This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).
Nolan, R. H. et al. What do the Australian Black Summer fires signify for the global fire crisis? Fire 4, 97 (2021).
Levin, N., Yebra, M. & Phinn, S. Unveiling the factors responsible for Australia’s Black Summer fires of 2019/2020. Fire 4, 58 (2021).
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).
Keenan, R. et al. No evidence that timber harvesting increased the scale or severity of the 2019/20 bushfires in south-eastern Australia. Aust. For. 84, 133–138 (2021).
Fire Severity in Harvested Areas (New South Wales Department of Primary Industry, 2020); https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0020/1222391/fire-severity-in-harvested-areas.pdf
Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).
Bowman, D. M., Williamson, G. J., Gibson, R. K., Bradstock, R. A. & Keenan, R. J. The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management. Nat. Ecol. Evol. 5, 1003–1010 (2021).
Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).
Lindenmayer, D. B. et al. Logging elevated the probability of high-severity fire in the 2019–20 Australian forest fires. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01716-z (2022).
Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. NPJ Clim. Atmos. Sci. 4, 38 (2021).
Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).
Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).
Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).
Lindenmayer, D., Taylor, C. & Blanchard, W. Empirical analyses of the factors influencing fire severity in southeastern Australia. Ecosphere 12, e03721 (2021).
Bowman, D. M., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecol. Biogeogr. 25, 1166–1172 (2016).
Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. 14, e12766 (2021).
Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).
Cruz, M., Alexander, M. & Plucinski, M. The effect of silvicultural treatments on fire behaviour potential in radiata pine plantations of South Australia. For. Ecol. Manag. 397, 27–38 (2017).
Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).
Acknowledgements
We thank R. McRae, Australian Capital Territory Emergency Services Agency, for the provision of the fire run data.
Author information
Authors and Affiliations
Contributions
D.M.J.S.B. conceptualized the analysis and led the writing. G.J.W. analysed the data, produced the visualization and contributed to the writing. R.K.G., R.A.B. and R.J.K. contributed to the writing and analysis.
Corresponding author
Ethics declarations
Competing interests
R.J.K. serves as a member of Vicforests Science Committee. The remaining authors have no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bowman, D.M.J.S., Williamson, G.J., Gibson, R.K. et al. Reply to: Logging elevated the probability of high-severity fire in the 2019–20 Australian forest fires. Nat Ecol Evol 6, 536–539 (2022). https://doi.org/10.1038/s41559-022-01716-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-022-01716-z
This article is cited by
-
Wildfire national carbon accounting: how natural and anthropogenic landscape fires emissions are treated in the 2020 Australian government greenhouse gas accounts report to the UNFCCC
Carbon Balance and Management (2023)
-
Carbon dioxide and particulate emissions from the 2013 Tasmanian firestorm: implications for Australian carbon accounting
Carbon Balance and Management (2022)
-
Reply to: Logging elevated the probability of high-severity fire in the 2019–20 Australian forest fires
Nature Ecology & Evolution (2022)