Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional and mutational signatures of the Drosophila ageing germline

Abstract

Ageing is a complex biological process that is accompanied by changes in gene expression and mutational load. In many species, including humans, older fathers pass on more paternally derived de novo mutations; however, the cellular basis and cell types driving this pattern are still unclear. To explore the root causes of this phenomenon, we performed single-cell RNA sequencing on testes from young and old male Drosophila and genomic sequencing (DNA sequencing) on somatic tissues from the same flies. We found that early germ cells from old and young flies enter spermatogenesis with similar mutational loads but older flies are less able to remove mutations during spermatogenesis. Mutations in old cells may also increase during spermatogenesis. Our data reveal that old and young flies have distinct mutational biases. Many classes of genes show increased postmeiotic expression in the germlines of older flies. Late spermatogenesis-biased genes have higher dN/dS (ratio of non-synonymous to synonymous substitutions) than early spermatogenesis-biased genes, supporting the hypothesis that late spermatogenesis is a source of evolutionary innovation. Surprisingly, genes biased in young germ cells show higher dN/dS than genes biased in old germ cells. Our results provide new insights into the role of the germline in de novo mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of experimental design and visualization of old and young datasets.
Fig. 2: The proportion of mutated cells and mutation load across cell types for young and old flies.
Fig. 3: Age-related trends in mutational signatures.
Fig. 4: Global expression patterns of de novo genes and TEs changes with age in each cell type.
Fig. 5: dN/dS trends of cell type- and age-biased genes.

Similar content being viewed by others

Data availability

Raw sequence data have been deposited to NCBI BioProject no. PRJNA777411.

Code availability

The code used for processing the data has been deposited at https://github.com/LiZhaoLab/Mutation_project. This repository also includes permanent links to large data files including a Seurat RDS and mutation database.

References

  1. Gao, Z. et al. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl Acad. Sci. USA 116, 9491–9500 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Crow, J. F. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1, 40–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Gao, Z., Wyman, M. J., Sella, G. & Przeworski, M. Interpreting the dependence of mutation rates on age and time. PLoS Biol. 14, e1002355 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  4. Drost, J. B. & Lee, W. R. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among Drosophila, mouse, and human. Environ. Mol. Mutagen. 25, 48–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, J.-J. et al. Highly variable recessive lethal or nearly lethal mutation rates during germ-line development of male Drosophila melanogaster. Proc. Natl Acad. Sci. USA 108, 15914–15919 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Li, W. H., Ellsworth, D. L., Krushkal, J., Chang, B. H. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phylogenet. Evol. 5, 182–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Huttley, G. A., Jakobsen, I. B., Wilson, S. R. & Easteal, S. How important is DNA replication for mutagenesis? Mol. Biol. Evol. 17, 929–937 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Irigaray, P. et al. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed. Pharmacother. 61, 640–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Parkin, D. M., Boyd, L. & Walker, L. C. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer 105, S77–S81 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  10. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Witt, E., Benjamin, S., Svetec, N. & Zhao, L. Testis single-cell RNA-seq reveals the dynamics of de novo gene transcription and germline mutational bias in Drosophila. eLife 8, e47138 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lee, M.-H., Luo, H.-R., Bae, S. H. & San-Miguel, A. Genetic and chemical effects on somatic and germline aging. Oxid. Med. Cell. Longev. 2020, 4684890 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jones, D. L. Aging and the germ line: where mortality and immortality meet. Stem Cell Rev. 3, 192–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Cawthon, R. M. et al. Germline mutation rates in young adults predict longevity and reproductive lifespan. Sci. Rep. 10, 10001 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Xia, B. et al. Widespread transcriptional scanning in testes modulates gene evolution rates. Cell 180, 248–262 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Thurmond, J. et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 47, D759–D765 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Witt, E., Shao, Z., Hu, C., Krause, H. M. & Zhao, L. Single-cell RNA-sequencing reveals pre-meiotic X-chromosome dosage compensation in Drosophila testis. PLoS Genet. 17, e1009728 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Svetec, N., Cridland, J. M., Zhao, L. & Begun, D. J. The adaptive significance of natural genetic variation in the DNA damage response of Drosophila melanogaster. PLoS Genet. 12, e1005869 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Singh, N. D., Bauer DuMont, V. L., Hubisz, M. J., Nielsen, R. & Aquadro, C. F. Patterns of mutation and selection at synonymous sites in Drosophila. Mol. Biol. Evol. 24, 2687–2697 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Juge, F., Fernando, C., Fic, W. & Tazi, J. The SR protein B52/SRp55 is required for DNA topoisomerase I recruitment to chromatin, mRNA release and transcription shutdown. PLoS Genet. 6, e1001124 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ishikawa, T. et al. Mutagenic and nonmutagenic bypass of DNA lesions by Drosophila DNA polymerases dpolη and dpolι. J. Biol. Chem. 276, 15155–15163 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Su, T. T. et al. Cell cycle roles for two 14-3-3 proteins during Drosophila development. J. Cell Sci. 114, 3445–3454 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Good, J. M. & Nachman, M. W. Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis. Mol. Biol. Evol. 22, 1044–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lawlor, M. A., Cao, W. & Ellison, C. E. A transposon expression burst accompanies the activation of Y-chromosome fertility genes during Drosophila spermatogenesis. Nat. Commun. 12, 6854 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lee, Y. C. G. & Langley, C. H. Transposable elements in natural populations of Drosophila melanogaster. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1219–1228 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stanley, C. E. J.Jr & Kulathinal, R. J. flyDIVaS: a comparative genomics resource for Drosophila divergence and selection. G3 (Bethesda) 6, 2355–2363 (2016).

    Article  PubMed  Google Scholar 

  31. Schumacher, J. & Herlyn, H. Correlates of evolutionary rates in the murine sperm proteome. BMC Evol. Biol. 18, 35 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Austad, S. N. & Hoffman, J. M. Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Public Health 2018, 287–294 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Article  Google Scholar 

  34. Loewe, L. & Hill, W. G. The population genetics of mutations: good, bad and indifferent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1153–1167 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Barreau, C., Benson, E., Gudmannsdottir, E., Newton, F. & White-Cooper, H. Post-meiotic transcription in Drosophila testes. Development 135, 1897–1902 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Harris, I. D., Fronczak, C., Roth, L. & Meacham, R. B. Fertility and the aging male. Rev. Urol. 13, e184–e190 (2011).

    PubMed Central  PubMed  Google Scholar 

  37. Xia, B. & Yanai, I. Gene expression levels modulate germline mutation rates through the compound effects of transcription-coupled repair and damage. Hum. Genet. 141, 1211–1222 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Deger, N., Yang, Y., Lindsey-Boltz, L. A., Sancar, A. & Selby, C. P. Drosophila, which lacks canonical transcription-coupled repair proteins, performs transcription-coupled repair. J. Biol. Chem. 294, 18092–18098 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lanciano, S. & Cristofari, G. Measuring and interpreting transposable element expression. Nat. Rev. Genet. 21, 721–736 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, C. & Kirkpatrick, M. Molecular evolution and the decline of purifying selection with age. Nat. Commun. 12, 2657 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Witt, E., Svetec, N., Benjamin, S. & Zhao, L. Transcription factors drive opposite relationships between gene age and tissue specificity in male and female Drosophila gonads. Mol. Biol. Evol. 38, 2104–2115 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sharp, N. P. & Agrawal, A. F. Low genetic quality alters key dimensions of the mutational spectrum. PLoS Biol. 14, e1002419 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Verheijen, B. M. & van Leeuwen, F. W. Commentary: the landscape of transcription errors in eukaryotic cells. Front. Genet. 8, 219 (2017).

    Article  PubMed Central  Google Scholar 

  45. Kawase, E., Wong, M. D., Ding, B. C. & Xie, T. Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development 131, 1365–1375 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hwa, J. J., Hiller, M. A., Fuller, M. T. & Santel, A. Differential expression of the Drosophila mitofusin genes fuzzy onions (fzo) and dmfn. Mech. Dev. 116, 213–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Courtot, C., Fankhauser, C., Simanis, V. & Lehner, C. F. The Drosophila cdc25 homolog twine is required for meiosis. Development 116, 405–416 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Papagiannouli, F. & Mechler, B. M. discs large regulates somatic cyst cell survival and expansion in Drosophila testis. Cell Res. 19, 1139–1149 (2009).

    Article  PubMed  Google Scholar 

  49. Narasimhan, V. et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749–1751 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Duan and C. Zhao at the Genomics Resource Center of Rockefeller University for their help with the scRNA-seq libraries and members of the Zhao lab for their helpful comments and suggestions. We thank Z. Gao from UPenn for the suggestions on interpreting mutational signatures. The work was supported by National Institutes of Health MIRA no. R35GM133780, the Robertson Foundation, a Monique Weill-Caulier Career Scientist Award, a Rita Allen Foundation Scholar Program, a Vallee Scholar Program (no. VS-2020-35) and an Alfred P. Sloan Research Fellowship (no. FG-2018-10627) to L.Z.

Author information

Authors and Affiliations

Authors

Contributions

E.W. and L.Z. conceived the study and designed the experiments and analysis. C.B.L., E.W. and N.S. performed the experiments and generated the data. E.W. performed all the analysis with input from L.Z. E.W. and L.Z. wrote the manuscript with the input from all authors.

Corresponding author

Correspondence to Li Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Shixiang Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dot plots of key marker genes in old and young fly testes.

Split by cell type, these are the average expression values of the ‘SCT’ slot in the old (a) and young (b) Seurat objects. Color corresponds to the level of expression, and the size of the dot represents the percent of cells of a class where a gene is detected.

Extended Data Fig. 2 Correlograms of germ cells between scRNA-seq replicates.

Correlations have been split between cell types. For each cell type, replicates from each age group all correlate with Pearson’s R>0.91. Correlations were drawn from gene expression values from the ‘RNA’ slot of the Seurat object using the corrplot R package.

Extended Data Fig. 3 Age-related differential expression of genes, including genome maintenance genes.

Shown are the results of differential expression tests between old and young flies, calculated separately for each cell type. Log2 fold changes refer to the ratio between expression in young compared to old flies. P values are from a 2-sided Wilcoxon test and corrected with Bonferroni’s correction. Enrichment statistics for genome maintenance genes are in Supplementary Table 2.

Extended Data Fig. 4 Expression vs. number of SNPs detected.

We averaged the expression of every gene across every replicate and then compared the number of SNPs detected within genes with lower than mean expression (‘Low expression’, n = 310) with genes with expression greater than the mean expression of all genes (‘High expression’, n = 1488). For each group we compared genes with a two-sided Wilcoxon test, then adjusted p values with Bonferroni’s correction. There are significantly more mutations in lowly expressed genes in every replicate. Boxes represent the 75th to 25th percentiles, the top whisker represents the largest value within 1.5 times the interquartile range, and the bottom whisker represents the smallest value within 1.5 times the interquartile range of the 25th percentile.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witt, E., Langer, C.B., Svetec, N. et al. Transcriptional and mutational signatures of the Drosophila ageing germline. Nat Ecol Evol 7, 440–449 (2023). https://doi.org/10.1038/s41559-022-01958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01958-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing