Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biological trade-offs underpin coral reef ecosystem functioning


Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maps of the five key ecosystem functions, multifunctionality and the relationships between the functions and biomass.
Fig. 2: Correlations of the five functions, accounting for biomass and SST.
Fig. 3: Effects of ecological community variables on the five functions.
Fig. 4: Local dominance in species contributions to five ecosystem functions on coral reefs.

Data availability

All data needed to reproduce the figures are available on GitHub ( and figshare ( All empirical data that were used to estimate parameters for bioenergetic modelling (Supplementary Information) will be available on figshare ( after a two-year embargo.

Code availability

All code to reproduce the figures are available on GitHub ( and figshare (


  1. Welti, N. et al. Bridging food webs, ecosystem metabolism, and biogeochemistry using ecological stoichiometry theory. Front. Microbiol. 8, 1298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e14002 (2015).

  3. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

  5. Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2019).

  6. Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).

    Article  Google Scholar 

  7. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article  Google Scholar 

  8. Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mora, C. et al. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol. 9, e1000606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barneche, D. R. et al. Scaling metabolism from individuals to reef-fish communities at broad spatial scales. Ecol. Lett. 17, 1067–1076 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology 89, 2335–2346 (2008).

    Article  PubMed  Google Scholar 

  13. Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).

    Article  Google Scholar 

  14. Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).

    Article  Google Scholar 

  16. Barneche, D. R. et al. Body size, reef area and temperature predict global reef-fish species richness across spatial scales. Glob. Ecol. Biogeogr. 28, 315–327 (2019).

    Article  Google Scholar 

  17. Schiettekatte, N. M. D. et al. Nutrient limitation, bioenergetics and stoichiometry: a new model to predict elemental fluxes mediated by fishes. Funct. Ecol. 34, 1857–1869 (2020).

    Article  Google Scholar 

  18. Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Natl Acad. Sci. USA 112, 2617–2622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    Article  Google Scholar 

  20. Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).

    Article  PubMed  Google Scholar 

  21. Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food-web trophic structure. Ecol. Lett. 21, 836–844 (2018).

    Article  PubMed  Google Scholar 

  22. Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).

  24. Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).

    Article  Google Scholar 

  25. Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Darling, E. S. & D’agata, S. Coral reefs: fishing for sustainability. Curr. Biol. 27, R65–R68 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graham, N. A. J. et al. Changing role of coral reef marine reserves in a warming climate. Nat. Commun. 11, 2000 (2020).

  32. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article  Google Scholar 

  33. Froese, R., Thorson, J. T. & Reyes, R. B. A Bayesian approach for estimating length–weight relationships in fishes. J. Appl. Ichthyol. 30, 78–85 (2014).

    Article  Google Scholar 

  34. Froese, R. & Pauly, D. FishBase (2018);

  35. Parravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  37. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  38. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–31 (2017).

    Article  Google Scholar 

Download references


We thank the staff at CRIOBE, Moorea for field support. We also thank J. Carlot, S. Degregori, B. French, T. Roncin, Y. Lacube, C. Gache, G. Martineau, K. Bissell, B. Espiau, C. Quigley, K. Landfield and T. Norin for their help in the field, G. de Sinéty and J. Wicquart for their contribution to otolith analysis, and S. Schiettekatte for proofreading the manuscript. This research was funded by the BNP Paribas Foundation (Reef Services Project) and the French National Agency for Scientific Research (ANR, REEFLUX Project, ANR‐17‐CE32‐0006). This research is the product of the SCORE-REEF group funded by the Centre de Synthèse et d’Analyse sur la Biodiversité of the Foundation pour la Recherche sur la Biodiversité and the Office Francais de la Biodiversité. V.P. was supported by the Institut Universitaire de France, and J.M.C. was supported by a Make Our Planet Great Again Postdoctoral Grant (mopga‐pdf‐0000000144).

Author information

Authors and Affiliations



N.M.D.S. and V.P. conceived the idea. N.M.D.S., V.P., S.J.B., J.M.C. and S.V. designed the methodology. N.M.D.S., J.M.C., S.J.B., A.M., F.M., V.P., K.S.M., J.E.A. and D.E.B. collected the data. N.A.J.G., D.R.B., D.E.B., J.E.A., J.E.A.-G., G.J.E., C.E.L.F., S.R.F., A.M.F., A.L.G., M.K., Y.L., O.J.L., F.M., E.L.R., F.A.R.-Z., R.D.S.-S. and L.V. shared existing data. N.M.D.S. analysed the data and led the writing of the manuscript. All authors contributed significantly to the drafts and approved the final version for publication.

Corresponding author

Correspondence to Nina M. D. Schiettekatte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer Review File

Nature Ecology & Evolution thanks Matthew McLean, Marc Hensel and Gareth Williams for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Correlations among functions.

Correlations, independent of biomass and sea surface temperature, at the locality and site levels. Dotes and lines indicate the mean estimated values and 95% credible intervals, respectively.

Extended Data Fig. 2 Posterior predictive checks of multivariate models.

a-e: Intercept-only model, f-j: model with biomass and sea surface temperature, k-o: model with all community variables.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schiettekatte, N.M.D., Brandl, S.J., Casey, J.M. et al. Biological trade-offs underpin coral reef ecosystem functioning. Nat Ecol Evol 6, 701–708 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing