Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion

Abstract

High-elevation trees cannot always reach the thermal treeline, the potential upper range limit set by growing-season temperature. But delineation of the realized upper range limit of trees and quantification of the drivers, which lead to trees being absent from the treeline, is lacking. Here, we used 30 m resolution satellite tree-cover data, validated by more than 0.7 million visual interpretations from Google Earth images, to map the realized range limit of trees along the Himalaya which harbours one of the world’s richest alpine endemic flora. The realized range limit of trees is ~800 m higher in the eastern Himalaya than in the western and central Himalaya. Trees had reached their thermal treeline positions in more than 80% of the cases over eastern Himalaya but are absent from the treeline position in western and central Himalaya, due to anthropogenic disturbance and/or premonsoon drought. By combining projections of the deviation of trees from the treeline position due to regional environmental stresses with warming-induced treeline shift, we predict that trees will migrate upslope by ~140 m by the end of the twenty-first century in the eastern Himalaya. This shift will cause the endemic flora to lose at least ~20% of its current habitats, highlighting the necessity to reassess the effectiveness of current conservation networks and policies over the Himalaya.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calibration and validation of satellite tree-cover-based realized range limit of trees across the Himalaya.
Fig. 2: Elevational distribution of the realized range limit of trees across the Himalaya.
Fig. 3: Variables predicting spatial pattern of DTreeline.
Fig. 4: Projections of the upslope shift of upper range limit of trees and its impact on the habitat loss of the endemic flora at the end of this century.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this paper are present in the paper and/or the Supplementary Information. The spatial distribution of manually interpreted and Landsat tree-cover-derived realized range limit of trees can be accessed through https://globalmapping.users.earthengine.app/view/realized-upper-range-limit-position-over-himalaya.

Code availability

All computer codes used in this study can be provided by the corresponding author upon reasonable request.

References

  1. Von Humboldt, A. Cosmos: A Sketch of a Physical Description of the Universe Vol. 5 (H.G. Bohn Press, 1895).

  2. Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits (Springer, 2012).

  3. Peñuelas, J., Ogaya, R., Boada, M. & Jump, A. S. Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography 30, 829–837 (2007).

    Article  Google Scholar 

  4. Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2021).

  5. Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).

    Article  PubMed  Google Scholar 

  6. Körner, C. The cold range limit of trees. Trends Ecol. Evol. 36, 979–989 (2021).

    Article  PubMed  Google Scholar 

  7. Körner, C. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732 (2004).

    Article  Google Scholar 

  8. Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).

    Article  Google Scholar 

  9. Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl Acad. Sci. USA 112, E6084–E6084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenoir, J. et al. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Macias Fauria, M. & Johnson, E. A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl Acad. Sci. USA 110, 8117–8122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morueta Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).

    Article  Google Scholar 

  14. Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383 (2021).

    Article  Google Scholar 

  15. Miehe, G. et al. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).

    Article  Google Scholar 

  16. Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, F. et al. Add Himalayas’ Grand Canyon to China’s first national parks. Nature 592, 353–353 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Article  Google Scholar 

  20. Dirnböeck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).

    Article  Google Scholar 

  21. Schickhoff, U. et al. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dynam. 6, 245–265 (2015).

    Article  Google Scholar 

  22. Singh, S., Sharma, S. & Dhyani, P. Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers. Conserv. 28, 1997–2016 (2019).

    Article  Google Scholar 

  23. Schickhoff, U. The Upper Timberline in the Himalayas, Hindu Kush and Karakorum: A Review of Geographical and Ecological Aspects (Springer, 2005).

  24. Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, X. et al. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30, 305–315 (2021).

    Article  Google Scholar 

  26. Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    Article  PubMed  Google Scholar 

  27. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Wan, Z. & Li, Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).

    Article  Google Scholar 

  29. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  30. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  31. Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sigdel, S. R. et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24, 5549–5559 (2018).

    Article  Google Scholar 

  33. Dolezal, J. et al. Sink limitation of plant growth determines tree line in the arid Himalayas. Funct. Ecol. 33, 553–565 (2019).

    Article  Google Scholar 

  34. Dolezal, J. et al. Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya. Trees 30, 761–773 (2016).

    Article  Google Scholar 

  35. Malcolm, J. R. et al. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).

    Article  PubMed  Google Scholar 

  36. Ding, W., Ree, R. H., Spicer, R. A. & Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Pirnat, J. Conservation and management of forest patches and corridors in suburban landscapes. Landsc. Urban Plan. 52, 135–143 (2000).

    Article  Google Scholar 

  38. Potapov, P. V. et al. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM plus data. Remote Sens. Environ. 122, 106–116 (2012).

    Article  Google Scholar 

  39. Paulsen, J. & Körner, C. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 12, 817–824 (2001).

    Article  Google Scholar 

  40. FAO. FRA 2000: On Definitions of Forest and Forest Change. Forest Resource Assessment Programme Working Paper, Rome (Food and Agriculture Organization, 2000).

  41. Luedeling, E., Siebert, S. & Buerkert, A. Filling the voids in the SRTM elevation model—a TIN-based delta surface approach. ISPRS-J. Photogramm. Remote Sens. 62, 283–294 (2007).

    Article  Google Scholar 

  42. Canny, J. Collision detection for moving polyhedra. IEEE Trans. Pattern Anal. Mach. Intell. 8, 200–209 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. More, J. J. & Sorensen, D. C. Computing a trust region step. SIAM J. Sci. Comput. 4, 553–572 (1983).

    Article  Google Scholar 

  44. Theobald, D. M., Harrison-Atlas, D., Monahan, W. B. & Albano, C. M. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS ONE 10, e0143619 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  46. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).

    Article  Google Scholar 

  47. Liang, E., Wang, Y., Eckstein, D. & Luo, T. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 190, 760–769 (2011).

    Article  PubMed  Google Scholar 

  48. Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

    Article  CAS  Google Scholar 

  49. Abatzoglou, J. T. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Case, B. S. & Buckley, H. L. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines. PeerJ 3, e1334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bush, M. B. et al. Fire and climate: contrasting pressures on tropical Andean timberline species. J. Biogeogr. 42, 938–950 (2015).

    Article  Google Scholar 

  52. Herrero, A., Zamora, R., Castro, J. & Hodar, J. A. Limits of pine forest distribution at the treeline: herbivory matters. Plant Ecol. 213, 459–469 (2012).

    Article  Google Scholar 

  53. Wang, Y. et al. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. For. Ecol. Manag. 442, 34–45 (2019).

    Article  Google Scholar 

  54. Wei, Y. et al. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 755, 142548 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Miehe, G. et al. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat. Sci. Rev. 86, 190–209 (2014).

    Article  Google Scholar 

  56. Willemann, R. J. & Storchak, D. A. Data collection at the international seismological centre. Seismol. Res. Lett. 72, 440–453 (2001).

    Article  Google Scholar 

  57. Chen, A., Huang, L., Liu, Q. & Piao, S. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol. 27, 1942–1951 (2021).

    Article  Google Scholar 

  58. Lehmkuhl, F. & Owen, L. A. Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34, 87–100 (2005).

    Article  Google Scholar 

  59. Owen, L. A. & Dortch, J. M. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat. Sci. Rev. 88, 14–54 (2014).

    Article  Google Scholar 

  60. Strobl, C. et al. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).

    Article  Google Scholar 

  61. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  62. Vassallo, D., Krishnamurthy, R. & Fernando, H. J. S. Decreasing wind speed extrapolation error via domain-specific feature extraction and selection. Wind Energy Sci. 5, 959–975 (2020).

    Article  Google Scholar 

  63. Ramirez-Villegas, J. & Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1 (CIAT, 2010).

  64. Wu, Z. & Raven, P. Flora of China (Science Press and Missouri Botanical Garden Press, 1994–2006).

  65. Wu, Z. Flora of Tibet (Science Press, 1987).

  66. Maclean, I. M. D. et al. Microclimates buffer the responses of plant communities to climate change. Glob. Ecol. Biogeogr. 24, 1340–1350 (2015).

    Article  Google Scholar 

  67. Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).

    Article  Google Scholar 

  68. Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Körner for his constructive suggestions and edits to the text. We also thank F. Zhuang and Y. Wang for helping with endemic species identification. This study was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0405), the National Natural Science Foundation of China (41922004), the NSFC project Basic Science Centre for Tibetan Plateau Earth System (41988101-04), the Preliminary Research on Three Poles Environment and Climate Change (2019YFC1509103) and the Key Research and Development Programs for Global Change and Adaptation (2017YFA0603604). We also acknowledge the support of Kathmandu Center for Research and Education, Chinese Academy of Sciences—Tribhuvan University.

Author information

Authors and Affiliations

Authors

Contributions

T.W. and Z.S. designed the research. T.W. and X.W. wrote the paper. X.W. and J.X. performed the data analysis. J.X. and X.W. manually interpreted realized upper range limit of trees using Google Earth images. Y.Y. led identification of alpine endemic species. A.C., S.W., E.L. and S.P. contributed to the interpretation of the results and to the text.

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Validation of satellite tree-cover-based realized range limit of trees against manual interpretation from Google Earth high-resolution images over the Himalaya.

(a) The elevational distribution of manually interpreted realized range limit of trees from Google Earth high-resolution images. The relationships of satellite tree-cover-based realized range limit of trees with manual interpretation in western (b), central (c) and eastern regions (d), with the 1:1 line (dashed) and the regression line (continuous). R2 and ME indicate the coefficient of determination and the mean error, respectively.

Extended Data Fig. 2 Linking ground temperature at 10 cm depth with the land surface skin temperature and air temperature at thermal treeline sites.

(a) The global distribution of thermal treeline sites with a record of the soil temperature at a depth of 10 cm. (b-c) The regression between growing-season land surface skin temperature (°C) (b), air temperature (°C) (c), and ground temperature (°C) across sites, with the grey shading indicates 95% confidence intervals. The land surface skin temperature at each site is taken from Collection 6 of the Moderate Resolution Imaging Spectroradiometer at a spatial resolution of 1 km.

Extended Data Fig. 3 Spatial distribution of derivation of realized range limit of trees from treeline elevation (DTreeline) across the Himalayas.

The insects show the frequency distribution of DTreeline.

Supplementary information

Supplementary Information

Supplementary Methods 1–4, Discussion, Figs. 1–13, Tables 1–6 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, T., Xu, J. et al. Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat Ecol Evol 6, 890–899 (2022). https://doi.org/10.1038/s41559-022-01774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01774-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing