Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ANTIBIOTIC RESISTANCE

The journey of bacterial genes

Analysis of the dynamics of transposons that encode resistance to different antibiotics shows that the movement of genes under positive selection from the chromosome to mobile genetic elements such as plasmids can be beneficial in bacteria. Once integrated into plasmids, these genes can spread by horizontal gene transfer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of positive selection on chromosome-to-plasmid transposition events.

References

  1. Yao, Y. et al. Nat. Eco. Evo., https://doi.org/10.1038/s41559-022-01705-2 (2022).

    Article  Google Scholar 

  2. Lederberg, J. Physiol. Rev. 32, 403–430 (1952).

    Article  CAS  Google Scholar 

  3. Brinkmann, H., Göker, M., Koblížek, M., Wagner-Döbler, I. & Petersen, J. ISME J. 12, 1994–2010 (2018).

    Article  CAS  Google Scholar 

  4. Ausubel, F. M. Cell 29, 1–2 (1982).

    Article  CAS  Google Scholar 

  5. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Clin. Microbiol. Rev. 31, e00088–17 (2018).

    Article  CAS  Google Scholar 

  6. Redondo-Salvo, S. et al. Nat. Commun. 11, 3602 (2020).

    Article  Google Scholar 

  7. Siguier, P., Gourbeyre, E. & Chandler, M. FEMS Microbiol. Rev. 38, 865–891 (2014).

    Article  CAS  Google Scholar 

  8. Sousa, A., Bourgard, C., Wahl, L. M. & Gordo, I. Biol. Lett. 9, 20130838 (2013).

  9. Thomas, C. M. & Summers, D. in eLS, https://doi.org/10.1002/9780470015902.a0000468.pub2 (John Wiley & Sons, 2008).

  10. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Article  Google Scholar 

  11. Brockhurst, M. A. & Harrison, E. Trends Microbiol, https://doi.org/10.1016/j.tim.2021.11.001 (2021).

    Article  PubMed  Google Scholar 

  12. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. & de la Cruz, F. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

    Article  CAS  Google Scholar 

  13. Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Nat. Microbiol. 4, 1432–1442 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro San Millan.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

San Millan, A. The journey of bacterial genes. Nat Ecol Evol 6, 498–499 (2022). https://doi.org/10.1038/s41559-022-01713-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01713-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing