Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems

Abstract

Protecting nature’s contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions for 1,381 palm species (Arecaceae), a plant family of high socio-economic and ecological importance. We integrate these predictions with published assessments for 508 species (covering 75% of all palm species) and we identify top-priority regions for palm conservation on the basis of their proportion of threatened evolutionarily distinct, functionally distinct and used species. Finally, we explore palm use resilience to identify non-threatened species that could potentially serve as substitutes for threatened used species by providing similar products. We estimate that over a thousand palms (56%) are probably threatened, including 185 species with documented uses. Some regions (New Guinea, Vanuatu and Vietnam) emerge as top ten priorities for conservation only after incorporating machine learning extinction risk predictions. Potential substitutes are identified for 91% of the threatened used species and regional use resilience increases with total palm richness. However, 16 threatened used species lack potential substitutes and 30 regions lack substitutes for at least one of their threatened used palm species. Overall, we show that hundreds of species of this keystone family face extinction, some of them probably irreplaceable, at least locally. This highlights the need for urgent actions to avoid major repercussions on palm-associated ecosystem processes and human livelihoods in the coming decades.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Percentages of threatened palm species in different diversity and use categories.
Fig. 2: Priority regions for palm conservation and research.
Fig. 3: Availability of potential alternatives for threatened used palm species.

Data availability

All data necessary to perform the analyses are provided as Supplementary Tables or on Zenodo (https://zenodo.org/)167. Source data are provided with this paper.

Code availability

All scripts necessary to perform the analyses are provided on Zenodo (https://zenodo.org/)167.

References

  1. Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. van der Sande, M. T. et al. Biodiversity in species, traits, and structure determines carbon stocks and uptake in tropical forests. Biotropica 49, 593–603 (2017).

    Article  Google Scholar 

  3. Grace, O. M. et al. Plant power: opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. Plants People Planet 2, 446–462 (2020).

    Article  Google Scholar 

  4. Howes, M. J. R. et al. Molecules from nature: reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet 2, 463–481 (2020).

    Article  Google Scholar 

  5. Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).

    Article  Google Scholar 

  6. Brondizio, E., Diaz, S., Settele, J. & Ngo, H. T. (eds) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).

  7. Bennun, L. et al. The value of the IUCN Red List for business decision-making. Conserv. Lett. 11, e12353 (2018).

  8. Betts, J. et al. A framework for evaluating the impact of the IUCN Red List of threatened species. Conserv. Biol. 34, 632–643 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maira, L. et al. Achieving international species conservation targets: closing the gap between top-down and bottom-up approaches. Conserv. Soc. 19, 25–33 (2021).

    Article  Google Scholar 

  10. IUCN Red List version 2022-2: Table 1a (IUCN, 2022); https://www.iucnredlist.org/resources/summary-statistics#Figure2

  11. Rivers, M. The global tree assessment—red listing the world’s trees. BGjournal 14, 16–19 (2017).

    Google Scholar 

  12. Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).

    Article  Google Scholar 

  13. Silva, S. V. et al. Global estimation and mapping of the conservation status of tree species using artificial intelligence. Front. Plant Sci. 13, 839792 (2022).

  14. ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 12 October 2021); https://tools.bgci.org/threat_search.php

  15. Bachman, S. P., Nic Lughadha, E. M. & Rivers, M. C. Quantifying progress toward a conservation assessment for all plants. Conserv. Biol. 32, 516–524 (2018).

    Article  PubMed  Google Scholar 

  16. Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN Red List. Conserv. Lett. 7, 126–130 (2014).

    Article  Google Scholar 

  17. Cazalis, V. et al. Bridging the research–implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).

    Article  PubMed  Google Scholar 

  18. Dauby, G. et al. ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol. Evol. 7, 11292–11303 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).

    Article  PubMed  Google Scholar 

  21. Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).

    Article  Google Scholar 

  22. Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J. & Espíndola, A. Predicting plant conservation priorities on a global scale. Proc. Natl Acad. Sci. USA 115, 13027–13032 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).

    Article  PubMed  Google Scholar 

  24. Walker, B. E., Leão, T. C. C., Bachman, S. P., Bolam, F. C. & Nic Lughadha, E. Caution needed when predicting species threat status for conservation prioritization on a global scale. Front. Plant Sci. 11, 520 (2020).

  25. Lughadha, E. N. et al. The use and misuse of herbarium specimens in evaluating plant extinction risks. Philos. Trans. R. Soc. B 374, 20170402 (2019).

    Article  Google Scholar 

  26. Walker, B. E., Leão, T. C. C., Bachman, S. P., Lucas, E. & Nic Lughadha, E. M. Evidence-based guidelines for developing automated assessment methods. Preprint at https://ecoevorxiv.org/zxq6s/ (2021).

  27. Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).

    Article  Google Scholar 

  29. Lindegren, M., Holt, B. G., MacKenzie, B. R. & Rahbek, C. A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Sci. Rep. 8, 4099 (2018).

  30. Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    Article  PubMed  Google Scholar 

  31. Arnan, X., Cerdá, X. & Retana, J. Relationships among taxonomic, functional, and phylogenetic ant diversity across the biogeographic regions of Europe. Ecography 40, 448–457 (2017).

    Article  Google Scholar 

  32. Wong, J. S. Y. et al. Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities. Coral Reefs 37, 737–750 (2018).

    Article  Google Scholar 

  33. Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed  Google Scholar 

  34. Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).

  38. Saslis-Lagoudakis, C. H. et al. Phylogenies reveal predictive power of traditional,medicinein bioprospecting. Proc. Natl Acad. Sci. USA 109, 15835–15840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Molina-Venegas, R., Rodríguez, M., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind. Nat. Ecol. Evol. 5, 583–588 (2021).

    Article  PubMed  Google Scholar 

  41. Molina-Venegas, R. Conserving evolutionarily distinct species is critical to safeguard human well-being. Sci. Rep. 11, 24187 (2021).

  42. Zaman, W. et al. Predicting potential medicinal plants with phylogenetic topology: inspiration from the research of traditional Chinese medicine. J. Ethnopharmacol. 281, 114515 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Cámara-Leret, R. et al. Climate change threatens New Guinea’s biocultural heritage. Sci. Adv. 5, eaaz1455 (2019).

  44. Lima, V. P. et al. Climate change threatens native potential agroforestry plant species in Brazil. Sci. Rep. 12, 2267 (2022).

  45. Johnson, D. V. Tropical Palms 2010 Revision Non-Wood Forest Products 10 (FAO, 2010).

  46. Johnson, D. V. & Sunderland, T. C. H. Rattan Glossary and Compendium Glossary with Emphasis on Africa Non-Wood Forest Products 16 (FAO, 2004).

  47. Ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    Article  PubMed  Google Scholar 

  48. Zona, S. & Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 11, 6–21 (1989).

    Google Scholar 

  49. Kissling, W. D. et al. PalmTraits 1.0, a species-level functional trait database of palms worldwide. Sci. Data 6, 178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tomlinson, P. B. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5–14 (2006).

    Article  Google Scholar 

  51. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  PubMed  Google Scholar 

  52. Muscarella, R. et al. The global abundance of tree palms. Glob. Ecol. Biogeogr. 29, 1495–1514 (2020).

    Article  Google Scholar 

  53. Dransfield, J. et al. Genera Palmarum: The Evolution and Classification of Palms (Kew Publishing, 2008).

  54. Diazgranados, M. et al. World Checklist of Useful Plant Species (Royal Botanic Gardens, Kew, 2020).

  55. Couvreur, T. L. P. & Baker, W. J. Tropical rain forest evolution: palms as a model group. BMC Biol. 11, 2–5 (2013).

    Article  Google Scholar 

  56. Faurby, S., Eiserhardt, W. L., Baker, W. J. & Svenning, J. Molecular phylogenetics and evolution: an all-evidence species-level supertree for the palms (Arecaceae). Mol. Phylogenet. Evol. 100, 57–69 (2016).

    Article  PubMed  Google Scholar 

  57. The IUCN Red List of Threatened Species Version 2021-2 (IUCN, accessed 12 October 2021); https://www.iucnredlist.org

  58. Baker, W. J. & Dransfield, J. Beyond genera Palmarum: progress and prospects in palm systematics. Bot. J. Linn. Soc. 182, 207–233 (2016).

    Article  Google Scholar 

  59. Henderson, A. A revision of Calamus (Arecaceae, Calamoideae, Calameae, Calaminae). Phytotaxa https://doi.org/10.11646/phytotaxa.445.1.1 (2020).

  60. Rakotoarinivo, M., Dransfield, J., Bachman, S. P., Moat, J. & Baker, W. J. Comprehensive red list assessment reveals exceptionally high extinction risk to Madagascar palms. PLoS ONE 9, e103684 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cosiaux, A. et al. Low extinction risk for an important plant resource: conservation assessments of continental African palms (Arecaceae/Palmae). Biol. Conserv. 221, 323–333 (2018).

    Article  Google Scholar 

  62. Johnson, D. & UICN/SSC Palm Specialist Group (eds) Palms, Their Conservation and Sustained UtilizationStatus Survey and Conservation Action Plan (Union Internationale pour la Conservation de la Nature et de ses Ressources, 1996).

  63. Bachman, S., Walker, B. E., Barrios, S., Copeland, A. & Moat, J. Rapid least concern: towards automating red list assessments. Biodivers. Data J. 8, e47018 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. https://doi.org/10.1126/sciadv.aaz0414 (2019).

  65. Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 222, 189–197 (2018).

    Article  Google Scholar 

  66. Gaveau, D. L. A. et al. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv. Lett. 12, e12622 (2019).

  67. Gamoga, G., Turia, R., Abe, H., Haraguchi, M. & Iuda, O. The forest extent in 2015 and the drivers of forest change between 2000 and 2015 in Papua New Guinea: deforestation and forest degradation in Papua New Guinea. Case Stud. Environ. 5, 1442018 (2021).

  68. Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118, e2103683118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Henderson, A., Fischer, B., Scariot, A., Whitaker Pacheco, M. A. & Pardini, R. Flowering phenology of a palm community in a central Amazon forest. Brittonia 52, 149–159 (2000).

    Article  Google Scholar 

  70. Olivares, I. & Galeano, G. Leaf and inflorescence production of the wine palm (Attalea butyracea) in the dry Magdalena river valley, Colombia. Caldasia 35, 37–48 (2013).

    Google Scholar 

  71. Voeks, R. A. Disturbance pharmacopoeias: medicine and myth from the humid tropics. Ann. Assoc. Am. Geogr. 94, 868–888 (2004).

    Google Scholar 

  72. Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).

    Article  Google Scholar 

  73. Govaerts, R., Dransfield, J., Zona, S. & Henderson, A. World Checklist of Arecaceae (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://wcsp.science.kew.org/

  74. Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2021).

  75. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  76. Plants of the World Online (Royal Botanic Gardens, Kew, accessed 1 March 2018); http://www.plantsoftheworldonline.org/

  77. South, A. rworldmap v.1.3-6: Mapping global data (2016).

  78. Bivand, R. et al. maptools v.0.9-2: Tools for handling spatial objects (2017).

  79. Arel-Bundock, V., Enevoldsen, N. & Yetman, C. countrycode: an R package to convert country names and country codes. J. Open Source Softw. 3, 848 (2018).

    Article  Google Scholar 

  80. Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps v.3.3.0: Draw geographical maps (2018).

  81. Pebesma, E. et al. sp v.1.2-7: Classes and methods for spatial data (2018).

  82. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  83. Wickham, H., Hester, J. & Chang, W. devtools v.1.13.5: Tools to make developing R packages easier (2018).

  84. World Geographic Scheme for Recording Plant Distributions Standard (TDWG, 2001); http://www.tdwg.org/standards/109

  85. Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (Hunt Institute for Botanical Documentation, 2001).

  86. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  87. Moat, J. & Bachman, S. P. rCAT v.0.1.6: Conservation assessment tools (2017).

  88. Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Plants of the World Online (Royal Botanic Gardens, Kew, accessed 10 June 2020); http://www.plantsoftheworldonline.org/

  90. Csárdi, G. & FitzJohn, R. progress v.1.2.2: Terminal progress bars (2019).

  91. Microsoft Corporation & Weston, S. doParallel: Foreach parallel adaptor for the ‘parallel’ package. R package version 1.0.16 (2020).

  92. Microsoft Corporation & Weston, S. foreach: Provides foreach looping construct. R package version 1.5.0 (2020).

  93. Ooms, J., Lang, D. T. & Hilaiel, L. jsonlite v.1.7.2: A simple and robust JSON parser and generator for R (2020).

  94. Wickham, H. httr v.1.4.2: Tools for working with URLs and HTTP (2020).

  95. Global Human Footprint (Geographic), v2 (1995 – 2004) (SEDAC, accessed 14 May 2018); https://doi.org/10.7927/H4M61H5F

  96. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  97. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wickham, H. plyr v.1.8.6: Tools for splitting, applying and combining data (2021).

  99. Wickham, H. & RStudio. tidyr v.1.1.4: Tidy messy data (2021).

  100. Wickham, H., François, R., Henry, L. & Müller, K. dplyr v.1.0.7: A grammar of data manipulation (2021).

  101. Bivand, R. et al. rgdal v.1.5-8: Bindings for the ‘geospatial’ data abstraction library (2020).

  102. Greenberg, J. A. & Mattiuzzi, M. gdalUtils v.2.0.3.2: Wrappers for the Geospatial data Abstraction Library (GDAL) utilities (2020).

  103. Hijmans, R. J. et al. raster v.3.1-5: Geographic data analysis and modeling (2020).

  104. The IUCN Red List of Threatened Species (IUCN, accessed 22 March 2018); https://www.iucnredlist.org/

  105. ThreatSearch Online Database (Botanic Gardens Conservation International, accessed 1 March 2018); https://tools.bgci.org/threat_search.php

  106. Chamberlain, S., ROpenSci & Salmon, M. rredlist: ‘IUCN’ Red List client (2020).

  107. Wickham, H. stringr v.1.4.0: Simple, consistent wrappers for common string operations (2019).

  108. Gagolewski, M. & Tartanus, B. stringi v.1.7.5: Character string processing facilities (2021).

  109. Kuhn, M. caret: Classification and regression training. R package version 6.0-86 (2020).

  110. Torgo, L. Data Mining with R, Learning with Case Studies (Chapman and Hall/CRC, 2010).

  111. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2020).

    Article  Google Scholar 

  112. Stokely, M. HistogramTools: Utility functions for R histograms. R package version 0.3.2 (2015).

  113. Sarkar, D. et al. lattice v.0.20-40: Trellis graphics for R (2020).

  114. Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Springer, 2016).

  115. Auguie, B. & Antonov, A. gridExtra v.2.3: Miscellaneous functions for ‘grid’ graphics (2017).

  116. Pruim, R., Kaplan, D. T. & Horton, N. J. mosaic v.1.6.0: Project MOSAIC statistics and mathematics teaching utilities (2020).

  117. Meyer, D. & Buchta, C. proxy v.0.4-23: Distance and similarity measures (2019).

  118. Wickham, H. & Seidel, D. scales v.1.1: Scale functions for visualization (2019).

  119. Branco, P., Ribeiro, R. & Torgo, L. UBL v.0.0.6: An implementation of re-sampling approaches to utility-based learning for both classification and regression tasks (2017).

  120. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  121. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37–46 (1960).

    Article  Google Scholar 

  122. Ripley, B. & Venables, W. nnet v.7.3-13: Feed-forward neural networks and multinomial log-linear models (2020).

  123. Warnes, G. R. et al. gdata v.2.18.0: Various R programming tools for data manipulation (2017).

  124. Wright, M. N., Wager, S. & Probst, P. ranger v.0.12.1: A fast implementation of random forests (2020).

  125. Arya, S., Mount, D., Kemp, S. E. & Jefferis, G. RANN v.2.6.1: Fast nearest neighbour search (wraps ANN Library) using L2 metric (2019).

  126. Meyer, D. et al. e1071 v.1.7-3: Misc Functions of the Department of Statistics, Probability Theory Group (formerly: E1071), TU Wien (2019).

  127. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  128. Greenwell, B. fastshap v.0.0.7: Fast approximate Shapley values (2021).

  129. Greenwell, B. vip v.0.3.2: Variable importance plots (2020).

  130. Donoghoe, M. W. glm2 v.1.2.1: Fitting generalized linear models (2018).

  131. Wickham, H. reshape2 v.1.4.4: Flexibly reshape data: a reboot of the reshape package (2020).

  132. Robin, X. et al. pROC v.1.18.0: Display and analyze ROC curves (2020).

  133. Warnes, G. R. et al. gplots v.3.0.3: Various R programming tools for plotting data (2019).

  134. Müller, K. & Bryan, J. here v.1.0.1: A simpler way to find your files (2017).

  135. Wickham, H., Hester, J., Francois, R., Jylänki, J. & Jørgensen, M. readr v.1.3.1: Read rectangular text data (2018).

  136. Wickham, H. et al. readxl v.1.3.1: Read Excel files (2019).

  137. Henry, L. & Wickham, H. purrr v.0.3.4: Functional programming tools (2020).

  138. Lin Pedersen, T. ggforce v.0.3.1: Accelerating ‘ggplot2’ (2019).

  139. Lin Pedersen, T. patchwork v.1.0.0: The composer of plots (2019).

  140. Hester, J. glue v.1.3.1: Interpreted string literals (2019).

  141. Ooms, J. & McNamara, J. writexl v.1.2: Export data frames to Excel ‘xlsx’ format (2019).

  142. Horikoshi, M. et al. ggfortify v.0.4.8: Data visualization tools for statistical analysis results (2019).

  143. Liaw, A. randomForest v.4.6-14: Breiman and Cutler’s random forests for classification and regression (2018).

  144. Kassambara, A. ggpubr v.0.2.5: ‘ggplot2’ based publication ready plots (2020).

  145. Gruca, M., Blach-Overgaard, A. & Balslev, H. African palm ethno-medicine. J. Ethnopharmacol. 165, 227–237 (2015).

    Article  PubMed  Google Scholar 

  146. Cámara–Leret, R. & Dennehy, Z. Indigenous knowledge of New Guinea’s useful plants: a review. Econ. Bot. 73, 405–415 (2019).

    Article  Google Scholar 

  147. Macía, M. J. et al. Palm uses in Northwestern South America: a quantitative review. Bot. Rev. 77, 462–570 (2011).

    Article  Google Scholar 

  148. Orme, D. et al. caper: Comparative analyses of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/package=caper (2018).

  149. Kowarik, A. & Templ, M. Imputation with the R package VIM. J. Stat. Softw. 74, 1–16 (2016).

  150. Alfons, A. & Templ, M. Estimation of social exclusion indicators from complex surveys: the R package laeken. J. Stat. Softw. 54, 1–25 (2013).

    Article  Google Scholar 

  151. Milliken, W., Walker, B. E., Howes, M. J. R., Forest, F. & Nic Lughadha, E. Plants used traditionally as antimalarials in Latin America: mining the tree of life for potential new medicines. J. Ethnopharmacol. 279, 114221 (2021).

    Article  PubMed  Google Scholar 

  152. Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    Article  PubMed  Google Scholar 

  153. Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

  154. Paradis, E. & Schliep, K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).

  156. Yu, G. ggplotify v.0.0.4: Convert plot to ‘grob’ or ‘ggplot’ object (2019).

  157. Yu, G. aplot v.0.0.3: Decorate a ‘ggplot’ with associated information (2020).

  158. Slowikowski, K. et al. ggrepel v.0.8.1: Automatically position non-overlapping text labels with ‘ggplot2’ (2019).

  159. Schloerke, B. et al. GGally v.1.4.0: Extension to ‘ggplot2’ (2018).

  160. Rubis, B. et al. hrbrthemes v.0.6.0: Additional themes, theme components and utilities for ‘ggplot2’ (2019).

  161. Henry, L., Wickham, H. & Chang, W. ggstance v.0.3.3: Horizontal ‘ggplot2’ components (2019).

  162. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. Ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  163. Brown, C. hash v.2.2.6.1: Full feature implementation of hash/associated arrays/dictionaries (2019).

  164. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  165. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  166. RStudio Team. RStudio: Integrated Development for R (RStudio, 2021).

  167. Bellot, S. et al. Workflow and code used to perform palm extinction risk and regional palm use resilience analyses. Zenodo https://doi.org/10.5281/zenodo.6678122 (2022).

Download references

Acknowledgements

We are grateful to Naturalis Biodiversity Center (Leiden, the Netherlands) and Kew Herbarium (United Kingdom) for sharing their geographic coordinates databases, to O. A. Pérez-Escobar for insightful discussion and to T. Couvreur for insightful discussion and critical reading of an earlier version of the manuscript. A.A. is supported by funding from the Swedish Research Council and the Royal Botanic Gardens, Kew. W.D.K. acknowledges funding of palm research from the Netherlands Organisation for Scientific Research (grant no. 824.15.007).

Author information

Authors and Affiliations

Authors

Contributions

S.B. and S.P.B. conceived the study, with input from Y.L., R.C.-L. and W.J.B. Y.L. compiled most of the data, did preliminary random forest ML analyses and wrote part of an early draft, with input and training from S.B. and S.P.B. S.B. compiled traits and use data with help from R.C.-L., I.O. and S.P. I.O. and S.P.B. provided and ran scripts to retrieve numbers of ecoregions and TDWG3 regions. J.D. provided a preliminary guess of the extinction risk of ~400 species without occurrence data or extinction risk assessment. Y.L. and S.B. cleaned the data. S.B. did all final random forest analyses, all neural network analyses and all analyses using the predictions, except the SHAP analysis, done by B.E.W., who also wrote the corresponding Supplementary Note and methods sections. R.C.-L., F.F., I.O., S.P.B. and S.P. advised on some analyses. S.B. wrote most of the final manuscript, with extensive input from S.P.B. and R.C.-L. and contributions from all authors. A.A., W.J.B., R.C.-L., J.D., F.F., W.D.K., I.J.L., E.N.L., I.O. and S.P. provided transformative feedback.

Corresponding authors

Correspondence to S. Bellot or R. Cámara-Leret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Tinde van Andel, Rafael Molina-Venegas and Danilo Neves for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Study design.

a. Model training and testing. b. Datasets. NI: not included; N-T: non-threatened; T: threatened. See Methods for further details.

Source data

Extended Data Fig. 2 Threatened palm species in different diversity and use categories.

a. Comparison between global estimates obtained with or without ML predictions in different areas of the world. Triangles: Estimates obtained by combining recent published assessments and ML predictions from the most accurate model (total evidence approach). Circles: Extrapolations based on published assessments only. Grey: all published assessments; Black: Only recent (that is ≤ 10-year-old) published assessments. America spans longitudes [−180°, −25°[, Africa / West Asia spans longitudes [−25°, 68°[, and East Asia / Pacific spans longitudes [68°, 180°]. b. Relationships between regional percentage of threatened species and total species number in the region (top) and between regional percentage of threatened species in different diversity and use categories (bottom). Percentages were obtained following the total evidence approach. Each dot represents a region with at least one palm species with data in the considered categories (n = 225, 93, 132, 224, 218 and 218 from top to bottom and left to right). The associations between the variables were measured using Pearson’s product moment correlation coefficient in two-sided Pearson’s correlation tests. r is Pearson’s correlation coefficient and p is the associated p-value. The grey error band corresponds to the 95% confidence interval of the correlation coefficient.

Source data

Extended Data Fig. 3 Changes in regional percentage of threatened species and associated region rank depending on the diversity category and the extinction risk information used.

‘total evidence’ is the combination of recent published extinction risk assessments and most accurate machine learning predictions. Each line corresponds to a region, and lines are coloured by the total number of palm species in the region. Regions with ≥40% threatened species of interest (that is top priorities) according to the total evidence approach are annotated, and the lines linking estimates from the total evidence approach and estimates based only on published assessments for these regions are thicker and dotted.

Source data

Extended Data Fig. 4 Replaceability of threatened utilized species and potential for substitution of non-threatened species.

The replaceability of a species is defined as the number of potential alternatives identified for that species. The potential for substitution of a species is defined as the number of threatened utilized species that may be substituted by that species. a. Regional replaceability of threatened utilized species across use categories. b. Global replaceability of threatened utilized species across use categories. The ‘violins’ represent the kernel density distributions. In a violin, the bold line represents the median value, the box spans values from the first to the third quartile, and the lines outside the box extend until the smallest and largest values, no further than 1.5 times the distance between the first and third quartiles. c. Functional traits and phylogenetic distribution of species replaceability and potential for substitution, for all uses taken together. The phylogenetic tree displayed was obtained by removing species without data from a maximum clade credibility consensus tree summarizing 750 palm phylogenetic trees estimated by Faurby et al.56 (see Methods and Supplementary Data).

Source data

Extended Data Fig. 5 Regional use resilience for all uses taken together.

a. Correlation between median number of alternatives per threatened utilized species and total palm species richness in the region. Each dot represents a region with at least one threatened utilized palm species (n = 92). The association between the variables was measured using Pearson’s product moment correlation coefficient in a two-sided Pearson’s correlation test. r is Pearson’s correlation coefficient and p is the associated p-value. The grey error band corresponds to the 95% confidence interval of the correlation coefficient. b. Regional percentages of threatened utilized species with alternatives.

Source data

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–3 and references.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–10.

Supplementary Data

Phylogenetic tree as a txt file.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellot, S., Lu, Y., Antonelli, A. et al. The likely extinction of hundreds of palm species threatens their contributions to people and ecosystems. Nat Ecol Evol 6, 1710–1722 (2022). https://doi.org/10.1038/s41559-022-01858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01858-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing