Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biodegradable sensors are ready to transform autonomous ecological monitoring

Recent breakthroughs have led to the development of biodegradable sensors which, after collecting data, break down into byproducts that are harmless to their surroundings. Using these sensors to collect ecological data on vast scales and in fine resolution could transform our management and understanding of natural ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Autonomous deployments of biodegradable sensors can deliver ecological data on larger scales, with further reach and with a lower environmental footprint than is currently possible.
Fig. 2: In the near, mid-term and long-term future, advancement of biodegradable sensor technology will open new avenues for collecting different types of ecological data.


  1. Rundel, P. W., Graham, E. A., Allen, M. F., Fisher, J. C. & Harmon, T. C. New Phytol. 182, 589–607 (2009).

    Article  Google Scholar 

  2. Gibb, R., Browning, E., Glover‐Kapfer, P. & Jones, K. E. Methods Ecol. Evol. 10, 169–185 (2019).

    Article  Google Scholar 

  3. O'Connell, A. F. (ed) Camera Traps in Animal Ecology: Methods and Analyses. Vol. 271 (Springer, 2011).

  4. Hale, R. C., Seeley, M. E., Guardia, M. J. L., Mai, L. & Zeng, E. Y. J. Geophys. Res. Oceans 125, e2018JC014719 (2020).

    Article  Google Scholar 

  5. Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M. & Böni, H. Environ. Impact Assess. Rev. 25, 436–458 (2005).

    Article  Google Scholar 

  6. Hwang, S.-W. et al. Science 337, 1640–1644 (2012).

    CAS  Article  Google Scholar 

  7. Ashammakhi, N. et al. Adv. Funct. Mater. 31, 2104149 (2021).

  8. Boutry, C. M. et al. Nat. Biomed. Eng. 3, 47–57 (2019).

    CAS  Article  Google Scholar 

  9. Boutry, C. M. et al. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  10. Hori, K., Inami, A., Kan, T. & Onoe, H. In Proc. 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 863–866 (IEEE, Orlando, 2021).

  11. Dincer, C. et al. Adv. Mater. 31, 1806739 (2019).

    Article  Google Scholar 

  12. Kocer, B. B. et al. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–8 (IEEE, Biograd na Moru, 2021).

  13. Pandolfi, C. & Izzo, D. Bioinspir. Biomim. 8, 025003 (2013).

    Article  Google Scholar 

  14. Wiesemüller, F., Miriyev, A. & Kovac, M. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–6 (IEEE, Biograd na Moru, 2021).

  15. Boutry, C. M. et al. Sens. Actuators A Phys. 189, 344–355 (2013).

    CAS  Article  Google Scholar 

  16. Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Microsyst. Nanoeng. 1, 15024 (2015).

    CAS  Article  Google Scholar 

  17. Lee, G. et al. Adv. Energy Mater. 7, 1700157 (2017).

    Article  Google Scholar 

  18. Dagdeviren, C. et al. Small 9, 3398–3404 (2013).

    CAS  Article  Google Scholar 

  19. Sadasivuni, K. K. et al. J. Mater. Sci. Mater. Electron. 30, 951–974 (2019).

    CAS  Article  Google Scholar 

  20. Luvisi, A., Panattoni, A. & Materazzi, A. Comput. Electron. Agric. 123, 135–141 (2016).

    Article  Google Scholar 

  21. Yin, L. et al. Adv. Mater. 26, 3879–3884 (2014).

    CAS  Article  Google Scholar 

  22. Demetillo, A. T., Japitana, M. V. & Taboada, E. B. Sustain. Environ. Res. 29, 12 (2019).

    CAS  Article  Google Scholar 

  23. Salvatore, G. A. et al. Adv. Funct. Mater. 27, 1702390 (2017).

    Article  Google Scholar 

  24. Farinha, A., Zufferey, R., Zheng, P., Armanini, S. F. & Kovac, M. IEEE Robot. Autom. Lett. 5, 6623–6630 (2020).

    Article  Google Scholar 

  25. Miriyev, A. & Kovač, M. Nat. Mach. Intell. 2, 658–660 (2020).

    Article  Google Scholar 

  26. Kang, S.-K., Koo, J., Lee, Y. K. & Rogers, J. A. Acc. Chem. Res. 51, 988–998 (2018).

    CAS  Article  Google Scholar 

  27. Goel, V., Luthra, P., Kapur, G. S. & Ramakumar, S. S. V. J. Polym. Environ. 29, 3079–3104 (2021).

    CAS  Article  Google Scholar 

Download references


Thank you to Nuria Melisa Morales Garcia for her artistic contributions and to Amelia Holcomb for feedback on an early draft. We received support from the University of Cambridge’s Herchel Smith Postdoctoral Research Fellowship (S.S.S.), the Royal Society Wolfson Fellowship (M.K.), the Engineering and Physical Sciences Research Council (M.K.), and the Empa/Imperial College London Materials and Technology Center of Robotics (F.W. and M.K.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sarab S. Sethi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sethi, S.S., Kovac, M., Wiesemüller, F. et al. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat Ecol Evol 6, 1245–1247 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing