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Ever since they were first introduced in Sewall Wright’s foun-
dational paper1, fitness landscapes have become an enduring 
and central concept in evolutionary biology2–6. In particular, 

a low-dimensional picture of fitness ‘peaks’ and fitness ‘valleys’ 
has played an important role in shaping intuition around evolu-
tionary dynamics. A key prediction is that a population must typi-
cally traverse an unfavourable valley of lower fitness to move from 
one fitness peak to another. But, as already pointed out by many 
since4,7–11, the space of genotypes is typically extremely high dimen-
sional. As illustrated in Fig. 1, what appears to be a fitness valley 
in a lower-dimensional landscape could be easily bypassed when 
dimensions are added9–11.

Three key open questions are: (1) does the low-dimensional 
picture of fitness valleys hold for realistic high-dimensional geno-
type spaces? And if we define accessible paths of point mutations 
between a low fitness phenotype and a high fitness phenotype as 
those with monotonically increasing fitness, (2) what properties of 
biological systems facilitate their presence and (3) are such paths 
sufficiently common that they can easily be found by an evolving 
population?

One way forward is to consider empirical fitness landscapes, 
where much recent progress has been made5,12, particularly for 
molecular phenotypes5,13–21. This body of work has yielded important 
insights, such as the role of local epistatic interactions in sculpting 
evolutionary paths22–24. Nevertheless, ruling out high-dimensional 
bypasses is difficult in empirical studies because genotype spaces, 
which grow exponentially as KL for alphabet size K and genotype 
length L, are almost always unimaginably vast25. They are also 
highly connected since distances are linear; two genotypes are at 
most L point mutations away, but are connected by up to L! short-
est possible paths given the L mutations may occur in any order. 
For example, even for a very short L = 20 strand of RNA, there are 
up to 20! ≅ 2 × 1018 paths between any two genotypes. Empirical 
landscapes can typically only ever sample a small fraction of the full 
genotype space, so what appears to be an isolated fitness peak, may 
in fact be accessible via pathways not included in the experiment.

A different strand of work, which can in principle address ques-
tions of global accessibility, has focused on model genotype-to-fitness 
landscapes3,6,10,11,26,27. If fitness is assigned randomly to genotypes, 
as in Kingman’s ‘house of cards’ model28, then the probability of 
finding accessible paths is small. If instead there are correlations 
between fitness and the genotypes, then, depending on details of 
the model, accessible paths can indeed be common11,29. These cor-
relations are often expressed in terms of ruggedness: a more rugged 
model has fewer correlations between genotypes and fitness, and so 
is less navigable. While much progress has been made in this litera-
ture, it is not clear how well these models capture the true correla-
tions of biological fitness landscapes.

Here we take a different approach, and build on recent advances 
showing that many realistic genotype-phenotype (GP) maps share 
generic structural features that can enhance navigability30–32. In con-
trast to the genotype-to-fitness models studied by others (above), 
we consider the genotype-to-phenotype-to-fitness map by insert-
ing the GP map as an additional intermediate step that provides the 
non-random organization of the mapping from genotypes to fit-
ness. This means correlations in fitness are naturally incorporated 
as a consequence of the GP map, rather than through an assumption 
explicitly parameterized.

One commonality, with important implications for evolution-
ary dynamics, is the existence of large neutral networks of geno-
types that map to the same phenotype21,33. Another is that the 
mutational robustness ρp of a phenotype p (defined as the mean 
probability that a point mutation leaves the phenotype unchanged) 
is much larger than what one would expect from a naïve uncor-
related model. Without correlations, ρp ≅ fp, where fp is the  
fraction of genotypes that map to phenotype p. However, as  
genotypes from the same neutral network are highly corre-
lated30, robustness is orders of magnitude larger than the naïve  
expectation, scaling as ρp ∝ − log fp, a generic feature observed 
across GP maps31,32,34–37. Such large robustness means that neutral 
networks are easily navigable, providing access to a large amount of 
potential variation31,32,38,39.
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We first explore features of several specific GP maps that affect 
the navigability and the ruggedness of the landscape: redundancy 
(large neutral sets), frequency of the unfolded or trivial phenotype, 
neutral correlations (robustness) and high dimensionality. We next 
investigate accessible paths for functional RNA (fRNA) phenotypes 
identified in vivo from the fRNA database (fRNAdb)40. Finally, we 
explore whether accessible paths are used in evolutionary dynamics 
under a wide range of dynamical regimes. We consider both random 
and non-random fitness assignments exploring the additional role of 
non-neutral phenotypic correlations. Our findings demonstrate that 
generic structural properties shared across many maps from geno-
type to phenotype dramatically enhance the navigability of fitness 
landscapes with important implications for evolutionary dynamics.

results
Well-studied GP maps induce navigable fitness landscapes. To 
concretely measure the effects of different properties of GP maps on 
the navigability of fitness landscapes, we consider several well-known 
systems in detail, including the RNA secondary structure GP map 
for lengths L = 12 and L = 15 (RNA12, RNA15)41–47 representing the 
RNA sequence’s minimum free energy folded secondary structure, 
the Polyomino lattice self-assembly maps (S2,8, S3,8)30,48,49 modelling 
the topology of protein quaternary structure assembled from inter-
acting constituent tiles, and several hydrophobic-polar (HP) lattice 
protein models for folding of a sequence into a tertiary structure 
(two compact models, HP5x5 and HP3x3x3, and two non-compact 
ones, HP20 and HP25)50–52. See Self-assembly GP maps and 
Extended Data Fig. 1 for further descriptions of these maps.

We performed computational experiments in which fitness is 
assigned to phenotypes randomly, and two phenotypes are chosen 
randomly from the set of all phenotypes as the ‘source’ and ‘target’. 
This is a worst-case scenario that highlights the effect of the correla-
tions between genotypes and phenotypes on fitness. The key prop-
erty we study is the navigability ⟨ψ⟩, defined as:

⟨ψ⟩ =
1
N

N∑

k
ψ sktk

over a set of N source–target pairs (sk, tk), where ψij is the probability 
that single-point mutation steps with monotonically increasing fit-
ness (an accessible path) exist from a genotype of phenotype i to a 
genotype of phenotype j. In other words, the navigability ⟨ψ⟩ is the 
average probability of an accessible path between phenotype pairs in 
the fitness landscape (Navigability estimation algorithm).

The value of ⟨ψ⟩ is greater than 0.6 for all the GP maps we con-
sider, apart from the non-compact HP models HP20 and HP25. The 
non-compact HP models have a navigability ⟨ψ⟩ ≤ 0.013 (we report 
⟨ψ⟩ for the full set of GP maps in Extended Data Table 1). In light of 
these differences, we next investigate what generic structural prop-
erties of GP maps promote navigability.

Common GP map properties are associated with navigability. 
Redundancy, deleterious frequency and genotypic robustness. The 
first property we consider is the redundancy R of a GP map, defined 
as the average number of genotypes per non-deleterious phenotype 
(equation (1)), which is closely related to the average size of the 
neutral networks. Next, we consider the deleterious frequency fdel, 
defined as the fraction of genotype space that does not map to a 
well-defined phenotype. In the case of RNA secondary structure, 
the deleterious phenotype would correspond to the unfolded RNA 
strand (that is, the absence of any secondary structure). In the HP 
model it corresponds to the absence of a unique folded ground 
state. In the Polyomino model it corresponds to unbounded or 
non-deterministic (UND) assembly. Finally, we measure the mean 
genotypic robustness ⟨ρg⟩, defined as the mean proportion of geno-
typic neighbours that have the same phenotype averaged over the 
non-deleterious genotypes. This provides a measure of local neutral 
connectivity.

In Fig. 2 we plot navigability against redundancy, deleterious 
frequency and mean genotypic robustness with the numerical 
values provided in Extended Data Table 1 and association mea-
sured with Spearman’s rank correlation coefficient ρs. Taking the 
GP maps together without system-specific considerations, we 
observe a general increase in navigability for greater redundancy 
(ρs = 0.643), smaller fdel (ρs = −0.619) and greater genotypic robust-
ness (ρs = 0.548).

The results across different GP maps provide some intuition for 
factors that determine navigability. With decreasing redundancy, 
it becomes more difficult to access all phenotypes as they begin 
to occupy smaller fractions of the overall space. As fdel increases, 
more neighbours of a given genotype will have a fitness of 0, there-
fore localizing phenotypes to smaller components in the GP map, 
increasing the likelihood of each genotype having no neighbouring 
genotypes with greater fitness.

Mean genotypic robustness provides an overall aggregate 
measure of the connectivity of the neutral networks. HP3x3x3 
presents an example of particular interest by maintaining naviga-
bility (⟨ψ⟩ = 0.669) with less redundancy (log10R = 2.2), large 
deleterious frequency (fdel = 0.939) and low genotypic robustness 
(⟨ρg⟩ = 0.115). The two non-compact HP models appear to be just 
below the thresholds that allow for navigability.

Positive neutral correlations increase navigability. As seen above, 
robustness plays a key role in enhancing navigability. For a null 
model, where genotypes map randomly to phenotypes, ρp ≅ fp and 
average robustness is typically extremely low. High robustness there-
fore corresponds to strong neutral correlations: if a genotype maps 
to a specific phenotype, the probability that genotypes one muta-
tion away also map to the same phenotype is highly enhanced30. As 
mentioned before, it is widely observed that ρp ∼ − log fp, a scaling 
first pointed out for the RNA map53, but expected to be universal45, 
because it naturally arises from a picture of constrained and uncon-
strained portions of genotype sequences34–36. We can break naturally 
occurring correlations by taking two genotypes g1 and g2 at random 
and assigning the phenotype of g1 to g2 and vice versa. Such random 
swaps remove the intrinsic local correlations. Increasing the total 
number of swaps s reduces the correlations. We define in equation 
(9) a natural measure c(s) of the amount of decorrelation caused by 
the swaps in terms of the frequency fp averaged across the pheno-
types of the GP map for a given number of swaps s. When c(s) = 1, 
the correlations are equal to the original GP map, and when c(s) = 0, 
the correlations are that of the randomized null model.

In Fig. 3a, we plot how navigability varies with c(s) in S2,8, 
RNA12, HP5x5 and HP3x3x3 GP maps, a subset of the GP maps 
from the previous section that are both small enough to be tractable 
here, and have sufficiently large navigability such that the effect of 
reducing correlations and dimensionality may be sizeable. All four 

D = 1 D = 2

A

B
B

A

Fig. 1 | High-dimensional bypasses facilitate landscape navigability. 
Illustration of how increasing dimensionality D of the genotype space can 
affect the navigability and presence of valleys in a fitness landscape.
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GP maps, on average, show greater navigability for greater c(s) with 
an approximately linear decay in navigability with decreasing c(s), 
saturating at a lower value specific to each GP map: 0.378 ± 0.005 
for RNA12, 0.100 ± 0.003 for HP5x5, 0.000 ± 0.000 for HP3x3x3 
and 0.949 ± 0.002 for S2,8, substantial reductions apart from for S2,8. 
In S2,8, the navigability ⟨ψ⟩ takes a greater value for the decorrelated 
GP map (c < 1) than for the original one (c = 1). This is because not 
all phenotypes are directly accessible from each other in the origi-
nal GP map. However, a slight randomization increases phenotype 
inter-connectivity due to the fact that the number of phenotypes for 

S2,8 is smaller than the number of local mutations (NP < (K − 1)L). 
We expect that in GP maps of longer sequence length L, the role of 
positive neutral correlations will become even more pronounced. 
We explore this in Navigability of fRNA fitness landscapes with 
respect to fRNA phenotypes.

Large dimensionality increases navigability. We now examine the 
effect of dimensionality of the GP map. The dimensionality of the 
entire GP map is defined as L, the length of the sequence. During 
the search for an accessible path from the source to target pheno-
type, all bases can be mutated, making use of the full dimensionality 
of the GP map. We can, however, reduce the dimensionality of the 
search by allowing only a random set of D sites (where D < L) to be 
mutated during a given search for an accessible path from source to 
target. We then consider ⟨ψ⟩ as a function of the relative dimension-
ality d = D/L for all D ∈ {1,..., L}.

In Fig. 3b, we plot navigability ⟨ψ⟩ as a function of d. Decreasing 
dimensionality severely reduces the navigability of fitness land-
scapes, with a sigmoidal relationship between ⟨ψ⟩ and d. All the 
curves show an increase from low navigability to high navigability 
as d → 1 of the full GP map. The critical value of d, and general scale 
and shape, is different across the four GP maps indicating a complex 
dependence on other GP map properties.

In addition to identifying an accessible path during the search 
from source to target, we also count the number of genotypes that 
do not have a neutral neighbour or neighbour with greater fitness. 
In other words, the proportion of genotypes that are local fitness 
peaks, therefore providing a measure of landscape ruggedness. 
The average proportion of genotypes that are local fitness peaks 
across source–target phenotype pairs and fitness assignments in a 
given GP map, is represented as ⟨κ⟩. In Fig. 3c, the ruggedness for 
each relative dimensionality d = D/L is plotted in the same four GP 
maps. We observe increasing dimensionality reduces ruggedness 
and, as relative dimensionality drops below a certain level, rug-
gedness sharply increases. Of note is HP3x3x3, where ruggedness 
is greater at a given relative dimensionality than for the other GP 
maps. Where all bases may mutate at d = 1, around 7 in 100 gen-
otypes are local peaks (⟨κ⟩ = 0.07) but navigability remains high 
(⟨ψ⟩ = 0.66), demonstrating that partially rugged landscapes can 
still be navigable.

We illustrate an example of a source–target search in a sche-
matic of the RNA12 GP map in Fig. 3d. We choose a random source 
and target pair and, during the search for an accessible path, keep 
track of all phenotypes encountered, their fitness and any transition 
between phenotypes. Each phenotype is represented as a node, edges 
as transitions between phenotypes and the value on the vertical axis 
as the fitness. The NP = 58 phenotypes of this GP map are assigned 
coordinates in the horizontal plane using multidimensional scal-
ing (MDS) on the basis of the pairwise Hamming distance between 
phenotypes54. This allows phenotypes that are similar to each other 
to be located in similar parts of the MDS1–MDS2 plane. The source 
and target phenotypes are labelled ‘S’ and ‘T’ respectively, edges that 
may form accessible paths are coloured red and the remaining edges 
grey. This depiction of the fitness landscape immediately shows that 
it is highly connected with many accessible paths.

In Fig. 3e, with the same schematic source–target pair and fit-
ness assignments as Fig. 3d, we illustrate the joint effect of neutral 
correlations and dimensionality on connectivity and navigability of 
the phenotype network for three different degrees of correlation (no 
correlations, some correlations, original correlations) and three dif-
ferent dimensionalities (D = 2, 6, 12). The top right of the nine plots 
is the original GP map that is also shown enlarged in Fig. 3d. In the 
case of D = 2, the dimensionality in which fitness valleys are often 
visualized in the literature, phenotypic connectivity is sparse, mak-
ing the landscape unnavigable. The increase in navigability with 
increases in both dimensionality and correlations highlights that 
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Navigability of each GP map is plotted in relation to redundancy log10R, 
(a), deleterious frequency fdel (b) and mean genotypic robustness 

⟨

ρg
⟩
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both the correlation structure of the underlying GP map, and the 
high-dimensional nature of the evolutionary search, are essential 
for navigability.

Navigability of fRNA fitness landscapes. Next we focus on the 
RNA secondary structure GP map by specifically choosing source 
and target phenotypes that have been observed in nature. This is 
important as only a small subset of all possible phenotypes are typi-
cally seen in real biological systems49,55 and it is navigability among 
this subset that has most relevance for evolutionary processes.

Fitness valleys are not observed between short fRNAs. We sample 
RNA secondary structures from the fRNAdb40. We consider pairs 
of fRNA phenotypes from the database with sequence length L, 
assigning a random fitness 0 ≤ Fsource < 1 and Ftarget = 1, with random 
uniform assignment of fitness for all non-trivial phenotypes found 
during the search process. We consider the range L ∈ [20, 40], which 
is larger than the model GP maps we studied more exhaustively. We 
perform two distinct types of search by either permitting or pre-
venting neutral mutations in exploring a given genotype’s muta-
tional neighbourhood. This provides a means to directly measure 
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network. a, Navigability emerges as positive neutral correlations are added to HP3x3x3, HP5x5, RNA12 and S2,8 GP maps. The extent of neutral correlations 
is varied through random genotype swaps and measured on a scale c between the original GP map (c = 1) and the random null model’s correlations (c = 0). 
A caricature of the genotype space, coloured according to phenotypes, is shown for low neutral correlations (top left) and high neutral correlations (top 
right). b, Greater dimensionality of the GP map increases navigability for S2,8, HP3x3x3, HP5x5 and RNA12 GP maps. We vary dimensionality by only 
allowing D (d = D/L) of the total L bases to be mutable. A caricature of a sequence with grey bases (L − D) not mutable, black bases mutable (D) and 
red bases varying across sequences, is depicted for low dimensionality (top left, d = 3/12) and high dimensionality (top right, d = 11/12). The GP maps 
show differing tolerance with respect to navigability under a change in dimensionality, S2,8 permitting navigability for low dimensionality notably more 
than HP3x3x3, for example. c, With increasing dimensionality, landscape ruggedness decreases. We measure landscape ruggedness ⟨κ⟩ as the average 
proportion of all genotypes encountered that are local fitness maxima (no neutral neighbours or neighbours with increased fitness). Ruggedness decreases 
in all GP maps as dimensionality increases, but the level of ruggedness is GP map dependent. d, Accessible and inaccessible paths between two RNA12 
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similar dot-bracket phenotypes. The red colour gradient scales from light (low fitness) to dark (high fitness). e, The navigability of the phenotype network 
for three levels of correlations (original, medium and no correlations) and three levels of dimensionality (D = 2, 5, 12). Navigability and connectivity in the 
phenotypic network visibly increase with both increasing correlations and dimensionality.
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the role of neutral correlations in facilitating navigability for larger 
L. Additionally we test two different fitness assignment schemes: (1) 
random as previously and (2) using a given phenotype’s dot-bracket 
Hamming distance to the target phenotype (see Fitness landscapes 
for further details). The former ignores non-neutral phenotypic cor-
relations in the GP map, while the latter introduces local phenotypic 
fitness correlations under the assumption that similar dot-bracket 
phenotypes have more similar genotypes. As the sequence length 
increases the number of phenotypes grows as NP ≅ 1.76L (ref. 56) pro-
ducing a large computational overhead to track all phenotypes and 
genotypes encountered during a search. The computational thresh-
old T is the maximum number of genotypes whose neighbourhoods 
are searched before the search is aborted, the proportion of which 
is defined as α. In Navigability in the fRNAdb, we describe other 
computational details necessary to measure navigability for larger L 
due to computational limitations.

In Table 1, the navigability ⟨ψ⟩ for fitness landscapes with fRNA 
of sequence length L = 20 − 40 is reported along with the propor-
tion of searches that were aborted and whether or not neutral muta-
tions were permitted. With neutral mutations allowed, ⟨ψ⟩ ≈ 1, 
suggesting that fitness landscapes with fRNAdb source and targets 
are highly navigable. For L > 30 the proportion of aborted searches 
increases, leading to the greater potential for this estimate to be 
biased. However, there is a strong indication, that with a greater 
computational threshold, similarly large navigability would be 
achieved at even larger L fRNA landscapes due to the observed 
scaling of ⟨ψ⟩ with the computational threshold (Supplementary 
Information). When Hamming fitness assignment is used, ⟨ψ⟩ = 1 
and aborted runs are rare, demonstrating that phenotypic correla-
tions (such as genotypic correlations) enhance navigability.

Where neutral mutations are disallowed, we find that naviga-
bility is markedly reduced below unity, although still substantially 
greater than zero (⟨ψ⟩ ∈ [0.273, 0.628]). This finding is intriguing as 
it highlights that positive neutral correlations are important, but not 
essential, for the existence of accessible paths in this system. A pos-
sible explanation lies in the vast number of phenotypes NP ≅ 1.76L 
available in the GP map, coupled with its high dimensionality. As fit-
ness is randomly assigned and new variation is only a few mutations 
away, there is a pool of non-neutral phenotypes with possibly larger 
fitness, potentially within a small mutational radius. Additionally, 
given the fRNAdb is occupied with highly frequent phenotypes56, 
the source and target themselves will have greater robustness and 

therefore larger neutral spaces that may be found. With Hamming 
fitness assignment, the reduction in navigability is only marginal, 
suggesting that phenotypic correlations can overcome dramatically 
diminished neutral correlations.

In Fig. 4, we use the representation introduced in Fig. 3d to illustrate 
an accessible path in fRNA. For the successful traversal between a spe-
cific source and target fRNA, we see a vast array of background, ‘greyed 
out’ phenotypes discovered during the search for an accessible path, as 
well as a shortest accessible path connecting ten different phenotypes 
with the node colour and their vertical axis coordinate showing their 
fitness. This illustration further highlights the hyper-connectedness 
and high-dimensional bypasses present in fRNA GP maps that are 
afforded through exponentially increasing redundancy, positive neu-
tral correlations and high dimensionality. The phenotype network 
also serves again as an alternative depiction of the fitness landscape in 
which the effect of GP map structure on the course of potential evolu-
tionary explorations may be grasped more intuitively.

Summarizing our results, we have demonstrated that fRNA GP 
maps have navigable fitness landscapes up to L = 30 fRNA, and 
probably up to L = 40 given observed scaling with increased compu-
tational time. They are highly likely to be navigable for even larger 
in vivo fRNAs due to the observed scaling of both the GP map prop-
erties and navigability with respect to the computational threshold. 
Neutral mutations drastically increase and non-neutral phenotypic 
correlations enhance navigability, but neither solely determine the 
presence of accessible paths.

Evolutionary dynamics between fRNAs use accessible paths. Having 
considered whether accessible paths exist in a variety of GP maps, 
we next consider whether these accessible paths are found under 
evolutionary dynamics. It is conceivable that, while accessible paths 
to the true fitness maximum exist in a fitness landscape, there are 
so many alternative paths leading to local fitness maxima and that 
a population will become trapped necessitating passage across a fit-
ness valley to reach the fittest phenotype.

Under evolutionary dynamics the adaptive path taken may 
be dependent on population mutation rate (NμL, with N popu-
lation size, μ point mutation rate and L sequence length). We 
therefore explored both monomorphic (NμL ≪ 1) and polymor-
phic (NμL ≫ 1) regimes in the main text, with the Supplementary 
Information further investigating the role of population size and 
mutation rates.

Table 1 | The navigability ⟨ψ⟩ for length L = 20−40 frNAs, the number of phenotypes in the frNAdb, the proportion of runs that are 
aborted α and the estimated navigability ⟨ψ⟩ for both random and Hamming fitness and with and without neutral mutations

Neutral mutations No neutral mutations*

Fitness L NfRNAdb
P ⟨ψ⟩ ± s.e.(ψ) α ⟨ψ⟩ ± s.e.(ψ) α

Random 20 14,350 0.987 ± 0.004 0.002 0.583 ± 0.016 0.063

25 12,958 0.999 ± 0.001 0.015 0.628 ± 0.017 0.233

30 42,195 1.000 ± 0.000 0.065 0.520 ± 0.022 0.481

35 752 1.000 ± 0.000 0.190 0.539 ± 0.025 0.603

40 662 1.000 ± 0.000 0.517 0.273 ± 0.027 0.736

Hamming* 20 14,350 1.000 ± 0.000 0.001 0.992 ± 0.003 0.007

25 12,958 1.000 ± 0.000 0.009 0.998 ± 0.001 0.021

30 42,195 1.000 ± 0.000 0.031 0.999 ± 0.001 0.053

35 752 1.000 ± 0.000 0.050 1.000 ± 0.000 0.049

40 662 1.000 ± 0.000 0.099 0.998 ± 0.002 0.078

Results for simulations with and without neutral mutations are shown in the left- and right-hand sets of columns, respectively, with random and Hamming fitness assignment in the top and bottom sets 
of rows respectively. For non-aborted runs with neutral mutations permitted, random observed fRNA landscapes are almost completely navigable. When neutral mutations are prohibited, navigability is 
severely reduced, but still substantial. Hamming fitness assignment has ⟨ψ⟩ ≈ 1 both with and without neutral mutations. Random assignment with neutral mutations had T = 2 × 106, while runs with no 
neutral mutations and for Hamming fitness assignment (denoted with *) have computational threshold T = 2 × 104 due to computational limitations.
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For monomorphic evolutionary dynamics, we simulated evo-
lution with a sequential fixation model57 combined with Kimura’s 
fixation probability for a haploid population58. For polymorphic 
evolutionary dynamics, we simulated a Wright–Fisher model, 
implemented via a genetic algorithm. Further details are provided 
in Navigability of fRNA fitness landscapes. As in that section, we 
again consider both random and Hamming fitness assignments.

We chose Ns = 20 source phenotypes for each of Nt = 50 target 
phenotypes, with the population initialized to a clonal population 
of genotypes that map to the source phenotype. The fitness of the 
target was set to 1. The adaptive path was measured during evolu-
tionary search. In the monomorphic case, this was the sequence of 
genotypes (and their phenotypes) that fixed, while for polymorphic 
dynamics, the change in fitness of the population’s majority phe-
notype (more than 50% of genotypes) was measured. Analogously 
to landscape navigability, we define evolutionary navigability ⟨ψevo

⟩ 
as the average probability that the adaptive path reaches a target 
phenotype from a source phenotype via an accessible path, with the 
phenotypic evolutionary navigability ⟨ψevo

p ⟩ as the probability that 
an adaptive path to a specific target phenotype p is an accessible one. 
We have previously required that an accessible path did not have 
any decrease in fitness expressed with a tolerance to a maximum 
decrease of ΔF = 0 between phenotypes along the path. Here, we 
also measure the effect of relaxing this constraint.

In Fig. 5a–c (left) we plot histograms of evolutionary navigabil-
ity in monomorphic (NμL ≪ 1 at N = 100,000) and polymorphic 
(NμL = 100 at N = 100) dynamical regimes for fRNA source and 
target phenotypes at sequence lengths L = 20, 30, 40. For mono-
morphic dynamics, we find that the Hamming fitness assignment 
has ⟨ψevo

p ⟩ = 1 across all phenotypes with negligible aborted runs. 
Random fitness assignment has high navigability at L = 20 but 
decreasing with increasing L. Across all L the aborted fraction is 
sizeable α ∈ [0.318, 0.550]. Figure 5d (left) relaxes the require-
ment for an accessible path to have a maximum fitness decrease 
of ΔF = 0.05. We find random fitness assignment can be navigable 
for some phenotypes (⟨ψevo

p ⟩ = 1) but with an increase in aborted 

runs (α = 0.887) where it remains uncertain. In Fig. 5a–c (right), a 
similar pattern is observed for polymorphic evolutionary dynam-
ics, with Hamming fitness assignment having ⟨ψevo

p ⟩ = 1 but with 
an increasing proportion of aborted runs for increasing L. Random 
assignment has reasonable ⟨ψevo

p ⟩ = 0.302 at L = 20 but becomes 
negligible at L = 40. In Fig. 5d (right), again, allowing a tolerance 
of ΔF = 0.05 regains navigability for some phenotypes with ran-
dom fitness assignment (overall ⟨ψevo

⟩ = 0.487) but with a large 
proportion aborted (α = 0.842). We explore tolerance further in the 
Supplementary Information by identifying a ΔF sufficient to gener-
ate navigability.

Navigability under monomorphic dynamics is sensitive to popu-
lation size N with typically lower navigability in smaller populations 
(Supplementary Information). Navigability under polymorphic 
evolutionary dynamics is sensitive to population mutation rate NμL, 
with lower evolutionary navigability observed for smaller popula-
tion mutation rates in the Wright–Fisher model (Supplementary 
Information). Echoing our investigation into the role of neutral 
mutations in Navigability of fRNA fitness landscapes, we also con-
sidered monomorphic evolutionary dynamics with and without 
neutral mutations where we also found that neutral mutations 
enhance evolutionary navigability (Supplementary Information). To 
gain insight beyond the computational limits incurred with increas-
ing L, in the Supplementary Information, we explore navigability of 
coarse-grained fRNA ‘shape’ phenotypes59. These have recently been 
shown to possess similar GP map properties of redundancy, bias55 
and neutral correlations60 that we have shown earlier to be associ-
ated with and facilitate navigability. With this model we find evolu-
tionary navigability can be attained in the monomorphic setting at 
lengths L = 60, 100, 140, and also enhanced by the Levenshtein fit-
ness assignment, an equivalent of the Hamming fitness assignment 
related to phenotypic correlations.

Our evolutionary simulations have shown that neutral genotypic 
correlations and phenotypic correlations are sufficient to allow 
evolution to find accessible paths in the fitness landscape for cer-
tain conditions in both monomorphic and polymorphic regimes. 
Additionally, when these properties are jointly available (that is, 
Hamming fitness assignment with neutral mutations), they facili-
tate navigability under a very broad range of dynamical regimes.

Discussion
Our main contribution is to explicitly include the phenotype as 
an intermediate step between genotype and fitness, and there-
fore implicitly include generic properties such as redundancy and 
correlations that dramatically increase the navigability of fitness 
landscapes. We demonstrated for a wide range of evolutionary 
dynamical regimes that biological systems can be navigable, even 
when fitness is assumed to be distributed randomly. When fitness 
correlations based on phenotypic similarity are incorporated, navi-
gability is enhanced even further. Our conclusions, that true fitness 
valleys are probably rare, should be relevant for a broad scope of 
issues in biological evolution.

Open questions remain: first, our computational explorations 
only allow for relatively small systems to be studied. However, there 
is evidence in our findings to suggest that navigability will hold at 
larger L too: (1) we found navigability to be monotonic for increas-
ing L in the RNA we studied; (2) the deleterious fraction decreases 
monotonically with L for RNA; (3) while the number of sequences 
grows exponentially (NP ≅ 1.76L), as the number of sequences grows 
exponentially as 4L, the average redundancy R will grow exponen-
tially too at R ≅ 2.27L. Given that robustness scales with frequency, 
the average genotype’s robustness will also grow, meaning that gen-
otypes encountered along paths will have more neutral dimensions 
available; (4) phenotypes found in vivo are taken from a tiny frac-
tion of phenotypes with the largest neutral sets and largest robust-
ness46,55,56, a phenomenon that may hold much more widely49 and 
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Fig. 4 | Example of an accessible path for a specific L = 30 frNA 
source–target pair. As introduced in Fig. 3d, phenotypes are nodes 
whose coordinates are derived from a MDS embedding of the phenotype 
similarities based on Hamming distance, while the vertical axis is fitness. 
We show the vast extent of phenotypes discovered during the search as 
‘grey’ nodes, a shortest accessible path connecting the source and target 
phenotypes with red edges, and the phenotypes along this path shaded in 
proportion to fitness. The example illustrates the interconnected nature of 
the fitness landscapes for a concrete fRNA example, where the properties 
of the GP map are key in facilitating navigability. The red colour gradient 
scales from light (low fitness) to dark (high fitness).
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should greatly enhance navigability. (5) We have mainly studied a 
worst-case scenario with random assignment of fitness to pheno-
types. For the fRNA strands, we also studied a fitness landscape 
based on Hamming distance between structures, showing that cor-
relations between phenotypes improved navigability drastically. 
While much less is known about such phenotypic fitness correla-
tions, they are likely to exist more generally and so enhance navi-
gability. Taken together, these arguments suggest that landscapes at 
larger L should also have accessible paths and be navigable.

Another issue to consider is that the model systems we study all 
relate to some form of self-assembly, where we assign fitness to the 
physical structure alone. This will not always hold for all biologi-
cal systems. For example, where a specific sequence is necessary to 
facilitate binding of a protein, an additional sequence constraint is 
imposed on top of that required to specify the structure. This addi-
tional specificity potentially reduces both the redundancy of the 
phenotype and the dimensionality available for accessing alterna-
tive genotypes.

Our findings support work on the role of high dimensional-
ity in promoting accessibility4,7–11, as well as attempts to create an 
up-to-date metaphor for evolutionary adaptation61, but moves well 
beyond the current literature by demonstrating both the generality 
across multiple systems and the presence of navigability with either 
random fitness assignments to phenotypes, or ones grounded in 
phenotypic similarity. A fuller understanding of the role of the GP 
map in structuring the high-dimensional fitness landscape could 
provide vital insights into areas such as the arrival of drug resis-
tance62,63 or the mutational progressions of cancer64. In particular, 
understanding the fitness landscapes in cancer is notoriously chal-
lenging due to the difficulty of inferring the fitness of mutants65. 
Introducing the notion of a mapping from genotypes to pheno-
types and studying generic properties such as genetic correlations 
and redundancy may provide new insights into cancer evolution. 
Another example of particular current interest is found in viruses 
such as influenza or SARS-CoV-2 where mutations across a mul-
titude of sites (high dimensionality) leads to variants (phenotypes) 
that evade host immune responses. Understanding whether acces-
sible paths are afforded to such pathogenic viruses could provide 
important insights into their progression and population dynamics.

Methods
Self-assembly GP maps. We consider three GP maps for different systems of 
biological self-assembly: the RNA secondary structure GP map42 for secondary 
structure of RNA sequences, the HP lattice model for protein tertiary structure50,66 
and the Polyomino model for protein quaternary structure48. The phenotype 
in each is solely related to the assembled structure. The GP maps have been 
extensively studied and compared in ref. 30 and are shown in Extended Data Fig. 1. 
We summarize their details:
•	 RNA secondary structure: genotypes are sequences where each position is one 

of the four RNA nucleotide bases (an alphabet A = {A, C, G, U}). Phenotypes 
are the secondary structure bonding pattern of the minimum free energy fold 
of the genotype, represented with the dot-bracket notation42, apart from in the 
Supplementary Information where ‘RNA shapes’ are used instead59. We use the 
Vienna package42 (v.1.8.5) with default parameters to convert RNA sequences 
to dot-bracket secondary structures. GP maps are represented as RNAL with 
sequences of length L. Extended Data Fig. 1 illustrates three example GP maps 
at L = 12, 15, 30.

•	 HP lattice model: genotypes are sequences where each position is an 
amino acid base classified as either hydrophobic or polar (an alphabet 
A = {H, P})50,66. Phenotypes are the minimum energy fold of the geno-
type, restricting the fold to occur on either a square or cubic lattice, with the 
energetics determined by interactions between neighbours on the lattice that 
are non-adjacent in the sequence. We represent folds with a string describ-
ing the moves that are required to construct fold on the lattice with the basis: 
‘Up’, ‘Down’, ‘Right’, ‘Left’ for 2D lattices, and additionally ‘Forward’ and 
‘Back’ for three-dimensional (3D) lattices. We follow refs. 51,52 and consider 
energetic interactions between non-adjacent pairs to have values EHH = −1, 
with EHP = EPP = 0, where H are hydrophobic and P are polar amino acids. If a 
sequence has a unique minimum energy structure, its phenotype is that struc-
ture, otherwise it is considered degenerate and not defined. We consider both 
the non-compact GP map and compact GP maps. The former identifies the 
minimum energy fold among all folds of a given length and is referred to as 
HPL. The latter only considers the set of compact structures as possible folds 
and is referred to as HPlxw for 2D lattices (for example, HP5x5) and HPlxwxh 
for 3D lattices (for example, HP3x3x3). The compact HP model only allows 
folds that fit within the prescribed grid (for example, either 5 × 5 or 3 × 3 × 3 
here). These maximally compact subsets aim to capture the globular nature of 
in vivo proteins67, vastly reducing the number of folds at a given length while 
being more faithful to observed protein structure topology. Extended Data 
Fig. 1 depicts examples from the two compact (HP3x3x3 and HP5x5) and two 
non-compact (HP20 and HP25) GP maps studied here.

•	 Polyomino model: the Polyomino GP map represents protein quaternary 
structure on a 2D square lattice, with constituent tiles from assembly kit 
placed where interactions are present. Genotypes represent an assembly kit 
of Nt tiles, where each edge of the tile may have one of Nc colours (inter-
face types) denoted by integers. Here we follow refs. 30,48 and consider the 
GP maps SNt ,Nc, specifically S2,8 and S3,8. We use Nc = 8 with bases from an 
alphabet A = {0, 1, 2, 3, 4, 6, 7} for each tile edge. Interactions are only 
allowed between 1 ↔ 2, 3 ↔ 4, 5 ↔ 6, with 0 and 7 being neutral. The genotype 
sequence is transformed from a sequence of bases and encoded in blocks of 
four clockwise around each assembly kit tile. To construct the phenotype 
from the assembly kit, the first encoded tile is used to ‘seed’ the assembly, 
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Fig. 5 | Navigability under evolutionary dynamics with source and target 
phenotypes sampled from the frNAdb with random and Hamming 
fitness assignments under monomorphic (left) and polymorphic (right) 
evolutionary dynamics. a–c, The evolutionary navigability for 50 different 
target fRNA phenotypes p are illustrated using histograms of ⟨ψevo

p ⟩ 
for each random target fRNA phenotype at lengths L = 20, 30, 40. The 
blue shaded histogram shows the proportion of successful searches for 
random fitness assignment, and the orange histogram for Hamming fitness 
assignment. Evolutionary navigability is shown as vertical dashed lines and 
the proportion of aborted searches as horizontal dotted lines. Hamming 
fitness assignment has high navigability across all lengths in both regimes. 
Random fitness assignment has higher navigability at L = 20, decreasing 
with increasing L. d, Identical to c but now allowing small decreases in 
fitness of ΔF = 0.05 along the adaptive path, which increases navigability in 
random fitness landscapes. Histogram bar heights may not sum to Nt = 50 
due to some phenotypes p having all searches aborted yielding no estimate 
for ⟨ψevo

p ⟩.
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with subsequent tile places made at randomly available points of interaction 
with assembly kit tiles that may be placed on the lattice. The assembly process 
terminates on no available placements remaining or if the structure becomes 
unbounded. The assembly process is repeated k = 200 times with the final 
Polyomino compared across the ensemble of assemblies. The phenotype is the 
unique bounded shape across the ensemble of assemblies, allowing for rota-
tions, with a classification of UND otherwise.

The GP maps may be further characterized by their genotype sequence length 
L, base K, number of genotypes NG = KL and number of phenotypes NP. The 
redundancy np of a given phenotype p is the number of genotypes that map to 
p and this is normalized by the size of the genotype space to give the frequency 
fp = np/KL. The overall redundancy R of a GP map is defined as the average number 
of genotypes per non-deleterious phenotype:

R = KL
(1 − fdel)/(NP − 1) (1)

We provide Extended Data Table 2 to summarize the characteristic properties used 
to differentiate the GP maps.

A particular feature of all three GP maps is a single phenotype that is of a 
different nature to the others: for RNA secondary structure this is the unfolded 
‘trivial’ structure, the HP lattice model it is sequences that have a degenerate 
minimum energy state and for the Polyomino model it is when there is UND 
growth. We refer to this phenotype here as the deleterious or del phenotype as, in 
each GP map, we consider it low fitness due to the non-specificity of the structural 
phenotype. We assign a fitness of zero for del throughout this work. While this 
is a strong assumption, given the large-scale dominance of the del phenotype in 
Polyomino and HP GP maps, we expect this assumption to exacerbate the presence 
of valleys rather than introducing a bias towards navigability.

Measuring landscape navigability. Definitions and formulation. To establish the 
presence of fitness valleys in a fitness landscape, we consider whether it is possible 
to reach the fittest phenotype from any given point in the genotype space via a 
path where the fitness increases monotonically defined as an accessible path11,68. 
Landscape navigability has previously been defined as the proportion of accessible 
paths to a given genotype from all other genotypes17. To briefly summarize, here we 
specifically define the navigability as the average probability that a randomly chosen 
phenotype pair have at least one accessible path between them, given a fitness 
assignment process to phenotypes. We denote accessibility with ψ, where ψ = 1 
indicates the presence of at least one accessible path between two phenotypes for a 
specific set of fitness assignments and ψ = 0 indicating no accessible paths. When 
ψ = 0, a fitness valley must be traversed between the phenotypes. With this notation, 
we use ⟨ψ⟩ to represent navigability of fitness landscapes for a given GP map.

Fitness landscapes. In conjunction with the GP map M, a fitness landscape instance 
is defined by the set of phenotype fitnesses F := {Fpi}NP

i=1, with i denoting the ith 
indexed phenotype pi. We refer to the source phenotype p and target phenotype 
q in the search for an accessible path from p → q. We consider two fitness 
assignments in this paper:
•	 Random fitness: random samples Fpi ≈ Uniform(0, 1) with target phenotype 

q having Fq = 1
•	 Hamming distance: where the similarity of phenotype p compared to a pheno-

type q is measured by the number of matching positions in the aligned pheno-
type string representation given by F(p, q) = 1 −

∑L
j δ(p(j), q(j))/L, where 

p(j) is the string character representing phenotype p at the jth base position and 
F(p, q) is the fitness of phenotype p compared to a target phenotype q

•	 Fdel = 0 etc
•	 for all fitness assignments

Navigability estimation. The probability of an accessible path (ψ = 1) between a 
source phenotype p and target phenotype q, given a random fitness landscape 
instance F , is deterministic with a binary outcome. We can define the probability 
of ψ more explicitly as a function of p, q and F  as follows:

ψ(p, q,F) := P(ψ = 1|p → q,F) (2)

where

ψ(p, q,F) =

{ 1 if at least one accessible path exists

0 otherwise
(3)

We can take the expectation over F  yielding the mean probability of an accessible 
path from p to q as:

ψpq = EF [ψ(p, q,F)] (4)

With this notation, we can define the navigability for the GP map as the expectation 
over equation (4) for phenotypes p and q sampled uniformly at random:

⟨ψ⟩ = Ep,q[ψpq] (5)

We can estimate this probability of reaching a given target phenotype q from a 
uniform randomly chosen source phenotype p by computationally measuring 
ψ(p, q,F) for Ns randomly chosen sources for each of Nt randomly chosen targets, 
with a new random fitness landscape instance F  for each pair. During the practical 
estimation, it is convenient to understand the outcome of the search as:

ψ(pst, qt,Fst) =






1 at least one accessible path

0 no accessible path, not aborted

NA no accessible path, aborted

where searches are aborted if they extend beyond a computational threshold of 
genotypes encountered T. An estimate of the navigability ⟨ψ⟩ can be written as:

⟨ψ⟩ =
1
Nc

Nt∑

t=1

Ns∑

s=1
IT(s, t)ψ(pst, qt,Fst) (6)

where pst and qt are the source and target phenotypes of sth source for the tth target, 
with IT(s, t) := I (ψ(pst, qt,Fst) ̸= NA) an indicator for whether the run was not 
aborted, and therefore the number of completed runs is Nc =

∑
t,sIT (s, t) with the 

aborted proportion α:

α = 1 −
Nc

NtNs
(7)

The estimate of the navigability of a fitness landscape with GP map has an 
associated Bernoulli standard error (derived from an estimate of the corrected 
sample standard deviation):

s.e.(⟨ψ⟩) =

√
⟨ψ⟩ (1 − ⟨ψ⟩)

Nc − 1 (8)

We next describe in more detail the computational algorithm for estimating ⟨ψ⟩.

Navigability estimation algorithm. For a given source and target phenotype, in each 
random landscape instance, we perform the following computational algorithm to 
measure ψ. We first provide some definitions:
•	 GP map M is a function M : G → P where G is the space of genotypes and P 

is the space of phenotypes, such that we can write the phenotype p of genotype 
g as p = M(g)

•	 Dimensionality: we define the set of sequence positions that may be mutated 
as D, with the size of |D| being the dimensionality D. When |D| = L all base 
positions are mutable. Relative dimensionality is defined as the dimensionality 
relative to sequence length d = D/L

•	 Alphabet: sequences have a set of A possible letters at a given site and the size 
of |A| = K  is the base

•	 u0 contains genotypes whose 1-mutant neighbours are yet to be considered in 
a given search for an accessible path

•	 u1 contains genotypes that have already had their 1-mutant neighbours con-
sidered in a given search for an accessible path

The algorithm proceeds with a breadth-first search:

 (1) A random genotype g that maps to the source phenotype is chosen and added 
to u0

 (2) Set the first element of u0 as g
 (3) For base a ∈ A at position j and for each position j ∈ D, measure genotype 

neighbour g′ and phenotype p′ = M(g′)
 (4) If Fp′ ≥ Fp and g′ /∈ u1, add g′ to u0

 (5) Move g from u0 to u1

 (6) If ∣u0∣ = 0 or ∣u0∣ + ∣u1∣ > T (computational threshold) or the target phenotype 
is found, return ‘aborted’ or ψ, respectively: otherwise return to step 2

The algorithm finishes with either u becoming empty, or the combined size of 
u0 and u1 becoming larger than a predefined threshold T (introduced in Definitions 
and formulation), beyond which computational progress may become unfeasible. 
We discard these aborted runs from the measurement of navigability ⟨ψ⟩ using the 
indicator function IT of the previous section (Navigability estimation).

As described in equation (6) we pick Ns source phenotypes uniformly at 
random for each of the Nt target phenotypes also chosen at random. We set Nt = 20 
and Ns = 50. The uncertainty in the estimate of the navigability ⟨ψ⟩ is reported as 
the standard error s.e.(⟨ψ⟩) across the ensemble of measurements.

Removing correlations. To measure the effect of positive neutral correlations30, 
we perform genotype swaps and then repeat the measurement of ⟨ψ⟩. This process 
involves constructing a new GP map Ms from the original GP map Ms=0 ≔ M 
where s is the number of pairs of genotypes whose phenotypes have been swapped. 
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More precisely, a swap involves selecting two genotypes g1 and g2 with uniform 
random probability and setting Ms(g1) = Ms−1(g2) and Ms(g2) = Ms−1(g1). It follows 
that Ms→∞ is the uncorrelated random null model GP map with no positive neutral 
correlations as used in ref. 30. As shown in ref. 30, the random null model has ρp ≅ fp 
when there are no positive neutral correlations. Therefore, we additionally define 
the correlations c present in a given GP map Ms by comparing the logarithm of the 
average robustness-to-frequency ratio in a given GP map against the original GP 
map, generating a scale for measuring correlations in Ms:

c(s) =

log10
⟨

ρp(s)
fp(s)

⟩

p

log10
⟨

ρp(0)
fp(0)

⟩

p

(9)

where for s = 0 we have c(0) = 1, and for lim
s→∞

c(s) ≈ 0 the expectation for the 
random model. Therefore, the scale yields positive values for c where there is, on 
average, greater robustness than frequency. The process of removing correlations 
gradually from the original GP map (s = 0) to the random null model (s → ∞) 
provides a range over which the relationship between positive neutral correlations 
and navigability may be considered in GP maps. We measure the navigability of S2,8, 
RNA12, HP3x3x3 and HP5x5 by taking 100 evenly spaced values for s on the range 
s = [0, KL] and measuring ⟨ψ⟩ and c(s) for each.

Restricting dimensionality. To measure the role of dimensionality we restrict 
the dimensionality of a search for an accessible path from source to target by only 
allowing a set of D randomly chosen positions along the sequence to be mutated 
in the 1-mutant neighbour measurement in step 3 of the navigability algorithm 
above (Navigability estimation algorithm). The dimensionality D is the number 
of positions that may be mutated |D|, and the relative dimensionality d ≔ D/L. 
When D = L we have the original dimensionality, while for D = 1 only a single 
sequence position may be mutated. The GP map M itself is not changed under this 
dimensional restriction but rather the connectivity of genotypes and therefore the 
connectivity of the fitness landscape.

We measure the navigability of S2,8, RNA12, HP3x3x3 and HP5x5 by taking 
evenly spaced values for D on the range D ∈ [1, L].

Measuring ruggedness. For fitness landscapes, related to navigability is the 
concept of landscape ruggedness. We measure κ(g), whether a genotype is a local 
fitness maximum, during the search from source to target. The average proportion 
of genotypes that are local fitness maxima provides a measure of ruggedness26. 
Whether a genotype g is a local fitness peak is determined by the fitness of all 
accessible 1-mutant neighbours g′, such that:

κ(g) =

{ 1 ifFM(g′) < FM(g)∀g′ ∈ σ(g)

0 otherwise
(10)

where we have the function σ(g), which returns the set of 1-mutants of genotype g. 
We calculate the ruggedness for a landscape by taking the average of κ(g) over all 
genotypes and all source–target pairs once the search has completed. We denote the 
ruggedness as ⟨κ⟩.

Navigability in the fRNAdb. In Navigability of fRNA fitness landscapes, we 
examine navigability in a specific subset of RNA phenotypes, namely those that 
are found in the fRNAdb40. For a given length, we use all phenotypes in proportion 
to their occurrence in the fRNAdb apart from the trial structure that we exclude 
as it is assigned zero fitness here. We randomly choose Nt = 50 targets with Ns = 20 
randomly chosen sources from this set.

To examine navigability between fRNAs, we must consider sequences longer 
than L = 15. In doing so, we introduce additional computational overhead given 
the increasing neutral set size resulting in the condition ∣u0∣ + ∣u1∣ > T being more 
likely to be met. Therefore, to maximize the number of non-aborted runs, we 
perform a modified depth-first search (DFS) where we attempt to greedily follow 
paths of increasing gradient until we reach the maximum fitness phenotype. If the 
path fails, instead of moving back one step as in a standard DFS, we go all the way 
back to the start of the walk and pick an unexplored neighbour with the lowest 
fitness to begin a new uphill walk. In this way, we maximize the exploration of 
new phenotypes by always starting our deep walks from the lowest point while still 
maintaining the ability to perform long walks during the search.

We write the modified DFS algorithm explicitly as:

 (1) A random genotype g that maps to the source phenotype is chosen and added 
to u0

 (2) Set the first element of u0 as g, and p = M(g)
 (3) For each alternative base a ∈ A at position j and for each position j in D, 

measure genotype neighbour g′ and phenotype p′ = M(g′)
 (4) If any g′ has Fp′ > Fp and g′ /∈ u1 and g′ /∈ u0, add g′ to front of u0 and 

return to step 2
 (5) If any g′ have p = p′ and ∣u0∣ = 1, add one such neutral case to the back of u0 

if g′ /∈ u0 and g′ /∈ u1

 (6) Move g from u0 to u1

 (7) If ∣u0∣ = 0 or ∣u0∣ + ∣u1∣ > T (computational threshold) or the target phenotype 
is found, return ‘aborted’ or ψ, respectively: otherwise return to step 2

We note that for searches where neutral mutations are not permitted as part of the 
search, step 5 of the above is omitted.

In terms of computational time, on a single Intel Xeon core at 2.8 GHz a single 
search for a target with T = 2 × 106 took on average 0.9 minutes for L = 20, 1.3 hours 
for L = 30 and 19.1 hours for L = 40. With T = 2 × 104, the times were on average 
0.1 minutes for L = 20, 3.0 minutes for L = 30 and 19.5 minutes for L = 40.

Navigability estimation under evolutionary dynamics. We measured fitness 
landscape navigability as the average probability that a given source–target pair 
could be connected by way of an accessible path. We extend this definition to the 
stricter requirement of evolutionary navigability where the evolutionary dynamics 
of a population is considered instead of just the existence of an accessible path in 
crossing the fitness landscape.

Monomorphic evolutionary dynamics. We model monomorphic evolutionary 
dynamics with a sequential fixation model57, assuming that the rate of mutation is 
much less than the time it takes for mutants to reach fixation once they have arisen. 
Under this model, the sequence of fixation can be treated as a Markov chain, with 
the adaptive path of the population essentially following a biased random walk.

Following the formalism of ref. 57, and assuming that the neighbouring 
genotypes σ(g) of genotype g will be produced at equal rates, the probability that 
mutant genotype h will be the next to fix after genotype g, is given by:

P(g, h) =
Pfix(s(h, g), N)∑

g′∈σ(g)Pfix(s(g′, g), N)
(11)

where the probability Pfix that a given mutant arising in a haploid population of size 
N is given by Kimura’s equation58:

Pfix(s, N) =
1 − exp(−2s)
1 − exp(−2Ns) (12)

with s(g′, g) = Fg′ /Fg − 1 as the relative fitness of genotype g′ to genotype g.
To computationally implement these dynamics for a given source–target pair 

of phenotypes p and q, respectively, with fitness assignment function F (either 
random or Hamming, Fitness landscapes), we perform the following algorithm up 
to a limit of T iterations:

 (1) Set genotype g as the source genotype and its phenotype p corresponding 
to randomly chosen entry from fRNAdb, calculating its fitness Fp using the 
fitness assignment function

 (2) For each neighbouring genotype g′ in the set σ(g) of neighbours of g, calcu-
late their phenotype p′ = M(g′)

 (3) Calculate the fitness of each neighbour Fp′ and the Pfix(s(g′, g), N)
 (4) Randomly choose a neighbour genotype g′ in proportion to Pfix(s(g′, g), N)
 (5) Set g ← g′, t ← t + 1
 (6) Return to step 2 if M(g′) ̸= q and t < T: otherwise terminate

We performed the evolutionary search for Ns = 20 sources for each of Nt = 50 
targets randomly chosen from the fRNAdb at lengths L = 20, 30, 40, with both 
random and Hamming distance fitness assignment (Fitness landscapes). A 
computational limit of T = 50,000 sequential fixations was used. On a single 
Intel Xeon core at 2.8 GHz a single search from source to target took on average 
0.4 minutes for L = 20, 5.1 minutes for L = 30 and 30.7 minutes for L = 40.

Non-monomorphic evolutionary dynamics. For non-monomorphic evolutionary 
dynamics, we modelled the evolutionary process using Wright–Fisher 
dynamics69,70. This directly involved simulating a population of N genotypes and 
updating this population every generation with genotypes chosen for reproduction 
in proportion to their fitness, with point mutations applied.

For a given source–target pair of phenotypes p and q, respectively, we use the 
following algorithm:

 (1) Set genotype g as the source genotype and its phenotype p corresponding to 
randomly chosen entry from the fRNAdb

 (2) Make N copies of g constructing the population Γt=0 at time t = 0
 (3) For subsequent times 0 < t ≤ T (with T as the computational limit/maximum 

number of generations), we repeat the following:

(a) For ith genotype gi of the population Γt, calculate the phenotype pi and its 
fitness Fpi

(b) Sample N genotypes at random with probability Fpi /
∑

kFpk with replace-
ment from Γt, constructing a temporary population of genotypes Γ′

t
(c) For each base position j for each genotype i of Γ′

t, apply a random mutation 
with Bernoulli probability μ (point mutation rate). Where a mutation is 
applied to gij, a random alternative base to the current is chosen from {A, C, 
G, U}\gij with uniform probability.
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(d) Set the population at time t + 1 from the mutated temporary population: 
Γt+1 ← Γ′

t

We performed the evolutionary search for Ns = 20 sources for each of Nt = 50 
targets randomly chosen from the fRNAdb at lengths L = 20, 30, 40, with both 
random and Hamming distance fitness assignment (Fitness landscapes). A 
computational limit of T = 20, 000 generations and a population size of N = 100 
was used. Population mutation rates of NμL = 1 (intermediate), NμL = 10 and 
NμL = 100 (polymorphic as NμL ≫ 1) were investigated.

On a single Intel Xeon core at 2.8 GHz, a single simulation of a population of 
size N = 100 for T = 10,000 generations took on average 1.3 minutes for L = 20, 
5.6 minutes for L = 30 and 16.7 minutes for L = 40.

Estimating evolutionary navigability. To quantify navigability under  
evolutionary dynamics we need to define the adaptive path from  
source to target. For monomorphic evolutionary dynamics, this is  
the genotypes (and their corresponding phenotype’s and fitness) along  
the Markov chain of sequential fixations. For non-monomorphic evolutionary 
dynamics, we measure whether the population Γt has a majority phenotype 
with proportion greater than 50%, otherwise recording a null value, leading to 
a sequence of majority phenotypes and their corresponding fitnesses during 
the search. An accessible path is an adaptive path that reaches the target with 
monotonic fitness changes along the adaptive path. We defined evolutionary 
navigability for a given GP map as the average probability that an adaptive  
path was an accessible path given the evolutionary dynamics, GP map and  
fitness assignment.

To estimate this computationally, we record two binary properties of the search: 
(1) whether the target was discovered (Successful) and (2) whether the adaptive 
path only increased in fitness (Monotonic). We record whether the population took 
an accessible path by enumerating the cases:

ψ
evo

=






1 Successful ANDMonotonic

0 Successful ANDnotMonotonic

0 not Successful ANDnotMonotonic

NA not Successful ANDMonotonic

with the evolutionary navigability then estimated over a k-indexed ensemble of 
searches as:

⟨
ψ
evo⟩

=
1
Nc

∑

k
ψ
evo
sk ,tk I

(
ψ
evo
sk ,tk ̸= NA

)
(13)

with Nc =
∑

kI
(

ψevo
sk ,tk ̸= NA

)
 counting the searches where it is certain that the 

search will be via an accessible path or not. As in equation (7), the proportion of 
searches aborted is given by α = 1 − Nc

NtNs
. We additionally define the phenotypic 

evolutionary navigability ⟨ψevo
p ⟩ for an individual phenotype p as an ensemble 

where tk = p for all k, such that:
⟨

ψ
evo
p

⟩
=

1
Nc

∑

k
ψ
evo
sk ,pI

(
ψ
evo
sk ,p ̸= NA

)
(14)

providing a means to investigate the distribution conditional on the target 
phenotype p as well as overall navigability.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset containing fRNA (fRNAdb) used in this paper is available at: https://
doi.org/10.18908/lsdba.nbdc00452-001. The GP maps analysed are available in the 
Code availability section.

code availability
The ViennaRNA package (v.1.8.5), RNAshape package https://anaconda.org/
bioconda/rnashapes and custom C++ and Python source code was used to 
construct GP maps and perform computational simulations. The source code is 
available at: https://github.com/sgreenbury/gp-maps-nav.
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Extended Data Fig. 1 | Depiction of the different biological systems, specific GP maps considered and example genotype, phenotype and encoding 
of phenotype. Each row is a specific GP map included in this work and is situated within one of the four categories of system: RNA, Polyomino, HP 
(compact), and HP (non-compact). RNA and HP genotypes are depicted with distinct colours for their constituent bases. Polyomino genotypes are shown 
as numerical sequences that map to the edges of distinctly coloured tiles with arrows used to indicate the tile orientation. The corresponding phenotype 
(the structure that is formed following the self-assembly process on the example genotype) is shown with the colours and arrows used in the genotype 
depiction highlighting the mechanism by which bonds are formed. The encoding of the example phenotypes are shown in the final column: dot-bracket 
and shape notation for RNA, grid coordinates for tile placements of polyominoes, and the lattice directions for the HP lattice fold.
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Extended Data Table 1 | GP map properties and navigability estimates. All GP maps studied with their properties (base K, sequence 
length L, number of phenotypes NP, proportion of genotypes with the deleterious phenotype fdel, average redundancy log10R, mean 
genotypic robustness 

⟨
ρg
⟩
) and estimate with standard error of navigability ⟨ψ⟩ ± SE(⟨ψ⟩). rNA, Polyomino and compact HP GP 

maps all have navigable fitness landscapes (⟨ψ⟩ > 0.6) under random fitness assignment. By contrast, non-compact HP models have 
very low navigability (⟨ψ⟩ ≤ 0.013)
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Extended Data Table 2 | Terminology. A summary of terms and their representations used in the paper. The first column (left) 
provides the term used and its description, while the second column (right) has the corresponding mathematical symbol and 
equation where relevant
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