Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Low protein expression enhances phenotypic evolvability by intensifying selection on folding stability

Abstract

Protein abundance affects the evolution of protein genotypes, but we do not know how it affects the evolution of protein phenotypes. Here we investigate the role of protein abundance in the evolvability of green fluorescent protein (GFP) towards the novel phenotype of cyan fluorescence. We evolve GFP in E. coli through multiple cycles of mutation and selection and show that low GFP expression facilitates the evolution of cyan fluorescence. A computational model whose predictions we test experimentally helps explain why: lowly expressed proteins are under stronger selection for proper folding, which facilitates their evolvability on short evolutionary time scales. The reason is that high fluorescence can be achieved by either few proteins that fold well or by many proteins that fold less well. In other words, we observe a synergy between a protein’s scarcity and its stability. Because many proteins meet the essential requirements for this scarcity–stability synergy, it may be a widespread mechanism by which low expression helps proteins evolve new phenotypes and functions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Low GFP expression promotes evolution of a novel cyan fluorescence phenotype.
Fig. 2: L populations harbour fewer non-synonymous and neo-functionalizing variants.
Fig. 3: Modelled H populations retain more destabilizing mutations.
Fig. 4: Evolvability of GFP becomes indistinguishable in H and L populations when the starting population is robust to destabilizing variants.

Data availability

All data are available in the manuscript or the supplementary materials. SMRT sequencing data are available at the National Center for Biotechnology Information with a BioProject ID PRJNA833567 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA833567).

Code availability

Custom code used in this study is available in a public GitHub repository (https://github.com/dasmeh/Discrete_Time_Markov_Chain_Evolution).

References

  1. Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    CAS  PubMed  Article  Google Scholar 

  2. Silander, O. K. et al. A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli. PLoS Genet. 8, e1002443 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Lehner, B. Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. 4, 170 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  4. Pál, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nat. Rev. Genet. 7, 337–348 (2006).

    PubMed  Article  CAS  Google Scholar 

  5. Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    CAS  PubMed  Article  Google Scholar 

  6. Socha, R. D., Chen, J. & Tokuriki, N. The molecular mechanisms underlying hidden phenotypic variation among metallo-β-lactamases. J. Mol. Biol. 431, 1172–1185 (2019).

    CAS  PubMed  Article  Google Scholar 

  7. Dasmeh, P. & Serohijos, A. W. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution. Proteins 86, 1242–1250 (2018).

    CAS  PubMed  Article  Google Scholar 

  8. Bershtein, S. et al. Protein homeostasis imposes a barrier on functional integration of horizontally transferred genes in bacteria. PLoS Genet. 11, e1005612 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Laurent, J. M. et al. Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics 10, 4209–4212 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Zhang, J. & Yang, J.-R. Determinants of the rate of protein sequence evolution. Nat. Rev. Genet. 16, 409–420 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Stefani, M. & Dobson, C. M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678–699 (2003).

    CAS  PubMed  Article  Google Scholar 

  12. Yang, J. R., Zhuang, S. M. & Zhang, J. Impact of translational error‐induced and error‐free misfolding on the rate of protein evolution. Mol. Syst. Biol. 6, 421 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Moutinho, A. F., Trancoso, F. F. & Dutheil, J. Y. The impact of protein architecture on adaptive evolution. Mol. Biol. Evol. 36, 2013–2028 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Moutinho, A. F., Bataillon, T. & Dutheil, J. Y. Variation of the adaptive substitution rate between species and within genomes. Evol. Ecol. 34, 315–338 (2020).

    Article  Google Scholar 

  15. Yip, S. H.-C. & Matsumura, I. Substrate ambiguous enzymes within the Escherichia coli proteome offer different evolutionary solutions to the same problem. Mol. Biol. Evol. 30, 2001–2012 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Larion, M., Moore, L. B., Thompson, S. M. & Miller, B. G. Divergent evolution of function in the ROK sugar kinase superfamily: role of enzyme loops in substrate specificity. Biochemistry 46, 13564–13572 (2007).

    CAS  PubMed  Article  Google Scholar 

  17. Serohijos, A. W., Rimas, Z. & Shakhnovich, E. I. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2, 249–256 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Leuenberger, P. et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability. Science 355, eaai7825 (2017).

    PubMed  Article  CAS  Google Scholar 

  19. Serohijos, A. W., Lee, S. R. & Shakhnovich, E. I. Highly abundant proteins favor more stable 3D structures in yeast. Biophys. J. 104, L1–L3 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 103, 5869–5874 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Zheng, J., Guo, N. & Wagner, A. Selection enhances protein evolvability by increasing mutational robustness and foldability. Science 370, eabb5962 (2020).

    CAS  PubMed  Article  Google Scholar 

  22. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Keseler, I. M. et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 45, D543–D550 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

    CAS  PubMed  Article  Google Scholar 

  25. Wu, Z. et al. Expression level is a major modifier of the fitness landscape of a protein coding gene. Nat. Ecol. Evol. 6, 103–115 (2022).

    PubMed  Article  Google Scholar 

  26. Pakula, A. A. & Sauer, R. T. Genetic analysis of protein stability and function. Annu. Rev. Genet. 23, 289–310 (1989).

    CAS  PubMed  Article  Google Scholar 

  27. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 533, 397–401 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Mitchell, R. L. Permanence of the log-normal distribution. J. Opt. Soc. Am. 58, 1267–1272 (1968).

    Article  Google Scholar 

  29. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS  PubMed  Article  Google Scholar 

  30. Zheng, J., Payne, J. L. & Wagner, A. Cryptic genetic variation accelerates evolution by opening access to diverse adaptive peaks. Science 365, 347–353 (2019).

    CAS  PubMed  Article  Google Scholar 

  31. Crameri, A., Whitehorn, E. A., Tate, E. & Stemmer, W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319 (1996).

    CAS  PubMed  Article  Google Scholar 

  32. Fukuda, H., Arai, M. & Kuwajima, K. Folding of green fluorescent protein and the cycle3 mutant. Biochemistry 39, 12025–12032 (2000).

    CAS  PubMed  Article  Google Scholar 

  33. Nam, S. H., Oh, K. H., Kim, G. J. & Kim, H. S. Functional tuning of a salvaged green fluorescent protein variant with a new sequence space by directed evolution. Protein Eng. 16, 1099–1105 (2003).

    CAS  PubMed  Article  Google Scholar 

  34. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    CAS  PubMed  Article  Google Scholar 

  35. Drummond, D. A., Raval, A. & Wilke, C. O. A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327–337 (2006).

    CAS  PubMed  Article  Google Scholar 

  36. Plotkin, J. B. & Fraser, H. B. Assessing the determinants of evolutionary rates in the presence of noise. Mol. Biol. Evol. 24, 1113–1121 (2007).

    CAS  PubMed  Article  Google Scholar 

  37. Maddamsetti, R. Universal constraints on protein evolution in the long-term evolution experiment with Escherichia coli. Genome Biol. Evol. https://doi.org/10.1093/gbe/evab070 (2021).

  38. LaBar, T. & Adami, C. Evolution of drift robustness in small populations. Nat. Commun. 8, 1012 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Raser, J. M. & O’shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hardin, J. & Wilson, J. A note on oligonucleotide expression values not being normally distributed. Biostatistics 10, 446–450 (2009).

    PubMed  Article  Google Scholar 

  41. Ham, L., Brackston, R. D. & Stumpf, M. P. Extrinsic noise and heavy-tailed laws in gene expression. Phys. Rev. Lett. 124, 108101 (2020).

    CAS  PubMed  Article  Google Scholar 

  42. Furusawa, C., Suzuki, T., Kashiwagi, A., Yomo, T. & Kaneko, K. Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophysics 1, 25–31 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Casellas, J. & Varona, L. Modeling skewness in human transcriptomes. PLoS ONE 7, e38919 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Bengtsson, M., Ståhlberg, A., Rorsman, P. & Kubista, M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 15, 1388–1392 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Bódi, Z. et al. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15, e2000644 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Zhang, Z., Qian, W. & Zhang, J. Positive selection for elevated gene expression noise in yeast. Mol. Syst. Biol. 5, 299 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Acar, M., Mettetal, J. T., & Van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008).

    CAS  PubMed  Article  Google Scholar 

  48. Kacser, H., Burns, J. A., Kacser, H. & Fell, D. The control of flux. Biochem. Soc. Trans. 23, 341–366 (1995).

    CAS  PubMed  Article  Google Scholar 

  49. Chen, P. & Shakhnovich, E. I. Lethal mutagenesis in viruses and bacteria. Genetics 183, 639–650 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Soskine, M. & Tawfik, D. S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11, 572–582 (2010).

    CAS  PubMed  Article  Google Scholar 

  51. Hoekstra, H. E. et al. Strength and tempo of directional selection in the wild. Proc. Natl. Acad. Sci. USA 98, 9157–9160 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Jahn, L. J., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Front. Microbiol. 8, 816–816 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  54. Zimmer, M. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102, 759–782 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    CAS  PubMed  Article  Google Scholar 

  56. Warren, D. J. Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal. Biochem. 413, 206–207 (2011).

    CAS  PubMed  Article  Google Scholar 

  57. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79, 471–505 (2010).

    CAS  PubMed  Article  Google Scholar 

  58. Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76 (2005).

    CAS  PubMed  Article  Google Scholar 

  59. Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinform. 13, 278–289 (2015).

    Article  Google Scholar 

  60. Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).

    CAS  Article  Google Scholar 

  61. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council under grant agreement number 739874. We would also like to acknowledge support by Swiss National Science Foundation grant 31003A_172887, by the University Priority Research Program in Evolutionary Biology and by the flow cytometry facility and the functional genomics centre at the University of Zurich. S.K. thanks B.R. Iyengar and M. Olombrada for discussions and support.

Author information

Authors and Affiliations

Authors

Contributions

S.K., P.D. and A.W. were involved in the conceptualization of the study. S.K. and P.D. performed the experiments. P.D. performed computational modelling and formulated theoretical predictions. J.Z. provided the resources and training for working with fluorescent proteins. S.K., P.D., J.Z. and A.W. contributed to data analysis and edited the manuscript.

Corresponding author

Correspondence to Andreas Wagner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Jian-Rong (Philip) Yang, Rohan Maddamsetti and Claus Wilke for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–5 and information for the theoretical analysis and simulations of GFP evolution.

Reporting Summary.

Peer Review File.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karve, S., Dasmeh, P., Zheng, J. et al. Low protein expression enhances phenotypic evolvability by intensifying selection on folding stability. Nat Ecol Evol 6, 1155–1164 (2022). https://doi.org/10.1038/s41559-022-01797-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01797-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing