Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Modelling hominin evolution requires accurate hominin data

The Original Article was published on 04 July 2022

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of different calibration approaches in divergence-time estimates in TED analyses of the hominin phylogeny.

References

  1. Mongle, C. S., Pugh, K. D., Strait, D. S. & Grine, F. E. Modelling hominin evolution requires accurate hominin data. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01791-2 (2022).

  2. Püschel, H. P., Bertrand, O. C., O’Reilly, J. E., Bobe, R. & Püschel, T. A. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat. Ecol. Evol. 5, 808–819 (2021).

    Article  Google Scholar 

  3. Püschel, H. P., O’Reilly, J. E., Pisani, D. & Donoghue, P. C. J. The impact of fossil stratigraphic ranges on tip-calibration, and the accuracy and precision of divergence time estimates. Palaeontology 63, 67–83 (2020).

    Article  Google Scholar 

  4. O’Reilly, J. E., dos Reis, M. & Donoghue, P. C. J. Dating tips for divergence-time estimation. Trends Genet. 31, 637–650 (2015).

    Article  Google Scholar 

  5. Dembo, M., Matzke, N. J., Mooers, A. Ø. & Collard, M. Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships. Proc. R. Soc. B 282, 20150943 (2015).

    Article  Google Scholar 

  6. Dembo, M. et al. The evolutionary relationships and age of Homo naledi: an assessment using dated Bayesian phylogenetic methods. J. Hum. Evol. 97, 17–26 (2016).

    Article  Google Scholar 

  7. Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).

    Article  Google Scholar 

  8. Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).

    Article  Google Scholar 

  9. Richter, D. et al. The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age. Nature 546, 293–296 (2017).

    Article  CAS  Google Scholar 

  10. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  CAS  Google Scholar 

  11. Aiello, L. C. & Wood, B. A. Cranial variables as predictors of hominine body mass. Am. J. Phys. Anthropol. 95, 409–426 (1994).

    Article  CAS  Google Scholar 

  12. Kappelman, J. The evolution of body mass and relative brain size in fossil hominids. J. Hum. Evol. 30, 243–276 (1996).

    Article  Google Scholar 

  13. Spocter, M. A. & Manger, P. R. The use of cranial variables for the estimation of body mass in fossil hominins. Am. J. Phys. Anthropol. 134, 92–105 (2007).

    Article  Google Scholar 

  14. Lieberman, D. E. in The Evolution of the Human Head 527–603 (Harvard Univ. Press, 2011).

  15. Rightmire, G. P. Brain size and encephalization in early to mid-Pleistocene Homo. Am. J. Phys. Anthropol. 124, 109–123 (2004).

    Article  Google Scholar 

  16. Rightmire, G. P. Homo in the middle Pleistocene: hypodigms, variation, and species recognition. Evol. Anthropol. 17, 8–21 (2008).

    Article  Google Scholar 

  17. Hemmer, H. in Handbook of Paleoanthropology (eds Henke, W. & Tattersall, I.) 587–619 (Springer, 2007).

  18. Macchiarelli, R., Bergeret-Medina, A., Marchi, D. & Wood, B. Nature and relationships of Sahelanthropus tchadensis. J. Hum. Evol. 149, 102898 (2020).

    Article  Google Scholar 

  19. Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93 (2015).

    Article  Google Scholar 

  20. Ruff, C. B., Burgess, M. L., Squyres, N., Junno, J. A. & Trinkaus, E. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).

    Article  Google Scholar 

  21. Harrison, T. in Vertebrate Paleobiology and Paleoanthropology: Fossil Hominins and the Associated Fauna Vol. 2 (ed. Harrison, T.) 141–188 (Springer, 2011). https://doi.org/10.1007/978-90-481-9962-4_7

  22. McHenry, H. M. Behavioral ecological implications of early hominid body size. J. Hum. Evol. 27, 77–87 (1994).

    Article  Google Scholar 

  23. McHenry, H. M. Body size and proportions in early hominids. Am. J. Phys. Anthropol. 87, 407–431 (1992).

    Article  CAS  Google Scholar 

  24. Wood, B. Origin and evolution of the genus Homo. Nature 355, 783–790 (1992).

    Article  CAS  Google Scholar 

  25. McHenry, H. M. & Coffing, K. Australopithecus to Homo: transformations in body and mind. Annu. Rev. Anthropol. 29, 125–146 (2000).

    Article  Google Scholar 

  26. Gebo, D. L. & Schwartz, G. T. Foot bones from Omo: implications for hominid evolution. Am. J. Phys. Anthropol. 129, 499–511 (2006).

    Article  Google Scholar 

  27. Wood, B. A. Homo talus from East-Rudolf, Kenya. J. Anat. 117, 203–204 (1974).

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Agency for Research and Development (ANID)/PFCHA/Doctorado en el extranjero Becas Chile/2018-72190003 to H.P.P.; a Marie Skłodowska-Curie Actions Individual Fellowship (H2020-MSCA-IF-2018-2020; no. 792611) and the European Research Council starting grant PalM, under the European Union’s Horizon 2020 Research and Innovation Programme (no. 756226) to O.C.B.; and the Leverhulme Trust Early Career Fellowship, ECF-2018-264 to T.A.P.

Author information

Authors and Affiliations

Authors

Contributions

H.P.P. and T.A.P. conceived and designed the reply. H.P.P. carried out all the mentioned analyses. H.P.P. and T.A.P. wrote an initial draft. H.P.P., O.C.B., J.E.O., R.B. and T.A.P. interpreted the obtained results and contributed to the writing of the submitted version of this work.

Corresponding authors

Correspondence to Hans P. Püschel or Thomas A. Püschel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Püschel, H.P., Bertrand, O.C., Reilly, J.E.O. et al. Reply to: Modelling hominin evolution requires accurate hominin data. Nat Ecol Evol 6, 1092–1094 (2022). https://doi.org/10.1038/s41559-022-01792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01792-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing