Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:


Closing the energetics gap

A modelling study suggests that the proposed energetic barrier between prokaryotes and eukaryotes may not be relevant to the complexity gap between the two domains. The energetic advantage of early mitochondria was probably small, and eukaryotes likely emerged without the help of an endosymbiont.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gap between prokaryotes and eukaryotes.


  1. Stanier, R. Y. & Van Niel, C. B. Arch. Mikrobiol. 42, 17–35 (1962).

    Article  CAS  Google Scholar 

  2. Schavemaker, P. E. & Muñoz-Gómez, S. A. Nat. Ecol. Evol. (2022).

    Article  PubMed  Google Scholar 

  3. Lane, N. & Martin, W. F. Nature 467, 929–934 (2010).

    Article  CAS  Google Scholar 

  4. Lynch, M. & Marinov, G. K. PNAS 112, 15690–15695 (2015).

    Article  CAS  Google Scholar 

  5. Cavalier-Smith, T. & Chao, E. E. Protoplasma 257, 621–753 (2020).

    Article  CAS  Google Scholar 

  6. Zachar, I. & Szathmáry, E. Biol. Direct 12, 19 (2017).

    Article  Google Scholar 

  7. Cavalier-Smith, T. Cold Spring Harb. Perspect. Biol. 6, 1–31 (2014).

    Article  Google Scholar 

  8. de Duve, C. Nat. Rev. Genet. 8, 395–403 (2007).

    Article  Google Scholar 

  9. Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. Nat. Commun. 10, 5529 (2019).

    Article  Google Scholar 

  10. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. Microbiol. Mol. Biol. Rev. 81, 8–17 (2017).

    Article  Google Scholar 

  11. Jékely, G. Biol. Direct 2, 3 (2007).

    Article  Google Scholar 

  12. Stanier, R. Y. Some aspects of the biology of cells and their possible evolutionary significance. Organization and Control in Prokaryotic and Eukaryotic Cells. In Proc. 20th Symposium of the Society for General Microbiology (eds Charles, H. P. & Knight, B. C. J. G) 20, 1–38 (Cambridge University Press, Cambridge, 1970).

  13. Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. PNAS USA 115, E1504–E1510 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Burns, J. A., Pittis, A. A. & Kim, E. Nat. Ecol. Evol. 2, 697–704 (2018).

    Article  Google Scholar 

  15. Bremer, N., Tria, F. D. K., Skejo, J., Garg, S. G. & Martin, W. F. Genome Biol. Evol. 14, evac079 (2022).

    Article  Google Scholar 

  16. Imachi, H. et al. Nature 577, 519–525 (2020).

    Article  CAS  Google Scholar 

  17. Zachar, I. & Boza, G. Cell. Mol. Life Sci. 77, 3503–3523 (2020).

    Article  CAS  Google Scholar 

  18. Devos, D. P. Mol. Biol. Evol. 38, 3531–3542 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to István Zachar.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachar, I. Closing the energetics gap. Nat Ecol Evol 6, 1254–1255 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing