Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Replicated radiation of a plant clade along a cloud forest archipelago

A Publisher Correction to this article was published on 04 August 2022

This article has been updated


Replicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of ‘ecomorphs’ evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants. The Oreinotinus lineage within the angiosperm clade Viburnum spread from Mexico to Argentina through disjunct cloud forest environments. In 9 of 11 areas of endemism, species with similar sets of leaf forms evolved in parallel. We reject gene-flow-mediated evolution of similar leaves and show, instead, that species with disparate leaf forms differ in their climatic niches, supporting ecological adaptation as the driver of parallelism. Our identification of a case of replicated radiation in plants sets the stage for comparative analyses of such phenomena across the tree of life.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phylogeny and biogeography of Oreinotinus.
Fig. 2: Leaf form evolution in Oreinotinus.
Fig. 3: Admixture and network analyses.
Fig. 4: Ecological differentiation of species with different leaf forms in Chiapas, Mexico.

Data availability

All data are available in the Zenodo data repository

Code availability

Scripts for reproducible science are in the GitHub repository at

Change history


  1. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  2. Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).

    PubMed  Article  Google Scholar 

  3. Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (Univ. California Press, 2009).

  4. Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).

    CAS  PubMed  Article  Google Scholar 

  5. Muschick, M., Indermaur, A. & Salzburger, W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr. Biol. 22, 2362–2368 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    CAS  PubMed  Article  Google Scholar 

  7. Gillespie, R. Community assembly through adaptive radiation in Hawaiian spiders. Science 303, 356–359 (2004).

    CAS  PubMed  Article  Google Scholar 

  8. Gillespie, R. G. et al. Repeated diversification of ecomorphs in Hawaiian stick spiders. Curr. Biol. 28, 941–947 (2018).

    CAS  PubMed  Article  Google Scholar 

  9. Abrahamczyk, S. & Renner, S. S. The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evol. Biol. 15, 104 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Sinnott-Armstrong, M. A. et al. Fruit syndromes in Viburnum: correlated evolution of color, nutritional content, and morphology in bird-dispersed fleshy fruits. BMC Evol. Biol. 20, 7 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  11. Edwards, E. J. Evolutionary trajectories, accessibility and other metaphors: the case of C4 and CAM photosynthesis. New Phytol. 223, 1742–1755 (2019).

    PubMed  Article  Google Scholar 

  12. Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).

    PubMed  Article  Google Scholar 

  14. Lagomarsino, L. P. et al. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  15. Schenk, J. J. The next generation of adaptive radiation studies in plants. Int. J. Plant Sci. 182, 245–262 (2021).

    Article  Google Scholar 

  16. Givnish, T. J. et al. Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc. R. Soc. B 276, 407–416 (2009).

    PubMed  Article  Google Scholar 

  17. Drummond, C. S., Eastwood, R. J., Miotto, S. T. & Hughes, C. E. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): testing for key innovation with incomplete taxon sampling. Syst. Biol. 61, 443–460 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  18. Roquet, C. et al. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J. Biogeogr. 40, 1874–1886 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  19. DiVittorio, C. T. et al. Natural selection maintains species despite frequent hybridization in the desert shrub Encelia. Proc. Natl Acad. Sci. USA 117, 33373–33383 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Knotek, A. et al. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11, 561526 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  21. Pouchon, C. et al. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. Am. J. Bot. 108, 113–128 (2021).

    CAS  PubMed  Article  Google Scholar 

  22. Donoghue, M. J. Systematic Studies in the Genus Viburnum. PhD dissertation, Harvard Univ. (1982).

  23. Donoghue, M. J., Bell, C. D. & Winkworth, R. C. The evolution of reproductive characters in Dipsacales. Int. J. Plant Sci. 164, S453–S464 (2003).

    Article  Google Scholar 

  24. Landis, M. J. et al. Joint estimation of geographic movements and biome shifts during the global diversification of Viburnum. Syst. Biol. 70, 67–85 (2021).

    CAS  PubMed  Article  Google Scholar 

  25. Clement, W. L. et al. A chloroplast tree for Viburnum (Adoxaceae) and its implications for phylogenetic classification and character evolution. Am. J. Bot. 101, 1029–1049 (2014).

    PubMed  Article  Google Scholar 

  26. Spriggs, E. L. et al. Temperate radiations and dying embers of a tropical past: evidence from Viburnum diversification. New Phytol. 207, 340–354 (2015).

    PubMed  Article  Google Scholar 

  27. Moeglein, M. et al. Evolutionary dynamics of genome size in a radiation of woody plants. Am. J. Bot. 107, 1527–1541 (2020).

    PubMed  Article  Google Scholar 

  28. Donoghue, M. J. & Sanderson, M. J. Confluence, synnovation, and depauperons in plant diversification. New Phytol. 207, 260–274 (2015).

    PubMed  Article  Google Scholar 

  29. Nurk, N. M. et al. Diversification in evolutionary arenas – assessment and synthesis. Ecol. Evol. 10, 6163–6182 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Karger, D. D. et al. Limited protection and ongoing loss of cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. 5, 854–862 (2021).

    PubMed  Article  Google Scholar 

  31. Mastretta-Yanes, A. et al. Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the trans-Mexican volcanic belt. J. Biogeogr. 42, 1586–1600 (2015).

    Article  Google Scholar 

  32. Edwards, E. J. et al. Convergence, consilience, and the evolution of the temperate deciduous forests. Am. Nat. 190, S87–S104 (2017).

    PubMed  Article  Google Scholar 

  33. Ree, R. H. et al. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).

    PubMed  Article  Google Scholar 

  34. Weber, M. G., Donoghue, M. J., Clement, W. L. & Agarwal, A. A. Phylogenetic and experimental tests of interactions among mutualistic plant defense traits in Viburnum (Adoxaceae). Am. Nat. 180, 450–463 (2012).

    PubMed  Article  Google Scholar 

  35. Parkhurst, D. F. & Loucks, O. L. Optimal leaf size in relation to environment. J. Ecol. 60, 505–537 (1972).

    Article  Google Scholar 

  36. Givnish, T. J. in Topics in Plant Population Biology (eds Solbrig, O. T. et al.) 375–407 (Columbia Univ. Press, 1979).

  37. Givnish, T. J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 106, 131–160 (1987).

    Article  Google Scholar 

  38. Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    CAS  PubMed  Article  Google Scholar 

  39. Levin, D. A. The role of trichomes in plant defense. Q. Rev. Biol. 48, 3–15 (1973).

    Article  Google Scholar 

  40. Ehleringer, J. in Biology and Chemistry of Plant Trichomes (eds Rodriguez, E. et al.) 113–132 (Plenum Press, 1984).

  41. Brewer, C. A., Smith, W. K. & Vogelmann, T. C. Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant Cell Environ. 14, 955–962 (1991).

    Article  Google Scholar 

  42. Bickford, C. P. Ecophysiology of leaf trichomes. Funct. Plant Biol. 43, 807–814 (2016).

    PubMed  Article  Google Scholar 

  43. Bailey, I. W. & Sinnott, E. W. The climatic distribution of certain types of angiosperm leaves. Am. J. Bot. 3, 24–39 (1916).

    Article  Google Scholar 

  44. Royer, D. L. & Wilf, P. Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. Int. J. Plant Sci. 167, 11–18 (2006).

    Article  Google Scholar 

  45. Edwards et al. Unpacking a century-old mystery: winter buds and the latitudinal gradient in leaf form. Am. J. Bot. 103, 975–978 (2016).

    PubMed  Article  Google Scholar 

  46. Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    PubMed  Article  Google Scholar 

  47. Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).

    CAS  PubMed  Article  Google Scholar 

  48. Malinsky, M. et al. Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940–1955 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Durand, E. Y. et al. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    CAS  PubMed  Article  Google Scholar 

  52. Clement, W. L. et al. Parallelism in endocarp form sheds light on fruit syndrome evolution in Viburnum. Syst. Bot. 46, 504–517 (2021).

    Article  Google Scholar 

  53. Donoghue, M. J. Flowering times in Viburnum. Arnoldia 40, 2–22 (1980).

    Google Scholar 

  54. Spriggs, E. L. et al. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. Am. J. Bot. 106, 833–849 (2019).

    CAS  PubMed  Article  Google Scholar 

  55. Rundell, R. J. & Price, T. D. Adaptive radiation, non-adaptive radiation, ecological speciation and non-ecological speciation. Trends Ecol. Evol. 24, 394–399 (2009).

    PubMed  Article  Google Scholar 

  56. Eaton, D. A. R. & Overcast, I. ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2020).

    CAS  PubMed  Article  Google Scholar 

  57. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  58. Goltsman, E., Ho, I. Y. & Rokhsar, D. S. Meraculous-2D: haplotype-sensitive assembly of highly heterozygous genomes. Preprint at (2017).

  59. Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Eaton, D. A. R. Toytree: a minimalist tree visualization and manipulation library for Python. Methods Ecol. Evol. 11, 187–191 (2020).

    Article  Google Scholar 

  63. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinform. 19, 153 (2018).

    Article  Google Scholar 

  64. Tamura, T., Tao, Q. & Kumar, S. Theoretical foundation of the RelTime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article  Google Scholar 

  67. Edler, D., Guedes, T., Zizka, A., Rosvall, M. & Antonelli, A. Infomap Bioregions: interactive mapping of biogeographical regions from species distributions. Syst. Biol. 66, 197–204 (2017).

    PubMed  Google Scholar 

  68. Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  69. Landis, M. J., Freyman, W. A. & Baldwin, B. G. Retracing the Hawaiian silversword radiation despite phylogenetic, biogeographic, and paleogeographic uncertainty. Evolution 72, 2343–2359 (2018).

    PubMed  Article  Google Scholar 

  70. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. Preprint at (2020).

  71. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  73. Spriggs, E. L., Schmerler, S. B., Edwards, E. J. & Donoghue, M. J. Leaf form evolution in Viburnum parallels variation within individual plants. Am. Nat. 191, 235–249 (2018).

    PubMed  Article  Google Scholar 

  74. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Maloof, J. N., Nozue, K., Mumbach, M. R. & Palmer, C. M. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement. J. Vis. Exp. (71), e50028, (2013).

  76. Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).

    CAS  Article  Google Scholar 

  77. Ingram, T. & Mahler, D. L. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol. Evol. 4, 416–425 (2013).

    Article  Google Scholar 

  78. Kassambra, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots (2020).

  79. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  80. Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).

    CAS  PubMed  Article  Google Scholar 

  81. Stayton, C. T. Package ‘convevol’: Analysis of Convergent Evolution. Version 1.3 (2018).

  82. Brown, J. M. & Thomson, R. C. Evaluating model performance in evolutionary biology. Ann. Rev. Ecol. Evol. Syst. 49, 95–114 (2018).

    Article  Google Scholar 

  83. Eaton, D. A. R., Hipp, A. L., González-Rodríguez, A. & Cavender-Bares, J. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution 69, 2587–2601 (2015).

    CAS  PubMed  Article  Google Scholar 

  84. Allman, E. S., Baños, H. & Rhodes, J. A. NANUQ: a method for inferring species networks from gene trees under the coalescent model. Algorithms Mol. Biol. 14, 24 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Rhodes, J. A., Baños, H., Mitchell, J. D. & Allman, E. S. MSCquartets 1.0: quartet methods for species trees and networks under the multispecies coalescent model in R. Bioinformatics (2020).

  86. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  87. GBIF Occurrence Download (, 2021).

  88. Karger, D. N. et al. Climatologies at high resolution for the Earth land surface areas. Sci. Data 4, 170122 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  89. Karger D. N. et al. Data from: Climatologies at high resolution for the Earth land surface areas. Dryad (2018).

  90. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

  91. Shuttle Radar Topography Mission (SRTM) Global (Open Topography, 2013);

  92. Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2009).

  93. Glatthorn, J. & Beckschäfer, P. Standardizing the protocol for hemispherical photographs: accuracy assessment of binarization algorithms. PLoS ONE 9, e111924 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Wilke, C. O. Package ‘ggridges’: Ridgeline Plots in ‘ggplot2’. Version 0.5.3 (2021).

Download references


Many colleagues have assisted us in the field, especially S. Madriñán (Colombia), D. Neill and J. Yepez (Ecuador), V. Torrez Flores and C. Maldonado (Bolivia), M. Isaura and M. Arakaki (Peru), K. Campbell (Jamaica), V. Alavez, J. Gómez, C. Martinez and S. Ramírez (Mexico). Herbaria in Colombia (ANDES, COL), Boliva (LPB), Ecuador (QCNE), Mexico (MEXU, ECOSUR) and Peru (USM) provided access to specimens and logistical support. For permission to work on their reserves (Cerro Huitepec and Moxviquil) we thank Pronatura Sur A.C. (C. Macías, S. Llamas, Ma. de los Ángeles Azuara and J. Gómez); the Asamblea de Bienes Comunales de Teopisca, Chiapas; I. Vázquez, H. Lara and D. Vázquez (Yashtinin, Chiapas); J. López (Huitepec, Oaxaca); and the Comisariados de Bienes Comunales of Santiago Comaltepec and Totontepec Villa de Morelos, Oaxaca. Our lab groups, T. Near and N. Mongiardino Koch provided useful comments. These studies were supported by NSF grants DEB-1557059 (M.J.D., D.A.R.E.), DEB-1753504 (E.J.E.) and DEB-2040347 (M.J.L.) and by the Botany Division of the Yale Peabody Museum of Natural History, the Departamento de Botánica, Instituto de Biología, UNAM and the Consejo Nacional de Ciencia y Tecnología, UNAM A1-S-26934 and IN210719 (M.E.O.).

Author information

Authors and Affiliations



Study design, funding, field studies, analyses and writing were carried out by M.J.D., D.A.R.E. and E.J.E. Additional contributions and analyses were performed by C.A.M.-L., M.J.L., P.W.S., J.R.G., N.M.H. and M.K.M. Field studies were also carried out by P.W.S., M.E.O., N.I.C., M.K.M., M.C., A.S.R. and W.L.C. Additional editing was carried out by C.A.M.-L., M.J.L., M.E.O. and N.M.H.

Corresponding authors

Correspondence to Michael J. Donoghue, Deren A. R. Eaton or Erika J. Edwards.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Julia Day and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Individual-level RAD-seq tree for Oreinotinus.

ML tree inferred from concatenated RAD-seq data from 180 individuals of the Oreinotinus clade plus outgroups (see Methods). Specimen numbers are linked to voucher specimen information in Supplement Table 3. Bootstrap support values are shown at the nodes; black dots mark support of >85%. Accessions from multiple populations of the same morphology-based species form generally well-supported clades in all but five instances; these cases are discussed in the main text and in in Supplement Note 1.

Extended Data Fig. 2 Astral species tree for Oreinotinus.

Multispecies coalescent tree of 356 trees with more than 300 SNPs produced by ASTRAL-III (see Methods). Black nodes are supported by a local posterior probability > =85%.

Extended Data Fig. 3 Interactive species range map.

Points on the map represent all Oreinotinus localities included in our final vetted dataset, coloured by species and mapped using ArcGIS Pro (see Methods). Species are ordered by region in the legend, from north to south. Individual species ranges can be viewed by unchecking the boxes located in the left-hand panel to temporarily remove co-occurring species from the display. Clicking on a point will open a pop-up menu with metadata on the specimen attached to that point, including latitude and longitude, year of collection, institution and, where available, collector and specimen number. To view the distributions against a different background layer, such as topography or political boundaries, click ‘Basemap’ in the top bar.

Extended Data Fig. 4 Dimensionality reduction methods (UMAP and PCA) applied to SNP datasets with different filtering and imputation.

The subpanels included in Fig. 1 are outlined with black boxes (see Methods). (A) Our primary analyses filtered SNPs to require > =75% sample coverage at all SNPs and imputed the remaining data. Filtering with a higher minimum coverage thresholds (B-D) yielded highly similar results but began to lose statistical power when few SNPs were available at the highest thresholds. (E) An alternative K-means clustering method for assigning samples to groups for imputation recovered highly similar results as when using a priori population assignments. (E) UMAP projections show both local and global structure in the ‘All regions’ dataset, but do not reveal additional structure in the smaller datasets. These analyses also yielded similar results when imputed with Kmeans clustering (F).

Extended Data Fig. 5 Differentiation of leaf ecomorphs in Oreinotinus using nonmetric multidimensional scaling (NMDS).

A and C are based on three quantitative variables [leaf blade area, aspect ratio (leaf length/width) and the density of marginal teeth] and two categorical variables (a four-state character reflecting pubescence density and a two-state character for trichome type (see Methods). (A) Three clusters are identified by NMDS with K = 3; note that this lumps our IGE and SGE categories. (B) K = 3 is chosen as optimal by the inflection point in the inertia (sum of distances of samples to their closest cluster center); this represents a cutoff point where the inertia is not improved by adding extra Ks. (C) Within the IGE-SGE cluster, IGE and SGE species differ significantly in leaf blade area; these two ecomorphs are recognized on this basis for further phylogenetic and climatic comparisons. (D) Colours mark the four leaf ecomorphs recognized in this study (DEN, LPT, IGE, SGE) based on the totality of evidence; see main text and Fig. 2).

Extended Data Fig. 6 Ancestral reconstruction of leaf ecomorphs.

Ancestral states shown on the main tree represent 1,000 stochastic character mappings using ML transition matrix and the time-calibrated Oreinotinus phylogeny (Fig. 1). The smaller inset tree shows ancestral state reconstructions using parsimony on the same phylogeny. Our three quantitative characters are highlighted along the tips, with trait values standardized to a mean of zero and variance of 1. Bayesian stochastic mappings that account for phylogenetic uncertainty estimated a posterior median (and HPD95% interval) of 59 (28, 114) leaf form transitions (Supplement Note 3).

Extended Data Fig. 7 Additional ABBA-BABA tests focused on V. sulcatum.

Tests 1-8 show little discordance, suggesting that V. sulcatum has not been an introgressive donor into Eastern Mexican species of Viburnum. By contrast, tests 9-18 show much greater discordance when Eastern Mexican species are tested as introgressive donors into V. sulcatum compared to a taxon from Chiapas (V. jucundum) or Oaxaca (V. acutifolium). This suggests that V. sulcatum has introgressed with one or more species from the Eastern Mexican clade, but significance at the Z > 5 level is only seen in some tests and varies depending on the P3 and P1 taxa selected.

Extended Data Fig. 8 CHELSA climate variables generated from geo-referenced collection localities of V. hartwegii, V. jucundum and V. lautum on the Central Plateau of Chiapas, Mexico (see Methods).

We used the Wilcoxon rank sum test in R to compare the pairwise means of the three species. Box plot elements as follows: the center line corresponds to the median; the box limits represent upper and lower quartiles; and the whiskers span 1.5 x the interquartile range. Density ridgeline plots were drawn using the geom_density_ridges function from the ggridges R package96. N = 181 biologically independent samples (59 V. hartwegii, 65 V. jucundum, 57 V. lautum specimens).

Extended Data Fig. 9 Comparison of CHELSA climate variables that differ significantly in comparing V. hartwegii (IGE) to V. jucundum (LPT) and V. lautum (SGE) across the geographic range of Oreinotinus.

Compared across the entire range of Oreinotinus, IGE species differ significantly from LPT and SGE species in ways that align with our findings for the niches of the V. hartwegii in comparison with V. jucundum and V. lautum (see Methods). Specifically, we find that IGE species grow at lower elevations with higher temperatures and higher precipitation throughout the year, and lower temperature ranges and seasonality. Viburnum hartwegii was compared in detail with V. jucundum and V. lautum on the Central Plateau of Chiapas, Mexico (see Fig. 4). In making comparisons across the range of Oreinotinus we used data for the entire geographic ranges of our three focal species (that is, extending beyond the central Plateau of Chiapas; see Extended Data Fig. 3). Hypothesis testing method, box plot elements and density ridges formulation as in Extended Data Fig. 8. N = 2783 (1416 IGE, 713 LPT, 654 SGE specimens).

Extended Data Fig. 10 Comparison of CHELSA climate variables that differ significantly between V. jucundum (LPT) and V. lautum (SGE) across the geographic range of Oreinotinus.

Compared across the entire geographic range of Oreinotinus, LPT and SGE species differ significantly from one another in ways that align with our more detailed studies V. jucundum and V. lautum. Specifically, SGE species differ significantly from LPT species in their tendency to experience lower precipitation throughout the year, higher precipitation seasonality and higher seasonal and diurnal temperature ranges; SGE species may also tend to experience lower minimum temperatures in the coldest month. Viburnum jucundum and V. lautum were compared in detail on the Central Plateau of Chiapas, Mexico (see Fig. 4). In making comparisons across the range of Oreinotinus, we used data for the entire geographic ranges of these focal species (that is, extending beyond the central Plateau of Chiapas; see Extended Data Fig. 3. Hypothesis testing method, box plot elements and density ridges formulation as in Extended Data Fig. 8. N = 1367 (713 LPT and 654 IGE specimens).

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Supplementary Figs. 1–15, Supplementary Notes 1–4 and Supplementary references.

Reporting Summary

Peer Review File

Supplementary Tables 3, 4 and 5

Supplementary Table 3. Specimens included in the individual-level Oreinotinus tree with collector information and RAD-seq information. Supplementary Table 4. ABBA-BABA statistics, taxon names and sample names for all admixture analyses. Supplementary Table 5. Oreinotinus leaf data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donoghue, M.J., Eaton, D.A.R., Maya-Lastra, C.A. et al. Replicated radiation of a plant clade along a cloud forest archipelago. Nat Ecol Evol 6, 1318–1329 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing