Abstract
Animal migration plays a central role in many ecological and evolutionary processes, yet migratory populations worldwide are increasingly threatened. Adjusting migration timing to match ecosystem phenology is key to survival in dynamic and changing ecosystems, especially in an era of human-induced rapid environmental change. Social cues are increasingly recognized as major components of migratory behaviour, yet a comprehensive understanding of how social cues influence the timing of animal migrations remains elusive. Here, we introduce a framework for assessing the role that social cues, ranging from explicit (for example, active cueing) to implicit (for example, competition), play in animals’ temporal migration decisions across a range of scales. By applying this theoretical lens to a systematic review of published literature, we show that a broad range of social cues frequently mediate migration timing at a range of temporal scales and across highly diverse migratory taxa. We further highlight that while rarely documented, several social cue mechanisms (for example, social learning and density dependency) play important adaptive roles in matching migration timing with ecosystem dynamics. Thus, social cues play a fundamental role in migration timing, with potentially widespread ecological consequences and implications for the conservation of migratory species. Furthermore, our analysis establishes a theoretical basis on which to evaluate future findings on the role of both conspecific and interspecific social cues in this intersection of behavioural ecology and global change biology.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Data that support the findings of this study are available from https://doi.org/10.5281/zenodo.6574762.
Code availability
’Code that supports the findings of this study is available from https://doi.org/10.5281/zenodo.6574762.
References
Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103, 247–260 (2003).
Bauer, S., Lisovski, S. & Hahn, S. Timing is crucial for consequences of migratory connectivity. Oikos 125, 605–612 (2016).
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).
Fricke, E. C., Ordonez, A., Rogers, H. S. & Svenning, J. C. The effects of defaunation on plants’ capacity to track climate change. Science 214, 210–214 (2022).
Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).
Wilcove, D. S. & Wikelski, M. Going, going, gone: is animal migration disappearing? PLoS Biol. 6, e188 (2008).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change. Nature 421, 37–42 (2003).
Walther, G. et al. Ecological responses to recent climate change. Nature 4126, 389–395 (2002).
Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793 (2016).
Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).
Senzaki, M. et al. Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605–609 (2020).
Guerra, A. S. Wolves of the sea: managing human–wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).
Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).
Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).
Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Phil. Trans. R. Soc. B Biol. Sci. 363, 2369–2375 (2008).
Winkler, D. W. et al. Cues, strategies, and outcomes: how migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
Xu, W. et al. The plasticity of ungulate migration in a changing world. Ecology 102, e03293 (2021).
McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental change. Ecol. Lett. 14, 1183–1190 (2011).
Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B Biol. Sci. 287, 20200622 (2020).
Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2020).
Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).
Aikens, E. O. et al. Wave-like patterns of plant phenology determine ungulate movement tactics. Curr. Biol. 30, 3444–3449 (2020).
Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).
Lank, D. B., Butler, R. W., Ireland, J. & Ydenberg, R. C. Effects of predation danger on migration strategies of sandpipers. Oikos 103, 303–319 (2003).
Sabal, M. C. et al. Predation landscapes influence migratory prey ecology and evolution. Trends Ecol. Evol. 36, 737–749 (2021).
Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).
Altizer, S., Bartel, R. & Han, B. A. Animal migration and infectious disease risk. Science 331, 296–302 (2011).
Gunnarsson, T., Gill, J., Sigurbjörnsson, T. & Sutherland, W. Arrival synchrony in migratory birds. Nature 431, 646 (2004).
Beltran, R. S. et al. Elephant seals time their long-distance migration using a map sense. Curr. Biol. 32, R156–R157 (2022).
Yang, L. H. & Rudolf, V. H. W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13, 1–10 (2010).
Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
Furey, N. B. et al. Predator swamping reduces predation risk during nocturnal migration of juvenile salmon in a high-mortality landscape. J. Anim. Ecol. 85, 948–959 (2016).
Rickbeil, G. J. M. et al. Plasticity in elk migration timing is a response to changing environmental conditions. Glob. Change Biol. 25, 2368–2381 (2019).
Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).
Gwinner, E. Circadian and circannual programmes in avian migration. J. Exp. Biol. 199, 39–48 (1996).
Liedvogel, M., Åkesson, S. & Bensch, S. The genetics of migration on the move. Trends Ecol. Evol. 26, 561–569 (2011).
Hauser, D. D. W. et al. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation. Glob. Change Biol. 23, 2206–2217 (2017).
Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. & Martín, C. A. Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. J. Avian Biol. 42, 301–308 (2011).
Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).
Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).
Berdahl, A. M. et al. Collective animal navigation and migratory culture: from theoretical models to empirical evidence. Phil. Trans. R. Soc. B Biol. Sci. 373, 20170009 (2018).
Cohen, E. B. & Satterfield, D. A. ‘Chancing on a spectacle:’ co-occurring animal migrations and interspecific interactions. Ecography 43, 1657–1671 (2020).
Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science 339, 574–576 (2013).
Abrahms, B., Teitelbaum, C. S., Mueller, T. & Converse, S. J. Ontogenetic shifts from social to experiential learning drive avian migration timing. Nat. Commun. 12, 7326 (2021).
Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 15049 (2017).
Helm, B., Piersma, T. & van der Jeugd, H. Sociable schedules: interplay between avian seasonal and social behaviour. Anim. Behav. 72, 245–262 (2006).
Piersma, T., Zwarts, L. & Bruggemann, J. H. Behavioural aspects of the departure of waders before long-distance flights: flocking, vocalizations, flight paths and diurnal timing. Ardea 78, 157–184 (1990).
Dingle, H. & Drake, V. A. What is migration? BioScience 57, 113–121 (2007).
Oestreich, W. K. & Aiu, K. M. Code and data from: The influence of social cues on timing of animal migrations. Zenodo https://zenodo.org/record/6574762 (2022).
Furey, N. B., Martins, E. G. & Hinch, S. G. Migratory salmon smolts exhibit consistent interannual depensatory predator swamping: effects on telemetry-based survival estimates. Ecol. Freshw. Fish 30, 18–30 (2021).
Berdahl, A., Westley, P. A. H. & Quinn, T. P. Social interactions shape the timing of spawning migrations in an anadromous fish. Anim. Behav. 126, 221–229 (2017).
Louca, V., Lindsay, S. W. & Lucas, M. C. Factors triggering floodplain fish emigration: importance of fish density and food availability. Ecol. Freshw. Fish 18, 60–64 (2009).
Bastille-Rousseau, G. et al. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 100, e02658 (2019).
Bracis, C. & Mueller, T. Memory, not just perception, plays an important role in terrestrial mammalian migration. Proc. R. Soc. B Biol. Sci. 284, 20170449 (2017).
Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 183 (2019).
Merkle, J. A. et al. Site fidelity as a maladaptive behavior in the Anthropocene. Front. Ecol. Environ. 20, 187–194 (2022).
Teske, P. R. et al. The sardine run in southeastern Africa is a mass migration into an ecological trap. Sci. Adv. 7, eabf4514 (2021).
Corten, A. The role of ‘conservatism’ in herring migrations. Rev. Fish Biol. Fish. 11, 339–361 (2002).
Mukhin, A., Chernetsov, N. & Kishkinev, D. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behav. Ecol. 19, 716–723 (2008).
Barker, K. J. et al. Toward a new framework for restoring lost wildlife migrations. Conserv. Lett. 15, e12850 (2022).
Teitelbaum, C. S., Converse, S. J. & Mueller, T. The importance of early life experience and animal cultures in reintroductions. Conserv. Lett. 12, e12599 (2019).
Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A., Jensen, F. H. & Hughey, L. F. Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005 (2018).
Calabrese, J. M. et al. Disentangling social interactions and environmental drivers in multi-individual wildlife tracking data. Phil. Trans. R. Soc. B 373, 20170007 (2018).
Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).
Bousquet, C. A. H., Sumpter, D. J. T. & Manser, M. B. Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc. R. Soc. B Biol. Sci. 278, 1482–1488 (2011).
Dibnah, A. J. et al. Vocally mediated consensus decisions govern mass departures from jackdaw roosts. Curr. Biol. 32, R455–R456 (2022).
Robart, A. R., Zuñiga, H. X., Navarro, G. & Watts, H. E. Social environment influences termination of nomadic migration. Biol. Lett. 18, 20220006 (2022).
Dodson, S., Abrahms, B., Bograd, S. J., Fiechter, J. & Hazen, E. L. Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models. Ecol. Modell. 432, 109225 (2020).
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).
Oestreich, W. K. et al. Acoustic signature reveals blue whale tune life history transitions to oceanographic conditions. Funct. Ecol. 36, 882–895 (2022).
Chapman, J. W., Reynolds, D. R. & Smith, A. D. Vertical-looking radar: a new tool for monitoring high-altitude insect migration. BioScience 53, 503–511 (2003).
Oestreich, W. K. et al. Animal-borne metrics enable acoustic detection of blue whale migration. Curr. Biol. 30, 4773–4779 (2020).
Fraser, K. C., Shave, A., de Greef, E., Siegrist, J. & Garroway, C. J. Individual variability in migration timing can explain long-term, population-level advances in a songbird. Front. Ecol. Evol. 7, 324 (2019).
Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Paternal transmission of migration knowledge in a long-distance bird migrant. Nat. Commun. 13, 1566 (2022).
Schneider, S. S. & McNally, L. C. Waggle dance behavior associated with seasonal absconding in colonies of the African honey bee, Apis mellifera scutellata. Insectes Soc. 41, 115–127 (1994).
Raveling, D. G. Preflight and flight behavior of Canada geese. Auk 86, 671–681 (1969).
Tennessen, J. B., Parks, S. E. & Langkilde, T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. Conserv. Physiol. 2, cou032 (2014).
Lagarde, A., Lagarde, F. & Piersma, T. Vocal signalling by Eurasian spoonbills Platalea leucorodia in flocks before migratory departure. Ardea 109, 243–250 (2021).
Rees, E. C. Conflict of choice within pairs of Bewick’s swans regarding their migratory movement to and from the wintering grounds. Anim. Behav. 35, 1685–1693 (1987).
Mazeroll, A. I. & Montgomery, W. L. Daily migrations of a coral reef fish in the Red Sea (Gulf of Aqaba, Israel). Copiea 1998, 893–905 (1998).
Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).
Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).
Sweanor, P. Y. & Sandgren, F. Winter-range philopatry of seasonally migratory moose. J. Appl. Ecol. 26, 25–33 (1989).
Rees, E. C. Consistency in the timing of migration for individual Bewick’s swans. Anim. Behav. 38, 384–393 (1989).
Corten, A. A possible adaptation of herring feeding migrations to a change in timing of the Calanus finmarchicus season in the eastern North Sea. ICES J. Mar. Sci. 57, 1261–1270 (2000).
Loonstra, A. J. et al. Individual black-tailed godwits do not stick to single routes: a hypothesis on how low population densities might decrease social conformity. Ardea 107, 251–261 (2020).
Hake, M., Kjellén, N. & Alerstam, T. Age‐dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).
Gupte, P. R., Koffijberg, K., Müskens, G. J. D. M., Wikelski, M. & Kölzsch, A. Family size dynamics in wintering geese. J. Ornithol. 160, 363–375 (2019).
Gonçalves, M. I. C. et al. Movement patterns of humpback whales (Megaptera novaeangliae) reoccupying a Brazilian breeding ground. Biota Neotrop. 18, e20180567 (2018).
Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. Afr. J. Mar. Sci. 40, 75–86 (2018).
De La Gala-Hernández, S. R., Heckel, G. & Sumich, J. L. Comparative swimming effort of migrating gray whales (Eschrichtius robustus) and calf cost of transport along Costa Azul, Baja California, Mexico. Can. J. Zool. 86, 307–313 (2008).
Sword, G. A. Local population density and the activation of movement in migratory band-forming Mormon crickets. Anim. Behav. 69, 437–444 (2005).
Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006).
Mysterud, A., Loe, L. E., Zimmermann, B., Bischof, R. & Meisingset, E. Partial migration in expanding red deer populations at northern latitudes—a role for density dependence? Oikos 120, 1817–1825 (2011).
Bukreeva, O. M. & Lidzhi-garyaeva, G. V. Mass migration of social voles (Microtus socialis Pallas, 1773) in the Northwestern Caspian region. Arid Ecosyst. 8, 147–151 (2018).
Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).
Weithman, C. et al. Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebird. Ecol. Evol. 7, 11044–11056 (2017).
Rappole, J. H. & Warner, D. W. Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 212, 193–212 (1976).
Fauchald, P., Mauritzen, M. & Gjøsæter, H. Density‐dependent migratory waves in the marine pelagic ecosystem. Ecology 87, 2915–2924 (2006).
Makris, N. C. et al. Critical population density triggers rapid formation of vast oceanic fish shoals. Science 323, 1734–1737 (2009).
Tøttrup, A. P. & Thorup, K. Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J. Ornithol. 149, 161–167 (2008).
Francis, C. M. & Cooke, C. F. Differential timing of spring migration in rose-breasted grosbeaks. J. Field Ornithol. 61, 404–412 (1990).
Corgos, A., Verísimo, P. & Freire, J. Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J. Shellfish Res. 25, 577–587 (2006).
Gordo, O., Sanz, J. J. & Lobo, J. M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 148, 293–308 (2007).
Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).
Manica, L. T., Graves, J. A., Podos, J. & Macedo, R. H. Hidden leks in a migratory songbird: mating advantages for earlier and more attractive males. Behav. Ecol. 31, 1180–1191 (2020).
Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim. Behav. 182, 251–266 (2021).
Urbanek, R. P., Fondow, L. E. A., Zimorski, S. E., Wellington, M. A. & Nipper, M. A. Winter release and management of reintroduced migratory whooping cranes Grus americana. Bird Conserv. Int. 20, 43–54 (2010).
Németh, Z. & Moore, F. R. Information acquisition during migration: a social perspective. Auk 131, 186–194 (2014).
Acknowledgements
W.K.O. was supported by the National Science Foundation Graduate Research Fellowship Program, as a David and Lucile Packard Foundation Stanford graduate fellow, and by the Monterey Bay Aquarium Research Institute postdoctoral fellowship program. K.M.A. was supported by the Stanford Woods Institute for the Environment’s Mentoring Undergraduates in Interdisciplinary Research programme. A.M.B. was supported by the H. Mason Keeler Endowed Professorship in Sports Fisheries Management.
Author information
Authors and Affiliations
Contributions
W.K.O. led the writing of the paper with contributions and editing from K.M.A., L.B.C., M.F.M., A.M.B. and B.A. W.K.O. and K.M.A. led the systematic review process with contributions from L.B.C., M.F.M., A.M.B. and B.A. W.K.O., K.M.A. and B.A. conceptualized the study.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Emily Cohen, Takao Sasaki and María del Mar Delgado for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oestreich, W.K., Aiu, K.M., Crowder, L.B. et al. The influence of social cues on timing of animal migrations. Nat Ecol Evol 6, 1617–1625 (2022). https://doi.org/10.1038/s41559-022-01866-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-022-01866-0
This article is cited by
-
The influence of social cues on timing of animal migrations
Nature Ecology & Evolution (2022)