Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plant–pollinator network change across a century in the subarctic

Abstract

Animal-mediated pollination is a vital ecosystem service to crops and wild plants, and long-term stability of plant–pollinator interactions is therefore crucial for maintaining plant biodiversity and food security. However, it is unknown how the composition of pollinators and the structure of pollinator interactions have changed across longer time spans relevant to examining responses to human activities such as climate change. We resampled an historical dataset of plant–pollinator interactions across several orders of pollinating insects in a subarctic location in Finland that has already experienced substantial climate warming but little land use change. Our results reveal a dramatic turnover in pollinator species and rewiring of plant–pollinator interactions, with only 7% of the interactions shared across time points. The relative abundance of moth and hoverfly pollinators declined between time points, whereas muscoid flies, a group for which little is known regarding conservation status and responses to climate, became more common. Specialist pollinators disproportionately declined, leading to a decrease in network-level specialization, which could have harmful consequences for pollination services. Our results exemplify the changes in plant–pollinator networks that might be expected in other regions as climate change progresses.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Changes in pollinator community composition across time points.
Fig. 2: Weighted plant–pollinator interaction networks.
Fig. 3: Network-wide specialization index (H2´) for the past and present networks and linear trend of species-level specialization () and change in relative abundance.
Fig. 4: Network-wide specialization index (H2´) for the past and present networks and linear trends of species-level specialization () and change in relative abundance for separate subsets of taxa.
Fig. 5: Values of the species-level metric PSI and 95% bootstrap confidence intervals.

Data availability

We published a description of the full historical data64 and have made the data openly available on figshare (https://doi.org/10.6084/m9.figshare.c.5828663.v4)65. The subset of historical data and current data used in this work are freely available from GitHub (https://github.com/LeanaZ/Dramatic-plant-pollinator-network-change-across-more-than-a-century-in-the-subarctic). Information on location and accessibility of preserved insect specimens can be requested from the authors. The Biolflor database can be accessed via https://wiki.ufz.de/biolflor/index.jsp.

Code availability

The R code used for main analyses in this work is available from GitHub (https://github.com/LeanaZ/Dramatic-plant-pollinator-network-change-across-more-than-a-century-in-the-subarctic).

References

  1. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  Google Scholar 

  2. Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).

    Article  CAS  Google Scholar 

  3. Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).

    Article  Google Scholar 

  4. Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524 (2021).

    Article  Google Scholar 

  5. Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    Article  CAS  Google Scholar 

  6. Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).

    Article  CAS  Google Scholar 

  7. Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    Article  Google Scholar 

  8. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    Article  Google Scholar 

  9. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  Google Scholar 

  10. Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    Article  Google Scholar 

  11. Valdovinos, F. S. et al. Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun. 9, 2153 (2018).

    Article  Google Scholar 

  12. Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).

    Article  Google Scholar 

  13. Brosi, B. J. Pollinator specialization: from the individual to the community. New Phytol. 210, 1190–1194 (2016).

    Article  Google Scholar 

  14. Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).

    Article  Google Scholar 

  15. Waser, N. M. & Ollerton, J. Plant–Pollinator Interactions: From Specialization to Generalization (Univ. of Chicago Press, 2006).

  16. Ashman, T.-L., Arceo-Gómez, G., Bennett, J. M. & Knight, T. M. Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction? Am. J. Bot. 107, 845–847 (2020).

    Article  Google Scholar 

  17. Garibaldi, L. A. et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52, 1436–1444 (2015).

    Article  Google Scholar 

  18. CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2021).

    Article  Google Scholar 

  19. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    Article  CAS  Google Scholar 

  20. Jacquemin, F. et al. Loss of pollinator specialization revealed by historical opportunistic data: insights from network-based analysis. PLoS ONE 15, e0235890 (2020).

    Article  CAS  Google Scholar 

  21. Mathiasson, M. E. & Rehan, S. M. Wild bee declines linked to plant–pollinator network changes and plant species introductions. Insect Conserv. Divers. 13, 595–605 (2020).

    Article  Google Scholar 

  22. Bennett, J. M. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB Plants 10, ply068 (2018).

    Article  Google Scholar 

  23. Doré, M., Fontaine, C. & Thébault, E. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob. Change Biol. 27, 1266–1280 (2021).

    Article  Google Scholar 

  24. Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

    Article  CAS  Google Scholar 

  25. Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    Article  CAS  Google Scholar 

  26. Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).

    Article  Google Scholar 

  27. Kearns, C. A. Anthophilous fly distribution across an elevation gradient. Am. Midl. Nat. 127, 172–182 (1992).

    Article  Google Scholar 

  28. Kevan, P. G. Insect pollination of high arctic flowers. J. Ecol. 60, 831–847 (1972).

    Article  Google Scholar 

  29. Tiusanen, M., Hebert, P. D. N., Schmidt, N. M. & Roslin, T. One fly to rule them all—muscid flies are the key pollinators in the arctic. Proc. Roy. Soc. B 283, 20161271 (2016).

    Article  Google Scholar 

  30. Weiner, C., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).

    Article  Google Scholar 

  31. Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529 (2011).

    Article  Google Scholar 

  32. Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).

    Article  Google Scholar 

  33. Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

    Article  Google Scholar 

  34. Silén, F. Blombiologiska iakttagelser i Kittilä Lappmark. Medd. Soc. Fauna Flora Fennica 31, 80–99 (1906).

    Google Scholar 

  35. Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    Article  Google Scholar 

  36. Erhardt, A. Pollination of Dianthus superbus L. Flora 185, 99–106 (1991).

    Article  Google Scholar 

  37. Witt, T., Jürgens, A., Geyer, R. & Gottsberger, G. Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol. 1, 334–345 (1999).

    Article  CAS  Google Scholar 

  38. Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).

    Article  CAS  Google Scholar 

  39. Ashman, T.-L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).

    Article  Google Scholar 

  40. Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B 282, 20142934 (2015).

    Article  Google Scholar 

  41. Stavert, J. R. et al. Hairiness: the missing link between pollinators and pollination. PeerJ 4, e2779 (2016).

    Article  Google Scholar 

  42. Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508 (2020).

    Article  Google Scholar 

  43. Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B. 279, 4845–4852 (2012).

    Article  Google Scholar 

  44. Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).

    Article  Google Scholar 

  45. Magrach, A., Molina, F. P. & Bartomeus, I. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Commun. J. 1, e1 (2021).

    Article  Google Scholar 

  46. Giménez-Benavides, L., Dötterl, S., Jürgens, A., Escudero, A. & Iriondo, J. M. Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a SileneHadena interaction. Oikos 116, 1461–1472 (2007).

    Google Scholar 

  47. Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    Article  Google Scholar 

  48. Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).

    Article  Google Scholar 

  49. Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).

    Article  CAS  Google Scholar 

  50. Pekkarinen, A. & Teräs, I. Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae). Ann. Zool. Fennici 30, 187–208 (1993).

    Google Scholar 

  51. Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B 284, 20170204 (2017).

    Article  Google Scholar 

  52. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    Article  CAS  Google Scholar 

  53. Arceo-Gómez, G., Barker, D., Stanley, A., Watson, T. & Daniels, J. Plant–pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia 192, 1037–1045 (2020).

    Article  Google Scholar 

  54. de Santiago-Hernández, M. H. et al. The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology 100, e02803 (2019).

    Article  Google Scholar 

  55. Koch, V., Zoller, L., Bennett, J. M. & Knight, T. M. Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol. 10, 13664–13672 (2020).

    Article  Google Scholar 

  56. Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M. & Høye, T. T. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41, 265–277 (2018).

    Article  Google Scholar 

  57. Høye, T. T., Post, E., Schmidt, N. M., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).

    Article  Google Scholar 

  58. Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article  CAS  Google Scholar 

  59. Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article  Google Scholar 

  60. Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B 374, 20170389 (2019).

    Article  Google Scholar 

  61. Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Func. Ecol. https://doi.org/10.1111/1365-2435.14211 (2022).

  62. Hyne, C. J. C. W. Through Arctic Lapland (A. and C. Black, 1898).

  63. Knuth, P. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: ‘Die Befruchtung der Blumen durch Insekten’ (W. Engelmann, 1898).

  64. Zoller, L. & Knight, T. M. Historical records of plant-insect interactions in subarctic Finland.BMC Res. Notes 15, 317 (2022).

    Article  Google Scholar 

  65. Zoller, L. & Knight, T. M. Historical records of plant–insect interactions in subarctic Finland. figshare https://doi.org/10.6084/m9.figshare.c.5828663.v4 (2022).

  66. Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the arctic summer. Sci. Rep. 10, 21187 (2020).

    Article  CAS  Google Scholar 

  67. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  68. Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article  Google Scholar 

  69. Klotz, S., Kühn, I. & Durka, W. Biolflor Database (UFZ—Centre for Environmental Research Leipzig-Halle, 2002); https://www.ufz.de/biolflor/index.jsp

  70. Oksanen, J. et al. vegan: Community ecology package. R version 2.5.7 (2020).

  71. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).

    Article  Google Scholar 

  72. Dormann, C. F. et al. bipartite: Visualising bipartite networks and calculating some (ecological) indices. R version 2.16 (2021).

  73. Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).

    Article  Google Scholar 

  74. Stefan, V. & Knight, T. M. bootstrapnet: Bootstrap network metrics. R version 1.0.0 https://valentinitnelav.github.io/bootstrapnet/ (2021).

  75. Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    Article  Google Scholar 

  76. Poisot, T. Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. Peer Community Journal 2, e35 (2022).

    Article  Google Scholar 

  77. Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1 (2011).

    Google Scholar 

Download references

Acknowledgements

We thank N. Becker, P. Schnitker and V. Koch for assistance with fieldwork, J. Cobain for help in identifying muscoid flies, J. Kahanpää for expert advice on Diptera taxonomy, J. Pieplow for help in identifying bumblebees and J. Everaars for inputs on historical data curation. We are grateful to V. Stefan for support with statistics and R. Leberger for aiding with visualizations. We also thank colleagues in the spatial interaction ecology group whose comments contributed to the improvement of the manuscript. This research was supported by the Alexander von Humboldt professorship and the Helmholtz Recruitment Initiative, both awarded to T.M.K. and by the support of iDiv by the German Research Foundation (FZT 118).

Author information

Authors and Affiliations

Authors

Contributions

T.M.K., J.B. and L.Z. conceived the ideas and designed the methodology. L.Z. and T.M.K. collected the data. L.Z. led the formal analysis and visualization of the data. L.Z. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Leana Zoller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Ignasi Bartomeus, Jane Memmott and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Background on collection of the historical dataset and the study region.

a, Location of the study region Kittilä, Lapland, Finland. Kittilä is situated ~120 km north of the Arctic Circle. b, Portrait of Frans F. Silén, who recorded plant–pollinator interactions in Kittilä in the years 1895–1900 (_. F. _qvist, Haparanda. Metsänhoitaja Frans Johan Frithiof Silén (Forester Frans Johan Frithiof Silén). Photo licensed under CC BY 4.0). c, A fly specimen collected by F. Silén in Kittilä; many specimens from his research are stored in the Finnish Museum of Natural History (© L. Zoller). d-e, Photos of the landscape near Kittilä in d, the year 1932 (Mikkola, Erkki. Panoraama Kittilästä: Kumputunturi Jeesiörovan Pohjoislaidalta (Panorama of Kittilä: Kumputunturi from the northern slope of Jeesiörova). Photo licensed under CC BY 4.0) and e, the year 2018 (© L. Zoller). Both photos show the view towards the fell ‘Kumputunturi’. The village of Kittilä lies just outside the photographic frame on the left.

Extended Data Fig. 2 Linear regression of mean vegetation period temperatures over the years 1895–2019.

Black circles indicate annual mean vegetation period temperatures. The relationship was tested using a simple linear model. The red line depicts the regression line and the grey shaded area indicates the 95% confidence interval. Mean vegetation period temperature significantly increased by 1.53 °C across 124 years (two-tailed t-test, no adjustment for multiple comparisons: F1, 123 = 29.78, P > 0 .001, r = 0.1949).

Extended Data Fig. 3 Histogram showing the frequency of observations of pollinator species.

Observations of pollinators are pooled across time periods, for the past observations, conservative numerical estimates were assumed. For better visibility, one species with 917 observations (Thricops) was excluded from the histogram. Only species with >10 observations (22.37% of species) were used in regressions of change in relative abundance and species specialization ().

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Lists of specialization indices () and change in relative abundance of each species. Numbers are rounded to four digits. Tables are sorted by increasing specialization. Tab one includes the full dataset (all taxa, observations pooled across time periods). Rows printed in bold indicate species with >10 observations. Only these species were used in the regression analyses testing for a dependence of specialization and change in relative abundance (n = 49). Tab two includes four subsets of the data: a, all flies (n = 34); b, bees, wasps and bumblebees (n = 10); c, butterflies and moths (n = 5); and d, hoverflies (n = 27). Only species with >10 observations are included, since only these species were used in the regression analyses testing for a dependence of specialization and change in relative abundance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zoller, L., Bennett, J. & Knight, T.M. Plant–pollinator network change across a century in the subarctic. Nat Ecol Evol 7, 102–112 (2023). https://doi.org/10.1038/s41559-022-01928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01928-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing