Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world

Abstract

Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as ‘dryland mechanisms’. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. IPCC. Climate Change 2021: The Physical Science Basis. (eds Masson-Delmotte, V. et al.) Contribution of working group 1 to the ‘Sixth assessment report of the intergovernmental panel on climate change’ (Cambridge University Press, 2021).

  2. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  3. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosc. 7, 716–721 (2014).

    Article  CAS  Google Scholar 

  4. Lin, L., Gettelman, A., Feng, S. & Fu, Q. Simulated climatology and evolution of aridity in the 21st century. J. Geophys. Res. Atmos. 120, 5795–5815 (2015).

    Article  Google Scholar 

  5. Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article  Google Scholar 

  6. Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-C. & Diffenbaugh, N. S. A multi-model and multi-index evaluation of drought characteristics in the 21st century. J. Hydrol. 526, 196–207 (2015).

    Article  Google Scholar 

  8. Liu, W. et al. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds. Earth Syst. Dyn. 9, 267–283 (2018).

    Article  Google Scholar 

  9. Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  12. Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article  Google Scholar 

  13. Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

    Article  Google Scholar 

  14. Harpold, A. A. et al. Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Hydrol. Process. 29, 2782–2798 (2015).

    Article  Google Scholar 

  15. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  19. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Article  PubMed  Google Scholar 

  20. Parton, W. et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315, 361–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Adair, E. C. et al. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob. Change Biol. 14, 2636–2660 (2008).

    Article  Google Scholar 

  22. Adair, E. C., Parton, W. J., King, J. Y., Brandt, L. A. & Lin, Y. Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems. Ecosphere 8, e01892 (2017).

    Article  Google Scholar 

  23. Chen, M. et al. Simulation of the effects of photodecay on long-term litter decay using DayCent. Ecosphere 7, e01631 (2016).

    Article  Google Scholar 

  24. Asao, S., Parton, W. J., Chen, M. & Gao, W. Photodegradation accelerates ecosystem N cycling in a simulated California grassland. Ecosphere 9, e02370 (2018).

    Article  Google Scholar 

  25. Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

    Article  CAS  Google Scholar 

  27. Berg, A. & McColl, K. A. No projected global drylands expansion under greenhouse warming. Nat. Clim. Change 11, 331–337 (2021).

    Article  Google Scholar 

  28. Whitford, W. G. & Duval, B. D. Ecology of Desert Systems 2nd edn (Academic Press, 2020).

  29. Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article  Google Scholar 

  31. Nielsen, U. N. & Ball, B. A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Glob. Change Biol. 21, 1407–1421 (2015).

    Article  Google Scholar 

  32. Collins, S. L. et al. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu. Rev. Ecol. Evol. Syst. 45, 397–419 (2014).

    Article  Google Scholar 

  33. Kim, D.-G., Mu, S., Kang, S. & Lee, D. Factors controlling soil CO2 effluxes and the effects of rewetting on effluxes in adjacent deciduous, coniferous, and mixed forests in Korea. Soil Biol. Biochem. 42, 576–585 (2010).

    Article  CAS  Google Scholar 

  34. Curiel Yuste, J., Janssens, I. A., Carrara, A., Meiresonne, L. & Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 23, 1263–1270 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Savage, K., Davidson, E. A., Richardson, A. D. & Hollinger, D. Y. Three scales of temporal resolution from automated soil respiration measurements. Agric. Meteorol. 149, 2012–2021 (2009).

    Article  Google Scholar 

  36. Hao, Y., Wang, Y., Mei, X. & Cui, X. The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecol. 209, 335–347 (2010).

    Article  Google Scholar 

  37. Krüger, J. P., Beckedahl, H., Gerold, G. & Jungkunst, H. F. Greenhouse gas emission peaks following natural rewetting of two wetlands in the southern Ukhahlamba-Drakensberg Park, South Africa. S. Afr. Geogr. J. 96, 113–118 (2013).

    Article  Google Scholar 

  38. Haverd, V., Ahlström, A., Smith, B. & Canadell, J. G. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall. Glob. Change Biol. 23, 793–800 (2017).

    Article  Google Scholar 

  39. Kim, D. G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012).

    Article  CAS  Google Scholar 

  40. Barnard, R. L., Blazewicz, S. J. & Firestone, M. K. Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol. Biochem. 147, 107819 (2020).

  41. Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol. 193, 830–841 (2012).

    Article  PubMed  Google Scholar 

  42. Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).

    Article  PubMed  Google Scholar 

  43. Mooney, H. A., Gulmon, S. L., Rundel, P. W. & Ehleringer, J. Further observations on the water relations of Prosopis tamarugo of the northern Atacama desert. Oecologia 44, 177–180 (1980).

    Article  CAS  PubMed  Google Scholar 

  44. Richards, J. H. & Caldwell, M. M. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73, 486–489 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Caldwell, M. M., Dawson, T. E. & Richards, J. H. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113, 151–161 (1998).

    Article  PubMed  Google Scholar 

  46. Brooks, J. R., Meinzer, F. C., Coulombe, R. & Gregg, J. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22, 1107–1117 (2002).

    Article  PubMed  Google Scholar 

  47. Lee, J. E., Oliveira, R. S., Dawson, T. E. & Fung, I. Root functioning modifies seasonal climate. Proc. Natl Acad. Sci. USA 102, 17576–17581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robinson, J. L., Slater, L. D. & Schäfer, K. V. R. Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. J. Hydrol. 430-431, 69–79 (2012).

    Article  Google Scholar 

  49. Oliveira, R. S., Dawson, T. E., Burgess, S. S. O. & Nepstad, D. C. Hydraulic redistribution in three Amazonian trees. Oecologia 145, 354–363 (2005).

    Article  PubMed  Google Scholar 

  50. Zapater, M. et al. Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling. Trees 25, 885–894 (2011).

    Article  Google Scholar 

  51. Sardans, J. & Peñuelas, J. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology 7, 1–20 (2014).

    Article  Google Scholar 

  52. Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems. J. Ecol. 90, 480–494 (2002).

    Article  Google Scholar 

  53. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L., Kaseke, K. F. & Seely, M. K. Effects of non-rainfall water inputs on ecosystem functions. WIREs Water 4, e1179 (2017).

    Google Scholar 

  55. Dawson, T. E. & Goldsmith, G. R. The value of wet leaves. New Phytol. 219, 1156–1169 (2018).

    Article  PubMed  Google Scholar 

  56. Agam, N. & Berliner, P. R. Dew formation and water vapor adsorption in semi-arid environments - a review. J. Arid. Environ. 65, 572–590 (2006).

    Article  Google Scholar 

  57. Dirks, I., Navon, Y., Kanas, D., Dumbur, R. & Grünzweig, J. M. Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob. Change Biol. 16, 2799–2812 (2010).

    Article  Google Scholar 

  58. Jacobson, K. et al. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS ONE 10, e0126977 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. McHugh, T. A., Morrissey, E. M., Reed, S. C., Hungate, B. A. & Schwartz, E. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci. Rep. 5, 13767 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Glob. Change Biol. 23, 1564–1574 (2017).

    Article  Google Scholar 

  61. Goldsmith, G. R., Matzke, N. J. & Dawson, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecol. Lett. 16, 307–314 (2013).

    Article  PubMed  Google Scholar 

  62. Binks, O. et al. Foliar water uptake in Amazonian trees: evidence and consequences. Glob. Change Biol. 25, 2678–2690 (2019).

    Article  Google Scholar 

  63. Benzing, D. H. Vulnerabilities of tropical forests to climate change: the significance of resident epiphytes. Clim. Change 39, 519–540 (1998).

    Article  Google Scholar 

  64. Evans, S., Todd-Brown, K. E. O., Jacobson, K. & Jacobson, P. Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems 23, 1154–1169 (2020).

    Article  CAS  Google Scholar 

  65. Newell, S. Y., Fallon, R. D., Rodriguez, R. M. C. & Groene, L. C. Influence of rain, tidal wetting and relative-humidity on release of carbon-dioxide by standing-dead salt-marsh plants. Oecologia 68, 73–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Kuehn, K. A., Steiner, D. & Gessner, M. O. Diel mineralization patterns of standing-dead plant litter: implications for CO2 flux from wetlands. Ecology 85, 2504–2518 (2004).

    Article  Google Scholar 

  67. Doerr, S. H., Shakesby, R. A. & Walsh, R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51, 33–65 (2000).

    Article  Google Scholar 

  68. Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–26596 (2011).

    Article  Google Scholar 

  69. Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W. & Chen, B. Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. J. Soils Sediments 19, 171–185 (2019).

    Article  Google Scholar 

  70. Doerr, S. H., Shakesby, R. A., Dekker, L. W. & Ritsema, C. J. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci. 57, 741–754 (2006).

    Article  Google Scholar 

  71. Lebron, I., Robinson, D. A., Oatham, M. & Wuddivira, M. N. Soil water repellency and pH soil change under tropical pine plantations compared with native tropical forest. J. Hydrol. 414-415, 194–200 (2012).

    Article  CAS  Google Scholar 

  72. Buczko, U., Bens, O. & Hüttl, R. F. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma 126, 317–336 (2005).

    Article  Google Scholar 

  73. Dekker, L. W. & Ritsema, C. J. Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. CATENA 28, 89–105 (1996).

    Article  CAS  Google Scholar 

  74. de Blas, E., Almendros, G. & Sanz, J. Molecular characterization of lipid fractions from extremely water-repellent pine and eucalyptus forest soils. Geoderma 206, 75–84 (2013).

    Article  CAS  Google Scholar 

  75. MacDonald, L. H. & Huffman, E. L. Post-fire soil water repellency. Soil Sci. Soc. Am. J. 68, 1729–1734 (2004).

    Article  CAS  Google Scholar 

  76. Hewelke, E. et al. Intensity and persistence of soil water repellency in pine forest soil in a temperate continental climate under drought conditions. Water 10, 1121 (2018).

    Article  CAS  Google Scholar 

  77. Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).

    Article  Google Scholar 

  78. Siteur, K. et al. Soil water repellency: a potential driver of vegetation dynamics in coastal dunes. Ecosystems 19, 1210–1224 (2016).

    Article  CAS  Google Scholar 

  79. Austin, A. T. & Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555–558 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. King, J. Y., Brandt, L. A. & Adair, E. C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111, 57–81 (2012).

    Article  Google Scholar 

  81. Moorhead, D. L. & Callaghan, T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol. Fertil. Soils 18, 19–26 (1994).

    Article  CAS  Google Scholar 

  82. Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G. & Paul, N. D. Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem. Photobiol. Sci. 18, 747–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Austin, A. T., Mendez, M. S. & Ballaré, C. L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc. Natl Acad. Sci. USA 113, 4392–4397 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brandt, L. A., King, J. Y., Hobbie, S. E., Milchunas, D. G. & Sinsabaugh, R. L. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13, 765–781 (2010).

    Article  CAS  Google Scholar 

  85. Pieristè, M. et al. Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 191, 191–203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu, C. et al. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests. For. Ecol. Manage. 409, 225–232 (2018).

    Article  Google Scholar 

  87. Marinho, O. A., Martinelli, L. A., Duarte-Neto, P. J. R., Mazzi, E. A. & King, J. Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Sci. Total Environ. 715, 136601 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Q. W. et al. The contribution of photodegradation to litter decomposition in a temperate forest gap and understorey. New Phytol. 229, 2625–2636 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Rutledge, S., Campbell, D. I., Baldocchi, D. & Schipper, L. A. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Glob. Change Biol. 16, 3065–3074 (2010).

    Google Scholar 

  90. Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Change 4, 434–441 (2014).

    Article  Google Scholar 

  91. Zepp, R. G., Erickson, D. J. III, Paul, N. D. & Sulzberger, B. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem. Photobiol. Sci. 10, 261–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Austin, A. Has water limited our imagination for aridland biogeochemistry? Trends Ecol. Evol. 26, 229–235 (2011).

    Article  PubMed  Google Scholar 

  93. McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, H., Rahn, T. & Throop, H. L. An accounting of C-based trace gas release during abiotic plant litter degradation. Glob. Change Biol. 18, 1185–1195 (2012).

    Article  Google Scholar 

  95. Wang, B., Lerdau, M. & He, Y. Widespread production of nonmicrobial greenhouse gases in soils. Glob. Change Biol. 23, 4472–4482 (2017).

    Article  Google Scholar 

  96. Soper, F. M., McCalley, C. K., Sparks, K. & Sparks, J. P. Soil carbon dioxide emissions from the Mojave desert: isotopic evidence for a carbonate source. Geophys. Res. Lett. 44, 245–251 (2017).

    Article  CAS  Google Scholar 

  97. Day, T. A. & Bliss, M. S. Solar photochemical emission of CO2 from leaf litter: sources and significance to C loss. Ecosystems 23, 1344–1361 (2020).

    Article  CAS  Google Scholar 

  98. Throop, H. L. & Belnap, J. Connectivity dynamics in dryland litter cycles: moving decomposition beyond spatial stasis. Bioscience 69, 602–614 (2019).

    Article  Google Scholar 

  99. Throop, H. L. & Archer, S. R. Resolving the dryland decomposition conundrum: some new perspectives on potential drivers. Prog. Bot. 70, 171–194 (2009).

    CAS  Google Scholar 

  100. Barnes, P. W. et al. in Progress in Botany Vol. 76 (eds Lüttge, U. & Beyschlag, W.) 273–302 (Springer, 2015).

  101. Barnes, P. W., Throop, H. L., Hewins, D. B., Abbene, M. L. & Archer, S. R. Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15, 311–321 (2012).

    Article  CAS  Google Scholar 

  102. Joly, F. X., Kurupas, K. L. & Throop, H. L. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).

    Article  PubMed  Google Scholar 

  103. Weber, B., Büdel, B. & Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands Vol. 226 (Springer, 2016).

  104. Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).

  105. Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).

    Article  Google Scholar 

  106. Belnap, J. The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1, 181–189 (2003).

    Article  Google Scholar 

  107. Rodríguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).

    Article  CAS  Google Scholar 

  108. Hawkes, C. V. & Flechtner, V. R. Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb. Ecol. 43, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Langhans, T. M., Storm, C. & Schwabe, A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb. Ecol. 58, 394–407 (2009).

    Article  PubMed  Google Scholar 

  110. Veluci, R. M., Neher, D. A. & Weicht, T. R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 51, 189–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Cabała, J. & Rahmonov, O. Cyanophyta and algae as an important component of biological crust from the Pustynia Błędowska Desert (Poland). Pol. Bot. J. 49, 93–100 (2004).

    Google Scholar 

  112. Thiet, R. K., Boerner, R. E. J., Nagy, M. & Jardine, R. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278, 235–251 (2005).

    Article  CAS  Google Scholar 

  113. Jentsch, A. & Beyschlag, W. Vegetation ecology of dry acidic grasslands in the lowland area of Central Europe. Flora 198, 3–25 (2003).

    Article  Google Scholar 

  114. Dümig, A. et al. Organic matter from biological soil crusts induces the initial formation of sandy temperate soils. CATENA 122, 196–208 (2014).

    Article  CAS  Google Scholar 

  115. Chamizo, S., Cantón, Y., Rodríguez-Caballero, E. & Domingo, F. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9, 1208–1221 (2016).

    Article  Google Scholar 

  116. Couradeau, E. et al. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat. Commun. 7, 10373 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Eldridge, D. J. & Greene, R. S. B. Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32, 389–415 (1994).

    Article  Google Scholar 

  118. Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).

    Article  CAS  Google Scholar 

  119. Delgado-Baquerizo, M., Maestre, F. T., Rodríguez, J. G. P. & Gallardo, A. Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol. Biochem. 62, 22–27 (2013).

    Article  CAS  Google Scholar 

  120. Meron, E. From patterns to function in living systems: dryland ecosystems as a case study. Annu. Rev. Condens. Matter Phys. 9, 79–103 (2018).

    Article  Google Scholar 

  121. Rietkerk, M. et al. Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).

    Article  PubMed  Google Scholar 

  122. Meron, E. Vegetation pattern formation: the mechanisms behind the forms. Phys. Today 72, 30–36 (2019).

    Article  Google Scholar 

  123. Gandhi, P., Iams, S., Bonetti, S. & Silber, M. in Dryland Ecohydrology 2nd edn (eds D’Odorico, P. et al.) 469–509 (Springer, 2019).

  124. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Lejeune, O., Tlidi, M. & Couteron, P. Localized vegetation patches: a self-organized response to resource scarcity. Phys. Rev. E 66, 010901 (2002).

    Article  CAS  Google Scholar 

  126. Belyea, L. R. & Lancaster, J. Inferring landscape dynamics of bog pools from scaling relationships and spatial patterns. J. Ecol. 90, 223–234 (2002).

    Article  Google Scholar 

  127. Eppinga, M. B. et al. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11, 520–536 (2008).

    Article  CAS  Google Scholar 

  128. Hiemstra, C. A., Liston, G. E. & Reiners, W. A. Observing, modelling, and validating snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Modell. 197, 35–51 (2006).

    Article  Google Scholar 

  129. Crain, C. M. & Bertness, M. D. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology 86, 2695–2704 (2005).

    Article  Google Scholar 

  130. Stanton, D. E., Armesto, J. J. & Hedin, L. O. Ecosystem properties self-organize in response to a directional fog-vegetation interaction. Ecology 95, 1203–1212 (2014).

    Article  PubMed  Google Scholar 

  131. van de Koppel, J., van der Wal, D., Bakker, J. P. & Herman, P. M. Self-organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).

    Article  PubMed  Google Scholar 

  132. Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).

    Article  PubMed  Google Scholar 

  133. Aguiar, M. R. & Sala, O. E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol. Evol. 14, 273–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Bera, B. K., Tzuk, O., Bennett, J. J. & Meron, E. Linking spatial self-organization to community assembly and biodiversity. eLife 10, e73819 (2021).

  135. Garcia-Moya, E. & McKell, C. M. Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51, 81–88 (1970).

    Article  Google Scholar 

  136. Peters, D. P. C. et al. Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56, 491–501 (2006).

    Article  Google Scholar 

  137. Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).

    Article  Google Scholar 

  138. Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. & Imeson, A. C. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology 86, 288–297 (2005).

    Article  Google Scholar 

  139. Fahnestock, J. T., Povirk, K. L. & Welker, J. M. Ecological significance of litter redistribution by wind and snow in Arctic landscapes. Ecography 23, 623–631 (2000).

    Article  Google Scholar 

  140. Schlesinger, W. H. et al. Biological feedbacks in global desertification. Science 247, 1043–1048 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Okin, G. S., Sala, O. E., Vivoni, E. R., Zhang, J. & Bhattachan, A. The interactive role of wind and water in functioning of drylands: what does the future hold? Bioscience 68, 670–677 (2018).

    Article  Google Scholar 

  142. Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67 (2011).

    Article  Google Scholar 

  143. Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255 (2017).

  144. Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, X.-G. et al. Changes in soil C:N:P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087 (2020).

    Article  CAS  Google Scholar 

  147. Mulder, C. et al. Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. Adv. Ecol. Res. 49, 69–175 (2013).

    Article  Google Scholar 

  148. Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).

    Article  CAS  Google Scholar 

  149. Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Banerjee, T., De Roo, F. & Mauder, M. Explaining the convector effect in canopy turbulence by means of large-eddy simulation. Hydrol. Earth Syst. Sci. 21, 2987–3000 (2017).

    Article  Google Scholar 

  151. Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article  CAS  Google Scholar 

  152. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evol. 2, 1897–1905 (2018).

  156. De Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

    Article  Google Scholar 

  157. Pan, N. et al. Increasing global vegetation browning hidden in overall vegetation greening: insights from time-varying trends. Remote Sens. Environ. 214, 59–72 (2018).

    Article  Google Scholar 

  158. Mueller, T. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6, 5717–5731 (2014).

    Article  Google Scholar 

  159. Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).

    Article  PubMed  Google Scholar 

  160. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    Article  Google Scholar 

  161. Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).

    Article  PubMed  Google Scholar 

  162. Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article  PubMed  Google Scholar 

  163. Stocker, B. D. et al. Drought impacts on terrestrial primary production underestimated by satellite monitoring. Nat. Geosci. 12, 264–270 (2019).

    Article  CAS  Google Scholar 

  164. Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article  Google Scholar 

  165. Davenport, D. W., Breshears, D. D., Wilcox, B. P. & Allen, C. D. Viewpoint: sustainability of piñon-juniper ecosystems - a unifying perspective of soil erosion thresholds. J. Range Manage. 51, 231 (1998).

    Article  Google Scholar 

  166. Briske, D. D., Fuhlendorf, S. D. & Smeins, F. E. A unified framework for assessment and application of ecological thresholds. Rangel. Ecol. Manage. 59, 225–236 (2006).

    Article  Google Scholar 

  167. Kayler, Z. E. et al. Experiments to confront the environmental extremes of climate change. Front. Ecol. Environ. 13, 219–225 (2015).

    Article  Google Scholar 

  168. Haase, P. et al. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).

    Article  PubMed  CAS  Google Scholar 

  169. Halbritter, A. H. et al. The handbook for standardised field and laboratory measurements in terrestrial climate‐change experiments and observational studies (ClimEx). Methods Ecol. Evol. 11, 22–37 (2020).

    Article  Google Scholar 

  170. De Boeck, H. J. et al. Global change experiments: challenges and opportunities. Bioscience 65, 922–931 (2015).

    Article  Google Scholar 

  171. Kreyling, J. et al. To replicate, or not to replicate - that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).

  172. De Boeck, H. J. et al. Understanding ecosystems of the future will require more than realistic climate change experiments - a response to Korell et al. Glob. Change Biol. 26, e6–e7 (2020).

    Article  Google Scholar 

  173. Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: where have we been and where might we go? Glob. Change Biol. 26, 287–299 (2020).

    Article  Google Scholar 

  174. Paschalis, A. et al. Rainfall manipulation experiments as simulated by terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 3336–3355 (2020).

    Article  Google Scholar 

  175. Scheffer, M., Carpenter, S. R., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Thonicke, K. et al. Advancing the understanding of adaptive capacity of social‐ecological systems to absorb climate extremes. Earths Future 8, e2019EF001221 (2020).

Download references

Acknowledgements

We thank S. Feng and Q. Fu for sharing their P/PET data, T. Chapin and C. Körner for critically reviewing the paper, and L. Bigio and N. Kasher for assistance with and creation of the figures. This article profited greatly from discussions with I. Janssens, I. Nijs, S. Vicca, Y. Mau and R. Wallach. The basic idea for this Perspective was developed during a symposium at the 13th European Ecological Federation conference and was further developed as part of the ClimMani COST Action ES1308 activities. The support of the Israel Science Foundation is acknowledged by J.M.G. (grant number 1796/19), O.A. (1185/17) and E.M. (1053/17). M.B. acknowledges funding through the ÖAW-ESS project ClimGrassHydro (Austrian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Contributions

J.M.G. conceptualized this Perspective, informed by discussions with H.J.D.B., A.R., M.J.S., M.B. and H.L.T. M.J.S. produced the NDVI and soil moisture maps. O.A. downloaded and analysed the climate model data. D.H. and Y.M. produced and analysed the soil water potential data. O.A., D.H. and Y.M. generated the temperature and soil water potential panels. G.D. and O.F. (Box 1) and E.M. and O.T. (Box 2) performed model analyses of the dryland mechanisms and produced the Box figures. J.M.G. drafted the manuscript, and H.J.D.B., A.R., M.J.S., O.A., M.B., J.B., G.D., S.C.D., D.G., D.H., K.R.H., L.L., E.M., E.S., H.L.T. and D.Y. contributed discussions to different draft versions. All authors gave their final approval for submission.

Corresponding author

Correspondence to José M. Grünzweig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Joshua Schimel, Susana Bautista and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Methods, Tables 1–5, Figs. 1–5 and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grünzweig, J.M., De Boeck, H.J., Rey, A. et al. Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world. Nat Ecol Evol 6, 1064–1076 (2022). https://doi.org/10.1038/s41559-022-01779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01779-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing