Abstract
Atmospheric nitrous oxide (N2O) is a potent greenhouse gas thought to be mainly derived from microbial metabolism as part of the denitrification pathway. Here we report that in unexplored peat soils of Central and South America, N2O production can be driven by abiotic reactions (≤98%) highly competitive to their enzymatic counterparts. Extracted soil iron positively correlated with in situ abiotic N2O production determined by isotopic tracers. Moreover, we found that microbial N2O reduction accompanied abiotic production, essentially closing a coupled abiotic-biotic N2O cycle. Anaerobic N2O consumption occurred ubiquitously (pH 6.4–3.7), with proportions of diverse clade II N2O reducers increasing with consumption rates. Our findings show that denitrification in tropical peat soils is not a purely biological process but rather a ‘mosaic’ of abiotic and biotic reduction reactions. We predict that hydrological and temperature fluctuations differentially affect abiotic and biotic drivers and further contribute to the high N2O flux variation in the region.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
All data to evaluate the conclusions of the study are present in the paper and its Supplementary Information and can be found in the Figshare repository (https://doi.org/10.6084/m9.figshare.19552588.v1). Genomic data have been deposited in the GenBank, EMBL, and DDBJ databases under accession: SAMN27959396, SAMN27959397, SAMN27959398, SAMN27959399, SAMN27959400, SAMN27959401, SAMN27959402, SAMN27959403, SAMN27959404, SAMN27959405, SAMN27959406, SAMN27959407, SAMN27959408, SAMN27959409, SAMN27959410, SAMN27959411, SAMN27959412, SAMN27959413, SAMN27959414, SAMN27959415, SAMN27959416, SAMN27959417, SAMN27959418, SAMN27959419, SAMN27959420, SAMN27959421, SAMN27959422, SAMN27959423, SAMN27959424, SAMN27959425, SAMN27959426, SAMN27959427, SAMN27959428, SAMN27959429, SAMN27959430, SAMN27959431, SAMN27959432, SAMN27959433, SAMN27959434, SAMN27959435, SAMN27959436, SAMN27959437, SAMN27959438, SAMN27959439, SAMN27959440, SAMN27959441, SAMN27959442 and SAMN27959443
References
Thompson, R. L. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Change 9, 993–998 (2019).
Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).
Zhuang, Q., Lu, Y. & Chen, M. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems. Atm. Environ. 47, 66–75 (2012).
Huang, J. et al. Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. J. Geophys. Res. 113, D17313 (2008).
D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).
Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).
Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza-Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).
Buessecker, S. et al. Effects of sterilization techniques on chemodenitrification and N2O production in tropical peat soil microcosms. Biogeosciences 16, 4601–4612 (2019).
Heil, J., Liu, S., Vereecken, H. & Brüggemann, N. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biol. Biochem. 84, 107–115 (2015).
Samarkin, V. A. et al. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat. Geosci. 3, 341–344 (2010).
Otte, J. M. et al. N2O formation by nitrite-induced (chemo)denitrification in coastal marine sediment. Sci. Rep. 9, 10691 (2019).
Jones, L. C., Peters, B., Pacheco, J. S. L., Casciotti, K. L. & Fendorf, S. Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ. Sci. Technol. 49, 3444–3452 (2015).
Tolman, W. B. Binding and activation of N2O at transition-metal centers: recent mechanistic insights. Angew. Chem. Int. Ed. 49, 1018–1024 (2010).
Holtan-Hartwig, L., Dörsch, P. & Bakken, L. R. Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biol. Biochem. 34, 1797–1806 (2002).
Gorelsky, S. I., Ghosh, S. & Solomon, E. I. Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase. J. Am. Chem. Soc. https://doi.org/10.1021/ja055856o (2005).
Tsai, M.-L. et al. [Cu2O]2+ active site formation in Cu–ZSM-5: geometric and electronic structure requirements for N2O activation. J. Am. Chem. Soc. https://doi.org/10.1021/ja4113808 (2014).
Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA 109, 19709–19714 (2012).
Jones, C. M. et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat. Clim. Change 4, 801–805 (2014).
Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26, 43–55 (2018).
Lycus, P. et al. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O. Proc. Natl Acad. Sci. USA 115, 11820–11825 (2018).
Burns, L. C., Stevens, R. J. & Laughlin, R. J. Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biol. Biochem. 27, 839–844 (1995).
Burns, L. C., Stevens, R. J. & Laughlin, R. J. Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol. Biochem. 28, 609–616 (1996).
Wullstein, L. H. & Gilmour, C. M. Non-enzymatic formation of nitrogen gas. Nature 210, 1150–1151 (1966).
Liu, S., Schloter, M., Hu, R., Vereecken, H. & Brüggemann, N. Hydroxylamine contributes more to abiotic N2O production in soils than nitrite. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00047 (2019).
Thorn, K. A. & Mikita, M. A. Nitrite fixation by humic substances: nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. Soil Sci. Soc. Am. J. 64, 568–582 (2000).
Thorn, K. A., Younger, S. J. & Cox, L. G. Order of functionality loss during photodegradation of aquatic humic substances. J. Environ. Qual. 39, 1416–1428 (2010).
Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).
Lovley, D. R. & Blunt-Harris, E. L. Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl. Environ. Microbiol. 65, 4252–4254 (1999).
Kappler, A., Benz, M., Schink, B. & Brune, A. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol. Ecol. 47, 85–92 (2004).
Van Cleemput, O., Patrick, W. H. & McIlhenny, R. C. Nitrite decomposition in flooded soil under different pH and redox potential conditions. Soil Sci. Soc. Am. J. 40, 55–60 (1976).
Van Cleemput, O. & Baert, L. Nitrite: a key compound in N loss processes under acid conditions? Plant Soil 76, 233–241 (1984).
Porter, L. K. Gaseous products produced by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Soil Sci. Soc. Am. J. 33, 696–702 (1969).
Liu, B., Mørkved, P. T., Frostegård, Å. & Bakken, L. R. Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol. Ecol. 72, 407–417 (2010).
Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).
Domeignoz-Horta, L. et al. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.00971 (2015).
Domeignoz-Horta, L. A. et al. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils. Glob. Change Biol. 24, 360–370 (2018).
Onley, J. R., Ahsan, S., Sanford, R. A. & Löffler, F. E. Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl. Environ. Microbiol. 84, 4 (2018).
Sanford, R. A., Cole, J. R. & Tiedje, J. M. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68, 893–900 (2002).
Mohr, K. I., Zindler, T., Wink, J., Wilharm, E. & Stadler, M. Myxobacteria in high moor and fen: an astonishing diversity in a neglected extreme habitat. MicrobiologyOpen 6, e00464 (2017).
Hori, T., Müller, A., Igarashi, Y., Conrad, R. & Friedrich, M. W. Identification of iron-reducing microorganisms in anoxic rice paddy soil by ¹³C-acetate probing. ISME J. 4, 267–278 (2010).
Kawaichi, S. et al. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum ‘Chloroflexi’ isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int. J. Sys. Evol. Microbiol. 63, 2992–3002 (2013).
Podosokorskaya, O. A. et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ. Microbiol. 15, 1759–1771 (2013).
Yoon, S. et al. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I nosz from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793–3800 (2016).
Maher, B. A. & Taylor, R. M. Formation of ultrafine-grained magnetite in soils. Nature 336, 368–370 (1988).
Sanchez, P. A. Properties and Management of Soils in the Tropics (Wiley, 1976).
White, A. F. et al. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim. Cosmochim. Acta 62, 209–226 (1998).
Hall, S. J., Liptzin, D., Buss, H. L., DeAngelis, K. & Silver, W. L. Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130, 177–190 (2016).
Buchwald, C., Grabb, K., Hansel, C. M. & Wankel, S. D. Constraining the role of iron in environmental nitrogen transformations: dual stable isotope systematics of abiotic NO2− reduction by Fe(II) and its production of N2O. Geochim. Cosmochim. Acta 186, 1–12 (2016).
Grabb, K. C., Buchwald, C., Hansel, C. M. & Wankel, S. D. A dual nitrite isotopic investigation of chemodenitrification by mineral-associated Fe(II) and its production of nitrous oxide. Geochim. Cosmochim. Acta 196, 388–402 (2017).
Drewer, J. et al. Linking nitrous oxide and nitric oxide fluxes to microbial communities in tropical forest soils and oil palm plantations in Malaysia in laboratory incubations. Front. For. Glob. Change 3, 4 (2020).
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).
Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).
Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature – a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).
Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. USA 115, 12407–12412 (2018).
Stumm, W. & Lee, G. F. Oxygenation of ferrous iron. Ind. Eng. Chem. 53, 143–146 (1961).
Theis, T. L. & Singer, P. C. Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ. Sci. Technol. 8, 569–573 (1974).
Wan, X. et al. Complexation and reduction of iron by phenolic substances: implications for transport of dissolved Fe from peatlands to aquatic ecosystems and global iron cycling. Chem. Geol. 498, 128–138 (2018).
Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).
Prananto, J. A., Minasny, B., Comeau, L.-P., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).
Stirling, E., Fitzpatrick, R. W. & Mosley, L. Drought effects on wet soils in inland wetlands and peatlands. Earth Sci. Rev. 210, 103387 (2020).
Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).
Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Babbin, A. R., Bianchi, D., Jayakumar, A. & Ward, B. B. Rapid nitrous oxide cycling in the suboxic ocean. Science 348, 1127–1129 (2015).
Hamilton, S. K. & Ostrom, N. E. Measurement of the stable isotope ratio of dissolved N2 in 15N tracer experiments. Limnol. Oceanogr. Methods 5, 233–240 (2007).
Ostrom, N. E., Gandhi, H., Trubl, G. & Murray, A. E. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. Geobiology 14, 575–587 (2016).
Stumm, W. & Morgan, J. J. Aquatic Chemistry 3rd edn (John Wiley & Sons, 1996).
Homyak, P. M., Kamiyama, M., Sickman, J. O. & Schimel, J. P. Acidity and organic matter promote abiotic nitric oxide production in drying soils. Glob. Change Biol. 23, 1735–1747 (2017).
Henry, S., Bru, D., Stres, B., Hallet, S. & Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72, 5181–5189 (2006).
Jones, C. M., Graf, D. R., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417–426 (2013).
Zhang, B. et al. A new primer set for clade I nosZ that recovers genes from a broader range of taxa. Biol. Fertil. Soils 57, 523–531 (2021).
Herbold, C. W. et al. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6, 8966 (2015).
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. Preprint at https://www.biorxiv.org/content/early/2016/10/15/081257 (2016).
Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using Framebot, a new informatics tool. mBio 4, e00592-13 (2013).
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Fish, J. A. et al. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).
Huson, D. H. et al. MEGAN Community Edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
Huson, D. H. et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 13, 6 (2018).
Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12, 385 (2011).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Acknowledgements
We acknowledge R. T. Espinoza, T. P. Gomez, D. Reyna, B. Crnobrna, O. Lähteenoja, K. Arbaiza, A. H. Carmona, P. Fonteboa, R. C. Chaves, J. R. Trucios, C. M. Cadillo-Quiroz, the UFSJ Graduate Program in Geography (PPGEOG) and the Office for International Affairs (ASSIN/UFSJ) for assistance and help during stages of field work. We also thank W. Nitschke (CNRS/BIP) for discussions, M. Abdalla for efforts supporting this effort at the USAID-GDR program at ASU, and the USAID missions in Peru and Brazil.
This study was funded by an NSF-DEB award (no. 1355066) and a SOLS -KED ASU award (ECR A548 HC) to H.C-Q, a Global Development Research Scholarship to S.B. and H.C-Q in partnership with the USAID-Global Development Lab and the Peruvian and Brazilian USAID missions. S.B. also received support from the Lewis & Clark Fund for Exploration and Field Research in Astrobiology provided by the American Philosophical Society (APS). N.E.O. was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409).
Author information
Authors and Affiliations
Contributions
S.B., N.E.O. and H.C.-Q. designed the study; S.B. conducted the field work with essential contributions from A.G.P-C, G.P.P., J.D.U.-M., L.P.R., J.F.-F., J.M.F.M., I.G.B. and B.G.; S.B., M.F.O., A.F.S., M.C.R., R.C. and J.P. performed laboratory experiments and molecular analyses; S.J.H. supported the NO analysis; K.E.H. conducted soil gamma sterilization; C.R.P. supported qPCR analysis. H.G. analysed isotopic abundances of gas samples; S.B., I.G.B., B.G., N.E.O. and H.C.-Q. performed the data analysis. S.B. and H.C.-Q. wrote the manuscript, and all co-authors contributed to the final version of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Luiz Domeignoz, Maija Marushchak and Yit Arn Teh for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Overall workflow of incubations in the field and lab.
This workflow was applied for each peatland. Derived data sets are in circles. At the end of the incubations, microcosms were opened, and soil dry mass was determined for each replicate in order to normalize rates. Headspace of lab incubations was sporadically tested for CO2 accumulation to verify absence of biological activity.
Supplementary information
Supplementary Information
Supplementary Text (activation energy and N2O flux and carbon mineralization calculations), Figs. 1–6, Tables 1–6 and References.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Buessecker, S., Sarno, A.F., Reynolds, M.C. et al. Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nat Ecol Evol 6, 1881–1890 (2022). https://doi.org/10.1038/s41559-022-01892-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-022-01892-y