species with higher behavioural 
plasticity were at a lower risk of extinction than more conservative 
species13. Although beneficial for population sustainability in the face 
of uncertain and instable conditions, high ITV also implies inaccu-
rate sensing of environmental cues (for example, bet-hedging strate-
gies), which can jeopardize species mean fitness in the short term14. 
In summary, ITV is associated with species resilience under changing 
environmental conditions, providing complementary information in 
addition to species trait means. However, long-term ITV trends across 
species are unclear.

Directional shifts in ITV will be observed if there is disproportion-
ate change in intraspecific trait distribution11. As predicted by the 
niche reduction hypothesis, species will either escape from, or have 
high mortality under, new environmental threats, leading to a reduc-
tion in realized niche breadth and associated decreases in ITV15. For 
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long period, with species-level information available in multiple online 
databases. In this study, we first sought to determine long-term trend 
of body size ITV in mammals and birds and to assess the relationships 
between species ITV temporal changing trends and human activity as 
well as species inherent traits. Specifically, we evaluated six variables 
that have been suggested to be closely associated with intraspecific 
trait distributions and thus are possible covariates with ITV changing 
temporal trends: human harvest of the species, species ability to use 
artificial habitat, body mass, habitat breadth, generation length and 
litter/clutch size (Methods).

Results
We compiled head-to-tail length data from 379,158 mammal speci-
mens representing 302 species and 14,341 bird specimens represent-
ing 78 species collected in North America between 1880 and 2020 
(Supplementary Table 1). As predicted by linear mixed effects models 
(LMMs), we found that mammal body size decreased by an average of 
3.13% (n = 302; slope (s.e.) = −2.27 × 10−4 (0.06 × 10−4); P < 0.001; Fig. 
1a and Supplementary Table 2) and bird species decreased by 10.11% 
over the past ~140 yrs (n = 78; slope (s.e.) = −7.62 × 10−4 (0.14 × 10−4); 
P < 0.001; Fig. 1c and Supplementary Table 2). In contrast to downsiz-
ing, intraspecific variation in body size, as calculated using Bao’s coef-
ficient of variation25, exhibited a significant increase in both groups 
(Figs. 1 and 2 and Supplementary Table 2), with no significant differ-
ence of ITV changing trend between females and males found in both 
mammals and birds (P > 0.1; Supplementary Table 3). Specifically, as 
predicted by LMMs, ITV increased by an average of 9.59% for mammals 
(n = 302; slope (s.e.) = 7.05 × 10−4 (0.87×10−4); P < 0.001; Fig. 1b and Sup-
plementary Table 2) and 30.67% for birds (n = 78; slope (s.e.) = 2.03 
× 10−3 (0.04 × 10−3); P < 0.001; Fig. 1d and Supplementary Table 2). In 
mammals, 62.9% of the species (190 out of the 302 species) showed 
increasing ITV, among which Aztex mouse (Peromyscus aztecus) and 
Myotis nigricans had the highest ITV increasing rate (Supplementary 
Table 1), while 75.6% of the bird species (59 out of the 78) showed increas-
ing ITV, among which brown creepers (Certhia americana) and collared 
sand martin (Riparia riparia) had the highest body size ITV increasing 
rate (Supplementary Table 1).

example, ivory poaching has led to the rapid evolution of tusklessness 
in African savanna elephants (Loxodonta africana)16. Alternatively, 
species can cope with changing environmental conditions with adap-
tive or plastic responses, developing new trait values and increasing 
ITV. For example, in Australia, the shortest wing length has declined 
in the grey-crowned babbler (Pomatostomus temporalis) and jacky 
winter (Microeca fascinans) under climatic warming without the loss 
of long wing trait features4. Given adequate resources and an absence 
of natural predators, species adapted to urban environments may 
experience relaxed selection on body size, leading to an increase in 
ITV17. Moreover, in the face of unpredictable environmental changes 
or new threats, species may adopt a bet-hedging strategy, develop-
ing new trait values randomly to spread the risk of extinction under 
unpredictable conditions18.

Importantly, species will differ in ITV temporal trends if 
the strength of selection varies among species with regard to 
human-related features and species inherent traits. For example, 
human-exploited species have been experiencing disproportional 
loss of trait values because of selective hunting, such as the prefer-
ence for harvesting large-bodied fishes in fishery19, which will have 
cascading effects on the dynamics of ITV20. In addition, as predicted by 
Bergmann’s rule, larger-bodied species are more negatively affected 
by rising temperatures than are smaller-bodied species21,22 and large 
body size extremes within larger-bodied species may experience 
stronger selection pressure than that in smaller-bodied species. Thus, 
larger-bodied species will be more likely to exhibit trait truncation and 
decreasing ITV. Because ITV is associated with species ability to persist 
in the face of new environmental challenges12,13,23, non-random ITV 
changing trend across species will have far-reaching consequences 
on community restructuring and altering ecosystem functioning3,24.

Here, we compiled individual-level body size data for mammal and 
bird specimens collected from 1880 to 2020 in North America, based 
on the VertNet database (http://vertnet.org). The compiled dataset 
included 302 mammal species and 78 bird species, representing 33.0% 
and 4.0% of the total number of known species in North America for 
each taxon, respectively (Supplementary Note). We chose these two 
groups because they had sufficient specimen records across a relatively 
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Fig. 1 | Changes in mean and intraspecific variation of body size over time. 
a–d, Fitted dark lines are the mean (± s.e.) of model predictions from LMMs 
(Supplementary Table 2) for mean (a,c) and ITV (b,d) of body size using 379,158 
individuals representing 302 mammal species (a,b) and 14,341 individuals 

representing 78 bird species (c,d). Light green lines are predictions from species-
specific linear models for each species. Credit: Silhouettes are from http://
phylopic.org/ (xgirouxb[squirrel], Andy Wilson[bird]; https://creativecommons.
org/licenses/by/3.0/).
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As species differed in ITV changing trend in either direction 
(increasing versus decreasing ITV over time) and magnitude (how 
fast a species has increased in ITV over time or ITV increasing rate), we 
further assessed covariates associated with interspecific differences 
of ITV changing direction and magnitude. Using phylogenetic LMMs, 
we found that human activity was a main driver of increasing ITV. 
Relative to species not exploited by humans, mammal and bird species 
subject to human harvesting had a higher probability of increasing 
ITV (positive changing direction; P = 0.059 for mammals, P = 0.068 
for birds; Fig. 3 and Supplementary Table 4). ITV of human-harvested 
bird species also increased faster than that of birds free from human 
exploitation (larger ITV changing magnitude; P = 0.031). In addition, 
mammal species that are capable of using artificial habitats had larger 
ITV increasing magnitude during the study period (P = 0.058). We 
also found that species inherent traits were associated with mammal 
ITV change patterns. Specifically, greater body mass was associated 
with higher probability of species experiencing decreasing ITV over 
time (P = 0.035; Fig. 3 and Supplementary Table 4); ITV of species with 
smaller litter size was more likely to increase (P = 0.010) and increased 
faster during the studied period (P = 0.012; Fig. 3 and Supplementary 
Table 4). For the 78 studied bird species, however, species inherent 
traits were not associated with ITV changing trend (P > 0.1).

Discussion
While body size shrinkage has been widely reported as a general pat-
tern in response to recent environmental change2,6, ITV trend and its 
relative contributions to animal responses remain elusive. By analysing 
~400,000 mammal and bird specimen records from 302 mammal and 78 

bird species in North America, we found that body size ITV increased by 
9.59% for mammals and 30.67% for birds from 1880 to 2020. Moreover, 
human-harvested mammal and bird species had a higher probability of 
experiencing increasing ITV but larger-sized mammal species and species 
with larger litter size had a higher probability of experiencing decreasing 
ITV. Our results suggest that niche expansion could be a general trend 
across many mammals and birds in North America in the face of envi-
ronmental change in the recent century, emphasizing the potential of 
species to cope with new environmental challenges. We suggest distinct 
but complementary roles between ITV and trait means and provide better 
understanding of the species ability to persist under rapid global change.

Increasing ITV is driven by the emergence of individuals with 
new body size extremes within species. Typical examples include 
the extension of trait distribution in the same direction as trait mean 
shifts, with (Fig. 2a,d) or without (Fig. 2b,e) the loss of trait extremes 
at the other end of trait distribution. Several studies have reported 
that directional trait shifts were accompanied by the creation of new 
trait extremes in the same direction of selection on trait means4,8,26. For 
example, the smallest body sizes were found to decrease (new body size 
values) within wild animal populations along with averaged body size 
decline, due to a warming-driven trophic mismatch8 or hunting-driven 
early maturation26. In contrast, new trait extremes can be produced 
in the opposite direction of selection on trait means (Fig. 2c,f), such 
as in species adopting bet-hedging strategies in highly stressful or 
unpredictable environments18. For example, obligate avian brood 
parasites were found to choose more diverse hosts (increasing ITV in 
host selection behaviour) with increasing temperature variability27, 
creating new trait values randomly.
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Fig. 2 | Examples of body size intraspecific distribution change from history 
to present. a–f, In downsizing species with increasing ITV, examples of three 
types of trait frequency distribution change are shown here, including the 
creation of new small extremes with the loss of large values (a,d); the creation 
of new small extremes without the loss of large values (b,e); and the creation 
of new trait extremes at both ends of trait distribution (c,f). Density plots show 
intraspecific trait distributions in history (grey areas) versus at present (red 
areas). Specifically, examples show trait distributions of Blarina carolinensis 

during 1947–1957 (n = 15) versus 2007–2017 (n = 151) (a); Sciurus carolinensis 
during 1893–1903 (n = 148) versus 2003–2013 (n = 97) (b); Lepus othus during 
1969–1979 (n = 58) versus 2004–2014 (n = 21) (c); Bubo virginianus during 
1960–1970 (n = 10) versus 2004–2014 (n = 68) (d); Zenaida macroura during 
1973–1983 (n = 13) versus 2008–2018 (n = 49) (e); and Callipepla californica 
during 1895–1905 (n = 23) versus 1985–1995 (n = 24) (f). Credit: Silhouettes are 
from http://phylopic.org/ (Becky Barnes (a), Andy Wilson (b), xgirouxb (c,d), 
Ferran Sayol (e,f); https://creativecommons.org/licenses/by/3.0/).
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The creation of new trait extremes alone is not sufficient to explain 
the increasing ITV pattern we observed if there is rapid trait truncation 
at the other end of the trait distribution. This also suggests that indi-
viduals with old trait values still persist or at least the rate of trait loss 
is slower than that of new trait creation (Fig. 2a,d), such as in systems 
where the selection pressure was non-lethal for old trait values. For 
example, in polar bears (Ursus maritimus) with averaged body size 
shrinkage in response to warming, the smallest individuals were becom-
ing smaller (the creation of new trait extremes) while large individuals 
survived (the retaining of old trait values)28.

Although ITV has increased in many North American mammal 
and bird species, we found that species can differ in magnitude and 
direction of ITV changing trend, with human activity as a main driver 
of increasing ITV. These results add to the finding that human activity 
is not only a vital driving force in species-averaged trait shifts7 but it 
is also influencing species trait distribution, in particular ITV17,29. For 
example, increasing body size ITV has been found in fishery systems 
because ‘cautious’ fishes can escape from size-selective harvesting 
and grow to a large size (thereby the retaining of old trait values), while 
more small-bodied fishes were produced under harvest pressure26. 
After being protected from human harvesting, loggerhead turtles 
(Caretta caretta) had more successful small-bodied first-time nesters 
producing individuals with small body size30. The increasing frequency 
of small-bodied turtles has driven declined ITV of the loggerhead turtle 
population.

Body size ITV trends were also associated with species inherent 
traits. We showed that large-bodied mammal species were more likely 

to have decreasing ITV and possibly a narrowing niche in the face of 
environmental change than were small-bodied species. Similarly, 
large-bodied species were found to be more affected by size-based 
selection such as climate warming and had a faster decline rate in 
body size than smaller species3,21. Moreover, litter size was negatively 
associated with ITV changing trend in mammals, implying that large 
litter size may accelerate trait truncation, resulting in increasing prob-
ability of declining ITV over time. As ITV is associated with species 
niche breadth and the ability to persist under new environments or 
threats10,12,13, such non-random ITV changing trend across species will 
further affect winner–loser replacement in communities and alter 
ecosystem functioning3,24.

Theory predicts that high trait variation can provide alternative 
strategies for species response to environment change. Increasing 
frequency of rare trait values can contribute to adaptive potential in 
new conditions and reduce extinction risk in rapidly changing environ-
ments12. Therefore, the observed increasing ITV pattern should be a 
positive signal, offering many species a higher chance of persistence in 
the face of new environmental challenges. For example, male Túngara 
frogs (Physalaemus pustulosus) from urban populations developed 
more sexually attractive calls made at higher rates and greater complex-
ity than did forest frogs31. Increasing ITV in calls allowed Túngara frogs 
to expand their niche breadth from natural forests to urban habitats. In 
cases of adaptive responses, the retention of old trait values can secure 
the ability of shrinking species to rebound to the initial trait structure if 
selective forces are mitigated29. In addition, increasing ITV can indicate 
successful conservation efforts, such as those for European lobsters 
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Fig. 3 | Drivers of interspecific differences in body size ITV changing trend. 
a–d, Relative effects of species-specific features on changing direction (a,c) 
and magnitude of body size ITV (b,d) over the recent 140 yr. Centres (dots) 
represent standardized coefficient estimates with 95% (thin segments) and 90% 

(thick segments) confidence intervals in phylogenetic LMMs (Supplementary 
Table 4) for mammals (n = 302) (a,b) and birds (n = 78) (c,d). Credit: Silhouettes 
are from http://phylopic.org/ (xgirouxb[squirrel], Andy Wilson[bird]; https://
creativecommons.org/licenses/by/3.0/).

http://www.nature.com/natecolevol
http://phylopic.org/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Nature Ecology & Evolution | Volume 7 | March 2023 | 347–354 351

Article https://doi.org/10.1038/s41559-022-01967-w

(Homarus gammarus). For this species, individuals within protected 
areas and free from harvest pressure have increased in body size com-
pared to individuals in unprotected locations which have undergone 
harvest-driven downsizing; ITV has therefore increased in European 
lobsters across protected and unprotected areas32.

However, increasing ITV has costs. High ITV implies increasing 
probability of maladaptation, with increasing trait variance potentially 
driven by inaccurate sensing or prediction of environmental cues in 
unpredictable and fluctuating conditions or the disruption of develop-
mental processes under new environmental stressors33; both of which 
will decrease species-averaged fitness in a short term14,34. In addition, 
new trait values may be maladapted and associated with reduced fit-
ness. For example, warming-induced bill shortening in the red knot 
(Calidris canutus) compromised individual fitness due to diet change 
because birds with short bills had to feed on shallowly buried low-quality 
seagrass rhizomes instead of deeply buried high-quality bivalve prey8. 
Human-generated resources can be an important driver of new trait 
values in wild animals, with alternative food opportunities provided 
by people increasing diet variability35,36. However, a strong influence of 
human-generated resources on animal traits might be an ‘evolutionary 
trap’. Both the quantity and quality of these resources are controlled by 
humans and can change quickly and unpredictably, raising extinction 
risk for species attempting to adapt to these new resources37. For exam-
ple, during the COVID-19 outbreak and restricted tourism, animals that 
relied on food provided by tourists suffered from starvation38.

Our study has some limitations. First, our work was based on speci-
men collections, with possible sampling bias due to geographical and 
seasonal preferences of specimen collectors39. Second, we analysed 
specimen records only at a continental level in North America but 
body size ITV changing trend may vary across biogeographic realms 
and scales. Third, due to limited trait data in the specimen dataset, we 
assessed only 302 mammal species and 78 bird species in North Amer-
ica. Relative to the total number of known species in North America 
(916 mammal species and 1,962 bird species40), our taxonomic cover-
age was limited (see the detailed risk of bias assessment according 
to the ROBITT procedure41 in the Supplementary Note). Moreover, 
our conclusion was biased towards non-threatened species in North 
America and the increasing ITV pattern may not be universal among 
all species, especially among those at high risk of extinction and/or 
experiencing population decline15. Thus, it is critical for future studies 
to assess long-term ITV trends in a broader taxonomic and geographical 
coverage. Finally, mechanisms underlining intraspecific trait structure 
change and cascading effects on population dynamics remains unclear 
and elucidating them will require explicit and long-term monitoring 
of specific populations.

We have discovered an increased ITV pattern in many North Ameri-
can mammal and bird species between 1880 and 2020. Our results 
suggest that niche expansion could be a general trend across many 
species in the face of environmental change in the past century, empha-
sizing the potential for species to cope with environmental challenges. 
Increasing ITV and the retention of large-bodied individuals indicate 
possible buffering effects against average body size decline, which can 
potentially mitigate negative ecological impacts from downsizing on 
local ecological processes. With larger species having higher prob-
ability of showing a decreasing ITV, however, such buffering effects 
will be limited as larger species have been found to have faster down-
sizing rates21. Conversely, increasing ITV comes with a possibility of 
maladaptation and fitness decline. With increasing unpredictability of 
environmental change42, it is reasonable to expect that a bet-hedging 
strategy and an increase in ITV will be increasingly common across 
species. During this process, some species may fail to switch between 
strategies and species extinction risk could be elevated43. Thus, it is 
critical to include trait variance in addition to trait means, to provide 
a clearer understanding of species responses to rapid environmental 
changes.

Methods
Data compilation
We used museum specimen datasets from the VertNet database to 
obtain individual-level body length (head-to-tail length) data of mam-
mals and birds collected between 1880 and 2020. We used body length 
as the measure of body size because it is highly correlated with body 
mass44, has implications for individual fitness8 and has been meas-
ured for many specimens in VertNet datasets. We acknowledge that 
body mass is a more direct measure of body size. However, body mass 
measurements are highly variable in regard to the level of dehydra-
tion when the specimen is being weighed and the season when the 
specimen is being collected, yet such information was not available 
for most of the specimen records. Therefore, we considered that body 
length measurements were more reliable compared to VertNet body 
mass data. To control for data quality, we first removed records lack-
ing species identification information or collection date and location 
(at continental level). Taxonomic information for each species was 
checked and modified following the taxonomy in VertLife (accessed 
in November 2021). As we focused on wild populations, records from 
laboratory or zoo animals were excluded. To minimize the influence of 
ontogenetic differences, records classified as non-adult were excluded. 
At this stage, the dataset included a total of 435,527 mammal specimens 
representing 367 species and 16,081 bird specimens representing 88 
species. Second, we removed anomalous measurements differing by 
>20% from the median body size value in the dataset for each species 
(7.8% mammal specimen records and 2.4% bird specimen records were 
removed). We note that specimen records without life stage informa-
tion were included in the data subset before removing anomalous 
measurements and suspected non-adult records were then removed 
as anomalous measurements. To obtain sufficient trait measurements 
and minimize bias in calculating ITV, we extracted species with more 
than ten valid measurements of total body length at every 5, 10 or 15 yr 
interval, depending on the number of records across the years (Supple-
mentary Table 1). Only species with sufficient data spanning at least a 
20 yr range were retained for further analysis, leaving a total of 400,234 
mammal specimens representing 347 species and 15,178 bird speci-
mens representing 81 species. Within this dataset, 95.7% of mammal 
specimens (n = 382,849) and 97.4% of bird specimens (n = 14,791) were 
collected from North America. To minimize bias in calculating ITV due 
to different sampling geographical scales, we excluded records from 
outside of North America. Finally, we re-evaluated data sufficiency for 
ITV calculation with above criteria, leaving a total of 379,158 mammal 
specimens representing 302 species and 14,341 bird specimens repre-
senting 78 species for subsequent analysis (Supplementary Table 1).

To assess drivers associated with ITV changing trend (direction 
and magnitude), we compiled two groups of variables: human-related 
features (human harvest of the species and species ability to use artifi-
cial habitats) and species inherent traits (body mass, habitat breadth, 
generation length and litter/clutch size). Specifically, hunter prefer-
ence for large-sized individuals can either increase ITV if hunting was 
not lethal for all large individuals with more small individuals produced 
or decrease ITV due to directional selection and trait truncation under 
intensive harvest pressure29. Moreover, species that can use artificial 
habitats will have higher increasing rate of ITV than natural habitat 
specialists due to potential relaxation of selection with adequate food 
resources and an absence of natural predators17.

As for species inherent traits, we considered body mass, habitat 
breadth (the number of suitable habitats), generation length and lit-
ter/clutch size as four variables possibly associated with ITV changing 
trends. As large-bodied species have been found to be more affected 
by changing selective pressure on body size compared to small-bodied 
species21, we expected that large-bodied species would have a higher 
probability of experiencing a loss of large-bodied individuals and 
decreasing ITV. In addition, habitat breadth or the ability to use diverse 
habitat is strongly related to species niche breadth, which is expected 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | March 2023 | 347–354 352

Article https://doi.org/10.1038/s41559-022-01967-w

to be positively correlated with ITV, as predicted in niche variation 
hypothesis45. In addition, species with shorter generation length may 
have higher ITV changing rate due to faster demographic rate46. As 
body size is a heritable trait47, large litter/clutch size allows optimum 
trait values to be transmitted to a large number of individuals. The 
increasing frequency of optimum trait values will lead to trait conver-
gence and decreasing ITV.

Due to the scarcity of long-term ITV data across traits across spe-
cies, we obtained species-averaged traits to assess potential covariates 
associated with species ITV changing trend, while temporal changes 
in these covariates were out of the scope in this study. Specifically, 
human harvest of the species was assessed as whether the species has 
been harvested by human as food, medicine or sport hunting. This 
assessment was based on information in the International Union for 
Conservation of Nature (IUCN) Red List40 (v.2021–2). Similarly, data on 
generation length, species ability to use artificial habitats, which was 
assessed as whether the species can use artificial habitats and habitat 
breadth for each species, which was calculated as the number of suit-
able habitats, was extracted from the IUCN Red List40. Body mass and 
clutch or litter size for birds and terrestrial mammals were extracted 
from ref. 24 and body mass of aquatic mammal species were extracted 
from PanTHERIA48. Missing values of clutch or litter size were further 
obtained from Animal Diversity Web (animaldiversity.org; accessed 
in November 2021). The compiled dataset used in this study can be 
found in Figshare (https://doi.org/10.6084/m9.figshare.21587145.v1).

Statistical analysis
To control the effects of varying sampling size on the value of coefficient 
of variation (CV), we randomly sampled ten specimen records without 
replacement within each year interval to calculate CV, using ‘sample’ 
function in R v.4.1.1 (ref. 49). To reduce the bias in calculating CV due to 
small sample size and non-normal distribution of trait values, we used 
Bao’s coefficient of variation (CVb), which incorporated sample size, 
skewness and kurtosis of the trait sample distribution in calculating 
CV25. Specifically, CVb was calculated with loge-transformed body length 
data within each year interval, as CVb = CV − CV3

N
+ CV

4N
+ CV2γ1

2N
+ CVγ2

8N
;  

where CV is the coefficient of variation calculated as the ratio of stand-
ard deviation to mean of the trait sample, N is the sample size and γ1 
and γ2 are the skewness and kurtosis of the trait sample distribution25. 
The random-sampling procedure was repeated 999 times and ITV 
estimates were taken as the average of all CVb values from 999 subsam-
ples of each species during each year interval.

To assess the general trends of body size mean and ITV over time 
for mammal and bird species, we applied LMMs on loge-transformed 
body size with a Gaussian error distribution with an identity link and 
generalized linear mixed effects models (GLMMs) on CVb with a Gauss-
ian error distribution with a log link using the ‘lme4’ package v.1.1–27.1 
(ref. 50) in R v.4.1.1 (ref. 49). Body size was loge-transformed before 
analyses because of high skewness of body size distribution among 
species (species with larger mean body size have much larger body size 
variance). In our model of mean body size, the fixed predictor effect 
was the year of a specimen being collected, and in the ITV model, the 
fixed predictor effect was the final year of each year interval used in 
calculating CVb. In both models, nested taxonomic information (spe-
cies within family and family within order) was treated as a random 
intercept to account for phylogenetic relationships among species. 
For each species, ITV temporal changing magnitude was assessed by 
applying generalized linear models (GLMs) on CVb with a Gaussian error 
distribution with a log link with year as the fixed predictor. The slopes 
of species-specific models were extracted as species ITV changing 
magnitude for further analysis.

To assess sex-based differences in ITV changing trend, we further 
extracted a subset of specimen records with information on gender. 
We re-evaluated data sufficiency of calculating ITV over time for each 
sex of each species, leaving 164,149 females of 270 species and 184,632 

males of 266 species of mammals and 2,254 females of 37 species and 
4,831 males of 50 species of birds for assessment. We calculated CVb 
over time with loge-transformed body length using the same approach 
as described above. We applied GLMMs on CVb with a Gaussian error 
distribution with a log link in the ‘lme4’ package v.1.1–27.1 (ref. 50) in 
R v.4.1.1 (ref. 49) to test sexual differences in CVb changing trend. For 
mammals and birds separately, we treated CVb as the response variable, 
the final year of each year interval used in calculating ITV, sex informa-
tion and the interaction between these two variables as fixed predictors 
and nested taxonomic information (species within family and family 
within order) as a random intercept.

Covariates associated with species ITV temporal changing 
trends (changing magnitude and direction) were analysed using 
phylogenetic LMMs with the ‘phyr’ package 1.1.0 (ref. 51) in R v.4.1.1 
(ref. 49), on mammals and birds separately. Specifically, ITV chang-
ing magnitude models were fitted with a Gaussian error distribu-
tion and ITV changing direction models were fitted with a binomial 
error distribution with logit link. In all models, fixed predictors 
included species-level averaged body mass (loge-transformed), habi-
tat breadth, generation length (loge-transformed), litter/clutch size, 
the ability to use artificial habitat (no use as ‘0’, use as ‘1’) and human 
usage of the species (no use as ‘0’, use as ‘1’). The variance inflation 
factor values for all predictors in the models were <3. Phylogenetic 
covariance matrix among species was included as a random effect 
to account for complete phylogenetic relationships among spe-
cies. For mammals and birds, respectively, we downloaded 10,000 
species-level pruned trees with species included in our analysis (302 
mammal species and 78 bird species) from the posterior distribu-
tions of complete trees produced by refs. 52,53 from VertLife. The 
maximum clade credibility (MCC) tree was obtained from the 10,000 
trees with common ancestor node heights using BEAST v.1.10.4 
(ref. 54) for each group. The MCC trees were used to account for 
phylogenetic relationships among species in phylogenetic LMMs. 
In the models, variables with 90% confidence interval of the regres-
sion coefficient not overlapping zero are considered as important 
covariates associated with ITV changing trend. The 90% confidence 
interval was chosen as a conservative estimate of existing relation-
ships following a neoFisherian approach55. Finally, both models were 
refitted with z-transformed variables (standardized to zero mean and 
unit standard deviation) to obtain the relative effects of each covari-
ate on ITV changing trends (standardized regression coefficients).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data from this work can be found in https://doi.org/10.6084/
m9.figshare.21587145.v1 (Supplementary Data 1–3).

Code availability
Code from this work can be found in https://doi.org/10.6084/
m9.figshare.21587145.v1 (Supplementary Software).
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