Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas

Abstract

Primates have adapted to numerous environments and lifestyles but very few species are native to high elevations. Here we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of haematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared with baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult haemoglobin but found that gelada haemoglobin does not exhibit markedly altered oxygenation properties compared with lowland primates. We also found that geladas at high altitude do not exhibit elevated blood haemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythaemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The gelada at high altitude.
Fig. 2: Unique karyotypic evolution in geladas.
Fig. 3: Historical demography and genomic diversity among gelada populations.
Fig. 4: Gelada blood and lung phenotypes at high altitude.

Data availability

All genomic data, including the Tgel 1.0 assembly (GenBank accession number GCA_003255815.1) and short-read sequencing data, are available through NCBI repositories and are linked to BioProject accession number PRJNA470999. Gelada haematological and morphological data are available on Dryad (https://doi.org/10.5061/dryad.fbg79cnvq). All requests for biological material from the Simien Mountains used for this manuscript will be considered and granted depending on availability. For other biological materials, requests should be made to the contributors of those materials, which are specified in the manuscript.

Code availability

All code written for this project is available on GitHub (https://github.com/smacklab/gelada-genome).

References

  1. Beall, C. M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia. Integr. Comp. Biol. 46, 18–24 (2006).

    PubMed  Article  Google Scholar 

  2. Bigham, A. W. Genetics of human origin and evolution: high-altitude adaptations. Curr. Opin. Genet. Dev. 41, 8–13 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Ossendorf, G. et al. Middle Stone Age foragers resided in high elevations of the glaciated Bale Mountains, Ethiopia. Science 365, 583–587 (2019).

    CAS  PubMed  Article  Google Scholar 

  4. Storz, J. F. & Cheviron, Z. A. Physiological genomics of adaptation to high-altitude hypoxia. Annu Rev. Anim. Biosci. 9, 149–171 (2021).

    CAS  PubMed  Article  Google Scholar 

  5. Storz, J. F. High-altitude adaptation: mechanistic insights from integrated genomics and physiology. Mol. Biol. Evol. 38, 2677–2691 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Pozzi, L. et al. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 75, 165–183 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  7. Pugh, K. D. & Gilbert, C. C. Phylogenetic relationships of living and fossil African papionins: combined evidence from morphology and molecules. J. Hum. Evol. 123, 35–51 (2018).

    PubMed  Article  Google Scholar 

  8. Jolly, C. J. The classification and natural history of Theropithecus (Simopithecus) (Andrews, 1916) baboons of the African Plio-Pleistocene. Bull. Br. Mus. Nat. Hist. Bot. 22, 1–123 (1972).

    Google Scholar 

  9. Hughes, J. K., Elton, S. & O’Regan, H. J. Theropithecus and ‘Out of Africa’ dispersal in the Plio-Pleistocene. J. Hum. Evol. 54, 43–77 (2008).

    PubMed  Article  Google Scholar 

  10. Jablonski, N. G. Theropithecus: The Rise and Fall of a Primate Genus (Cambridge Univ. Press, 1993).

  11. Yalden, D. W., Largen, M. J. & Kock, D. Catalogue of the mammals of Ethiopia. 3. Primates. Monit. Zool. Ital. Suppl. 9, 1–52 (1977).

    Google Scholar 

  12. Yu, L. et al. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat. Genet. 48, 947–952 (2016).

    CAS  PubMed  Article  Google Scholar 

  13. West, J. B. The physiologic basis of high-altitude diseases. Ann. Intern. Med. 141, 789–800 (2004).

    PubMed  Article  Google Scholar 

  14. Lee, J. W., Ko, J., Ju, C. & Eltzschig, H. K. Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med. 51, 51–68 (2019).

    Google Scholar 

  15. Azad, P. et al. High-altitude adaptation in humans: from genomics to integrative physiology. J. Mol. Med. 95, 1269–1282 (2017).

    CAS  PubMed  Article  Google Scholar 

  16. King, M. Species Evolution: The Role of Chromosome Change (Cambridge Univ. Press, 1995).

  17. Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).

    CAS  PubMed  Article  Google Scholar 

  21. Thibaud-Nissen, F., Souvorov, A., Murphy, T., DiCuccio, M. & Kitts, P. Eukaryotic Genome Annotation Pipeline (National Center for Biotechnology Information, 2013).

  22. Rogers, J. et al. The comparative genomics and complex population history of Papio baboons. Sci. Adv. 5, eaau6947 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C.-B. & Disotell, T. R. Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J. Hum. Evol. 48, 237–257 (2005).

    PubMed  Article  Google Scholar 

  24. Stanyon, R. et al. Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res. 16, 17–39 (2008).

    CAS  PubMed  Article  Google Scholar 

  25. Perry, J., Slater, H. R. & Choo, K. H. A. Centric fission—simple and complex mechanisms. Chromosome Res. 12, 627–640 (2004).

    CAS  PubMed  Article  Google Scholar 

  26. Muleris, M., Dutrillaux, B. & Chauvier, G. Mise en évidence d’une fission centromérique hétérozygote chez un mâle Theropithecus gelada et comparaison chromosomique avec les autres Papioninae. Génét. Sél. Evol. 15, 177–184 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Weber, A. F., Buoen, L. C., Terhaar, B. L., Ruth, G. R. & Momont, H. W. Low fertility related to 1/29 centric fusion anomaly in cattle. J. Am. Vet. Med. Assoc. 195, 643–646 (1989).

    CAS  PubMed  Google Scholar 

  28. Trede, F. et al. Geographic distribution of microsatellite alleles in geladas (Primates, Cercopithecidae): evidence for three evolutionary units. Zool. Scr. 49, 659–667 (2020).

    Article  Google Scholar 

  29. Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    PubMed  Article  Google Scholar 

  30. Faria, R. & Navarro, A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660–669 (2010).

    PubMed  Article  Google Scholar 

  31. Bergey, C. M., Phillips-Conroy, J. E., Disotell, R. T. & Jolly, C. J. Dopamine pathway is highly diverged in primate species that differ markedly in social behavior. Proc. Natl Acad. Sci. USA 113, 6178–6181 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  33. Storz, J. F. Hemoglobin–oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J. Exp. Biol. 219, 3190–3203 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  34. Signore, A. V. et al. Adaptive changes in hemoglobin function in high-altitude Tibetan canids were derived via gene conversion and introgression. Mol. Biol. Evol. 36, 2227–2237 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Signore, A. V. & Storz, J. F. Biochemical pedomorphosis and genetic assimilation in the hypoxia adaptation of Tibetan antelope. Sci. Adv. 6, eabb5447 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Janecka, J. E. et al. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard. J. Exp. Biol. 218, 2402–2409 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  37. Beall, C. M., Brittenham, G. M., Macuaga, F. & Barragan, M. Variation in hemoglobin concentration among samples of high-altitude natives in the Andes and the Himalayas. Am. J. Hum. Biol. 2, 639–651 (1990).

    PubMed  Article  Google Scholar 

  38. Beall, C. M. et al. Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am. J. Phys. Anthropol. 106, 385–400 (1998).

    CAS  PubMed  Article  Google Scholar 

  39. Beall, C. M. et al. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA 107, 11459–11464 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Reference Ranges for Physiological Values in Captive Wildlife (International Species Information System, 2002).

  41. Harewood, W. J. et al. Biochemistry and haematology values for the baboon (Papio hamadryas): the effects of sex, growth, development and age. J. Med. Primatol. 28, 19–31 (1999).

    CAS  PubMed  Article  Google Scholar 

  42. Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  43. Storz, J. F. & Scott, G. R. Life ascending: mechanism and process in physiological adaptation to high-altitude hypoxia. Annu. Rev. Ecol. Evol. Syst. 50, 503–526 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  44. Frisancho, A. R. Developmental adaptation to high altitude hypoxia. Int. J. Biometeorol. 21, 135–146 (1977).

    CAS  PubMed  Article  Google Scholar 

  45. Hsia, C. C. W., Carbayo, J. J. P., Yan, X. & Bellotto, D. J. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respir. Physiol. Neurobiol. 147, 105–115 (2005).

    PubMed  Article  Google Scholar 

  46. Llapur, C. J. et al. Increased lung volume in infants and toddlers at high compared to low altitude. Pediatr. Pulmonol. 48, 1224–1230 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Phillips-Conroy, J. E., Jolly, C. J. & Brett, F. L. Characteristics of hamadryas-like male baboons living in anubis baboon troops in the Awash hybrid zone, Ethiopia. Am. J. Phys. Anthropol. 86, 353–368 (1991).

    CAS  PubMed  Article  Google Scholar 

  48. Jolly, C. J. & Phillips-Conroy, J. E. in Reproduction and Fitness in Baboons: Behavioral, Ecological, and Life History Perspectives (eds Swedell, L. & Leigh, S. R.) 257–275 (Springer, 2006).

  49. Bernstein, R. M., Drought, H., Phillips-Conroy, J. E. & Jolly, C. J. Hormonal correlates of divergent growth trajectories in wild male anubis (Papio anubis) and hamadryas (P. hamadryas) baboons in the Awash River Valley, Ethiopia. Int. J. Primatol. 34, 732–752 (2013).

    Article  Google Scholar 

  50. Beall, C. M. A comparison of chest morphology in high altitude Asian and Andean populations. Hum. Biol. 54, 145–163 (1982).

    CAS  PubMed  Google Scholar 

  51. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Article  Google Scholar 

  52. Murrell, B. et al. Gene-wide identification of episodic selection. Mol. Biol. Evol. 32, 1365–1371 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS  PubMed  Article  Google Scholar 

  55. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    CAS  PubMed  Article  Google Scholar 

  57. Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M. & Bateman, A. TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res. 42, D922–D925 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    PubMed  Article  CAS  Google Scholar 

  59. Deng, L. et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl Sci. Rev. 6, 1201–1222 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  60. Alkorta-Aranburu, G. et al. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet. 8, e1003110 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 3281 (2014).

    PubMed  Article  CAS  Google Scholar 

  62. Ilardo, M. A. et al. Physiological and genetic adaptations to diving in sea nomads. Cell 173, 569–580 (2018).

    CAS  PubMed  Article  Google Scholar 

  63. Tan, J. et al. Expression of aquaporin-1 and aquaporin-5 in a rat model of high-altitude pulmonary edema and the effect of hyperbaric oxygen exposure. Dose Response 18, 1559325820970821 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bareth, B. et al. The heme a synthase Cox15 associates with cytochrome c oxidase assembly intermediates during Cox1 maturation. Mol. Cell. Biol. 33, 4128–4137 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Szpiech, Z. A., Novak, T. E., Bailey, N. P. & Stevison, L. S. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol. Lett. 5, 408–421 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  66. Wu, B. J. et al. High-density lipoproteins inhibit vascular endothelial inflammation by increasing 3β-hydroxysteroid-Δ24 reductase expression and inducing heme oxygenase-1. Circ. Res. 112, 278–288 (2013).

    CAS  PubMed  Article  Google Scholar 

  67. Zhu, S. et al. Genome-wide association study using individual single-nucleotide polymorphisms and haplotypes for erythrocyte traits in Alpine Merino sheep. Front. Genet. 11, 848 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Pesce, A. et al. Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. EMBO Rep. 3, 1146–1151 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Bigham, A. W. & Lee, F. S. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28, 2189–2204 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. McLean, C. J., Booth, C. W., Tattersall, T. & Few, J. D. The effect of high altitude on saliva aldosterone and glucocorticoid concentrations. Eur. J. Appl. Physiol. Occup. Physiol. 58, 341–347 (1989).

    CAS  PubMed  Article  Google Scholar 

  71. Dosek, A., Ohno, H., Acs, Z., Taylor, A. W. & Radak, Z. High altitude and oxidative stress. Respir. Physiol. Neurobiol. 158, 128–131 (2007).

    CAS  PubMed  Article  Google Scholar 

  72. Beall, C. M. Ages at menopause and menarche in a high-altitude Himalayan population. Ann. Hum. Biol. 10, 365–370 (1983).

    CAS  PubMed  Article  Google Scholar 

  73. Moore, L. G. Maternal O2 transport and fetal growth in Colorado, Peru, and Tibet high-altitude residents. Am. J. Hum. Biol. 2, 627–637 (1990).

    PubMed  Article  Google Scholar 

  74. Keyes, L. E. et al. Intrauterine growth restriction, preeclampsia, and intrauterine mortality at high altitude in Bolivia. Pediatr. Res. 54, 20–25 (2003).

    PubMed  Article  Google Scholar 

  75. Natarajan, C. et al. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science 354, 336–339 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Holt, S. V. et al. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J. Cell Sci. 118, 4889–4900 (2005).

    CAS  PubMed  Article  Google Scholar 

  77. Landberg, G., Erlanson, M., Roos, G., Tan, E. M. & Casiano, C. A. Nuclear autoantigen p330d/CENP-F: a marker for cell proliferation in human malignancies. Cytometry 25, 90–98 (1996).

    CAS  PubMed  Article  Google Scholar 

  78. Martin-Rendon, E. et al. Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25, 1003–1012 (2007).

    CAS  PubMed  Article  Google Scholar 

  79. Piazena, H. The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean Andes. Sol. Energy 57, 133–140 (1996).

    Article  Google Scholar 

  80. Wang, Q.-W., Hidema, J. & Hikosaka, K. Is UV-induced DNA damage greater at higher elevation? Am. J. Bot. 101, 796–802 (2014).

    PubMed  Article  Google Scholar 

  81. King, M.-C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    CAS  PubMed  Article  Google Scholar 

  82. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    CAS  PubMed  Article  Google Scholar 

  83. Pollard, K. S. et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet. 2, e168 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Hubisz, M. J. & Pollard, K. S. Exploring the genesis and functions of Human Accelerated Regions sheds light on their role in human evolution. Curr. Opin. Genet. Dev. 29, 15–21 (2014).

    CAS  PubMed  Article  Google Scholar 

  85. Doan, R. N. et al. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167, 341–354 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Capra, J. A., Erwin, G. D., McKinsey, G., Rubenstein, J. L. R. & Pollard, K. S. Many human accelerated regions are developmental enhancers. Phil. Trans. R. Soc. Lond. B 368, 20130025 (2013).

    Article  CAS  Google Scholar 

  87. Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Qin, Z. et al. ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Mol. Cell. Biol. 29, 3633–3643 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Ruiz-Martinez, J. et al. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J. Hum. Genet. 60, 637–640 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Oguro-Ando, A. et al. Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Transl. Psychiatry 11, 106 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Koticha, D. et al. Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186. Mol. Cell. Neurosci. 30, 137–148 (2005).

    CAS  PubMed  Article  Google Scholar 

  92. Hochachka, P. W. et al. The brain at high altitude: hypometabolism as a defense against chronic hypoxia? J. Cereb. Blood Flow Metab. 14, 671–679 (1994).

    CAS  PubMed  Article  Google Scholar 

  93. Hornbein, T. F. The high-altitude brain. J. Exp. Biol. 204, 3129–3132 (2001).

    CAS  PubMed  Article  Google Scholar 

  94. Wu, Y. & Song, W. Regulation of RCAN1 translation and its role in oxidative stress-induced apoptosis. FASEB J. 27, 208–221 (2013).

    CAS  PubMed  Article  Google Scholar 

  95. Luo, S., Zou, R., Wu, J. & Landry, M. P. A probe for the detection of hypoxic cancer cells. ACS Sens. 2, 1139–1145 (2017).

    CAS  PubMed  Article  Google Scholar 

  96. Qi, X. et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 11, 72–85 (2019).

    CAS  PubMed  Google Scholar 

  97. Dumitriu, B. et al. Sox6 is necessary for efficient erythropoiesis in adult mice under physiological and anemia-induced stress conditions. PLoS ONE 5, e12088 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Cantù, C. et al. Sox6 enhances erythroid differentiation in human erythroid progenitors. Blood 117, 3669–3679 (2011).

    PubMed  Article  CAS  Google Scholar 

  99. Dudchenko, O. et al. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. Preprint at bioRxiv https://doi.org/10.1101/254797 (2018).

  100. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Article  CAS  Google Scholar 

  102. Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Pratas, D., Silva, R. M., Pinho, A. J. & Ferreira, P. J. S. G. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences. Sci. Rep. 5, 10203 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  105. Maddison, W. & Maddison, D. Mesquite: A Modular System for Evolutionary Analysis (Mesquite, 2019); http://mesquiteproject.org

  106. Zhu, X. et al. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc. Natl Acad. Sci. USA 115, 1865–1870 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Rees, D. G. & Henry, C. J. K. On comparing the predicted values from two simple linear regression lines. Statistician 37, 299–306 (1988).

    Article  Google Scholar 

  108. Gassmann, M. et al. The increase in hemoglobin concentration with altitude varies among human populations. Ann. N. Y. Acad. Sci. 1450, 204–220 (2019).

    CAS  PubMed  Google Scholar 

  109. Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Villanueva-Cañas, J. L., Laurie, S. & Albà, M. M. Improving genome-wide scans of positive selection by using protein isoforms of similar length. Genome Biol. Evol. 5, 457–467 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Shakya, M. et al. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10, 1723 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Kosakovsky Pond, S. L., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

    Article  CAS  Google Scholar 

  113. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  114. Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  115. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).

    Article  CAS  Google Scholar 

  116. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Alexa, A. & Rahnenführer, J. topGO: Enrichment Analysis for Gene Ontology. R Package Version 2.46.0 https://doi.org/10.18129/B9.bioc.topGO (2019).

  118. Magrane, M., UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database 2011, bar009 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. Herrero, J. et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. Earl, D. et al. Alignathon: a competitive assessment of whole-genome alignment methods. Genome Res. 24, 2077–2089 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Dutheil, J. Y., Gaillard, S. & Stukenbrock, E. H. MafFilter: a highly flexible and extensible multiple genome alignment files processor. BMC Genomics 15, 53 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  124. Dutheil, J. Y. in Statistical Population Genomics (ed. Dutheil, J. Y.) 21–48 (Springer, 2020).

  125. Dutheil, J. et al. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics 7, 188 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).

    PubMed  Article  CAS  Google Scholar 

  127. Hubisz, M. J., Pollard, K. S. & Siepel, A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief. Bioinformatics 12, 41–51 (2011).

    CAS  PubMed  Article  Google Scholar 

  128. Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    PubMed Central  Article  CAS  Google Scholar 

  130. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Batra, S. S. et al. Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data. Gigascience 9, giaa134 (2020).

  132. Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods 12, 966–968 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  139. Zinner, D. et al. Phylogeography, mitochondrial DNA diversity, and demographic history of geladas (Theropithecus gelada). PLoS ONE 13, e0202303 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. Jin, J.-J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  141. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. Hodgson, J. A. et al. Successive radiations, not stasis, in the South American primate fauna. Proc. Natl Acad. Sci. USA 106, 5534–5539 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    CAS  PubMed  Article  Google Scholar 

  147. Gokey, N. G. et al. Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 3, 319–326 (2004).

    CAS  PubMed  Article  Google Scholar 

  148. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Article  Google Scholar 

  149. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Schiffels, S. & Wang, K. in Statistical Population Genomics (ed. Dutheil, J. Y.) 147–166 (Springer, 2020).

  152. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).

    CAS  PubMed  Article  Google Scholar 

  153. Wu, F. L. et al. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol. 18, e3000838 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

Download references

Acknowledgements

We thank those who made this research possible, particularly the research staff (E. Jejaw, A. Fenta, S. Girmay, D. Bewket and A. Adwana), logistical support staff (T. W. Aregay and S. Asrat) and assistants and students of the Simien Mountains Gelada Research Project—especially J. Jarvey and M. Gomery—as well as the EWCA for permission and support to work in the Simien Mountains National Park. We also thank the EWCA, the Amhara Regional Government and Mehal Meda Woreda for permission to conduct research at Guassa Community Conservation Area, and B. Muluyee, N. Subsebey, B. Tessema, T. Wudimagegn and many field assistants for important logistical research support there; D. McDonald and the Cellular Imaging Core at the Fred Hutchinson Cancer Research Center for assistance with karyotyping; S. Sams and S. Ford for assistance with laboratory work; and M. Montague, K. Harris, A. Bigham, G. Scott, I. Liachko, Z. Kronenberg, O. Dudchenko, N. Simons, N. Ting and J. Dutheil for feedback through various stages of this research. Support for this research was provided by the National Science Foundation (grant nos. BCS 2010309, BCS 1848900, BCS 2013888 and BCS 1723237 to N.S.-M., BCS 1723228 to A. Lu, BCS 0715179 to T.J.B., OIA 1736249 and IOS 2114465 to J.F.S., IOS 1255974 and IOS 1854359 to J.C.B.), the National Institutes of Health (grant nos. NIA R00AG051764 to N.S.-M. and NHLBI R01HL087216 to J.F.S.), the University of Washington Royalty Research Fund, the San Diego Zoo and the German Research Foundation (grant no. DFG KN1097/3-1 to S.K.). K.L.C. was supported by a National Institutes of Health fellowship (NIA T32AG000057). M.C.J. was supported by the Natural Environment Research Council (NE/T000341/1) and the Natural Sciences and Engineering Research Council Discovery Accelerator Grant. I.A.S.-C. was supported by the ASU Center for Evolution and Medicine.

Author information

Authors and Affiliations

Authors

Contributions

N.S.-M., K.L.C. and M.C.J. conceived the research. K.L.C., M.C.J., I.A.S.-C., A.D.M., A. Lu, J.C.B., T.J.B. and N.S.-M. designed the study. K.L.C., I.A.S.-C., S.S., F.A., I.S.C., S.K., A. Lemma, B.A., J.C.B., T.J.B. and N.S.-M. collected field gelada samples and data, facilitated by A.A.H. and F.K. P.J.F., N.N., C.M., M.L.H., J.D.W., A.S.B., C.M.B., J.R., J.E.P.-C. and C.J.J. contributed samples and/or data. A.V.S. and J.F.S. designed, performed and analysed Hb–O2 affinity experiments. K.L.C., A.M.D. and N.S.-M. generated genomic data. K.L.C., M.C.J. and N.S.-M. performed genomic analyses. K.L.C., M.C.J. and N.S.-M. wrote the paper. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Kenneth L. Chiou or Noah Snyder-Mackler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Lucia Carbone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gelada reference assembly quality and synteny.

(A) The gelada reference assembly (Tgel 1.0) compared to closely related papionin assemblies in assembly size (top) and contig N50 (bottom). (B) Synteny links between the anubis baboon (Panu 3.0) and gelada (Tgel 1.0) assemblies reveal strong collinearity between genomes. (C) BUSCO analysis of the gelada reference assembly reveals a relatively intact and complete assembly.

Extended Data Fig. 2 Provenience of captive gelada samples.

Maximum likelihood phylogenetic tree from the cytochrome b + hypervariable region I (HVI) D-loop mitochondrial region informs on the geographic origin of geladas in zoos. Individuals in our study were assigned either to gelada haplotypes determined by Zinner et al139. (h01–h61) or to new haplotypes determined in the current study (labelled in italics; Supplementary Table 1). Gelada individuals sampled from the wild were exclusively assigned to clades matching their geographic origin (northern or central). Zoo individuals were assigned to the central clade with the exception of a single haplotype shared by two zoo individuals, which was assigned to the northern clade. The two zoo individuals both have heterozygous (2n = 43) karyotypes and elevated fractions of northern genome-wide ancestry, indicating that they likely descended from a northern individual. A rhesus macaque reference sequence (GenBank accession NC_005943.1) was used to root the tree and is not shown. Bootstrap support values are shown for major nodes.

Extended Data Fig. 3 Karyotyping and a unique centric fission in gelada chromosome 7.

(A) Full karyotype of our female reference individual (DIX). (B) Example G-banded chromosome spread with 44 counted chromosomes. (C) Analysis of Hi-C libraries allows for determination of the presence/absence of a centric fission in chromosome 7 without the need for live cells, which are difficult to obtain from wild populations. Two wild central gelada individuals showed abundant contacts between the two arms of chromosome 7, indicating an intact chromosome and providing the first provenienced sampling to our knowledge of central gelada karyotypes.

Extended Data Fig. 4 Genome assemblies included in positive selection and gene family expansions analyses.

Chronogram was obtained from TimeTree53,54.

Extended Data Fig. 5 Gene family size changes in the gelada genome.

(A) Gene family expansions and contractions across the catarrhine tree. Here, expansion and contraction estimates are from CAFE and do not use the more stringent statistical thresholds used for downstream analyses. (B) Example of a significantly expanded gene family containing CENPF, which is found with five copies in geladas. (C) Example of a significantly expanded gene family containing SART1, which is found with four copies in geladas. Proteins are grouped using a neighbour-joining tree.

Extended Data Fig. 6 Robust signals of acceleration across GARs.

Per-base acceleration scores estimated with PhyloP reveal the distribution of elevated signals of acceleration across GARs. Some GARs (for example, GAR16 and GAR17) show signals of acceleration that are highly localized while other GARs (for example, GAR5, GAR14, and GAR25) show numerous changes that are more uniform across larger regions.

Extended Data Fig. 7 Synteny blocks and chromosomal rearrangements in the gelada reference assembly.

Ideogram generated using the alignment-free method implemented in SMASH reveals synteny blocks as well as chromosomal rearrangements between gelada (‘G’, Tgel 1.0) and anubis baboon (‘B’, Panu 3.0) genomes.

Extended Data Fig. 8 Comparisons of haemoglobin concentrations split by sex.

While gelada haemoglobin concentrations from zoos were only available with sexes unspecified, haemoglobin concentrations collected from the Simien Mountains (>3,000 metres above sea level) from each sex were not elevated, and in fact had lower mean values, than reference zoo gelada ranges of unknown sex40. The mean values from female and male high-altitude geladas were additionally lower, respectively, than those from female and male captive hamadryas baboons41. These results indicate that the observation that gelada haemoglobin concentrations are not elevated at high altitude is robust to sex differences in phenotype. Error bars represent the mean ± s.d.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiou, K.L., Janiak, M.C., Schneider-Crease, I.A. et al. Genomic signatures of high-altitude adaptation and chromosomal polymorphism in geladas. Nat Ecol Evol 6, 630–643 (2022). https://doi.org/10.1038/s41559-022-01703-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-022-01703-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing