Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decomposing phenotypic skew and its effects on the predicted response to strong selection


The major frameworks for predicting evolutionary change assume that a phenotype’s underlying genetic and environmental components are normally distributed. However, the predictions of these frameworks may no longer hold if distributions are skewed. Despite this, phenotypic skew has never been decomposed, meaning the fundamental assumptions of quantitative genetics remain untested. Here we demonstrate that the substantial phenotypic skew in the body size of juvenile blue tits (Cyanistes caeruleus) is driven by environmental factors. Although skew had little impact on our predictions of selection response in this case, our results highlight the impact of skew on the estimation of inheritance and selection. Specifically, the nonlinear parent–offspring regressions induced by skew, alongside selective disappearance, can strongly bias estimates of heritability. The ubiquity of skew and strong directional selection on juvenile body size imply that heritability is commonly overestimated, which may in part explain the discrepancy between predicted and observed trait evolution.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The effects of different distributions of breeding values (G) and environmental values (E) on the distribution of phenotypes (P) and the shape of the PO-regression.
Fig. 2: Skew in the distribution of avian tarsus lengths across different species, measured as the coefficient of skew.
Fig. 3: Decomposition of variance and skew in juvenile body size traits in blue tits.
Fig. 4: Fitness functions and selection gradients for juvenile body size traits based on survival from day 15 to recruitment.
Fig. 5: PO-regressions for four body size traits.

Data and code availability

All data and code can be found at


  1. Lush, J. L. Animal Breeding Plans Ch. 12 (Iowa State College Press, 1937).

    Google Scholar 

  2. Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976).

    PubMed  Google Scholar 

  3. Walsh, B. & Lynch, M. Evolution and Selection of Quantitative Traits (Oxford Univ. Press, 2018).

    Google Scholar 

  4. Schluter, D. Estimating the form of natural selection on a quantitative trait. Evolution 42, 849–861 (1988).

    PubMed  Google Scholar 

  5. Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).

    PubMed  Google Scholar 

  6. Falconer, D. & Mackay, T. F. Introduction to Quantitative Genetics 4th edn (Longman, 1996).

    Google Scholar 

  7. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).

    Google Scholar 

  8. Roff, D. A. Evolutionary Quantitative Genetics (Springer, 2012).

  9. Nishida, A. & Abe, T. Non-linear heritability and asymmetrical selection responses caused by skewed distribution of breeding value in selected population. Jpn. J. Zootech. Sci. 51, 495–500 (1980).

    Google Scholar 

  10. Barton, N. H. & Turelli, M. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Gen. Res. 49, 157–173 (1987).

    CAS  Google Scholar 

  11. Turelli, M. & Barton, N. H. Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics 138, 913–941 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gimelfarb, A. & Willis, J. H. Linearity versus nonlinearity of offspring–parent regression: an experimental study of Drosophila melanogaster. Genetics 138, 343–352 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rice, S. H. Evolutionary Theory: Mathematical and Conceptual Foundations (Sinauer, 2004).

  14. Heywood, J. S. An exact form of the breeder’s equation for the evolution of a quantitative trait under natural selection. Evolution 59, 2287–2298 (2005).

    PubMed  Google Scholar 

  15. Jones, A. G., Bürger, R., Arnold, S. J., Hohenlohe, P. A. & Uyeda, J. C. The effects of stochastic and episodic movement of the optimum on the evolution of the G-matrix and the response of the trait mean to selection. J. Evol. Biol. 25, 2210–2231 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Urban, M. C., Bürger, R. & Bolnick, D. I. Asymmetric selection and the evolution of extraordinary defences. Nat. Commun. 4, 2085 (2013).

    PubMed  Google Scholar 

  17. Bonamour, S., Teplitsky, C., Charmantier, A., Crochet, P. A. & Chevin, L. M. Selection on skewed characters and the paradox of stasis. Evolution 71, 2703–2713 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Jacquard, A. Heritability: one word, three concepts. Biometrics 39, 465–477 (1983).

    CAS  PubMed  Google Scholar 

  19. Charlesworth, B. in Sexual Selection: Testing the Alternatives (eds Bradbury, J. & Andersson, M.) 21–40 (John Wiley & Sons, 1987).

  20. Nishida, A. & Abe, T. Distribution of genetic and environmental effects and linearity of heritability. Can. J. Genet. Cytol. 16, 3–10 (1974).

    Google Scholar 

  21. Robertson, A. The non-linearity of offspring–parent regression. In Proc. International Conference on Quantitative Genetics (eds Pollak, E. et al.) 297–304 (Iowa State Univ. Press, 1977).

  22. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  23. Beardsley, J. P., Bratton, R. & Salisbury, G. The curvilinearity of heritability of butterfat production. J. Dairy Sci. 33, 93–97 (1950).

    Google Scholar 

  24. Nishida, A. Some characteristics of parent–offspring regression in body-weight of Mus musculus at different ages. Can. J. Genet. Cytol. 14, 293–303 (1972).

    CAS  PubMed  Google Scholar 

  25. Mäki-Tanila, A. The Validity of the Heritability Concept in Quantitative Genetics. PhD thesis, Univ. Edinburgh (1982).

  26. Gifford, D. R. & Barker, J. S. The nonlinearity of offspring–parent regression for total sternopleural bristle number of Drosophila melanogaster. Theor. Appl. Genet. 82, 217–220 (1991).

    CAS  PubMed  Google Scholar 

  27. Koerhuis, A. N. Non-normality of egg production distributions in poultry and the effects of outlier elimination and transformation on size and curvilinearity of heritability. Livest. Prod. Sci. 45, 69–85 (1996).

    Google Scholar 

  28. Mbaga, S. H. & Hill, W. G. Linear versus nonlinear offspring–parent regression in unselected random-bred mice. J. Anim. Breed. Genet. 114, 299–307 (1997).

    CAS  PubMed  Google Scholar 

  29. McGuigan, K., Van Homrigh, A. & Blows, M. W. Genetic analysis of female preference functions as function-valued traits. Am. Nat. 172, 194–202 (2008).

    PubMed  Google Scholar 

  30. Reid, J. M. et al. Immigration counter-acts local micro-evolution of a major fitness component: migration-selection balance in free-living song sparrows. Evol. Lett. 5, 48–60 (2021).

    PubMed  PubMed Central  Google Scholar 

  31. Rollinson, N. & Rowe, L. Persistent directional selection on body size and a resolution to the paradox of stasis. Evolution 69, 2441–2451 (2015).

    PubMed  Google Scholar 

  32. Merilä, J., Sheldon, B. & Kruuk, L. Explaining stasis: microevolutionary studies in natural populations. Genetica 112, 199–222 (2001).

    PubMed  Google Scholar 

  33. Baayen, R. H., Davidson, D. J. & Bates, D. M. Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008).

    Google Scholar 

  34. Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

  35. Geyer, C. J. & Shaw, R. G. Commentary on Lande-Arnold Analysis Technical Report No. 670 (School of Statistics, University of Minnesota, 2008).

  36. Turelli, M. Commentary: Fisher’s infinitesimal model: a story for the ages. Theor. Popul. Biol. 118, 46–49 (2017).

    PubMed  Google Scholar 

  37. Bulmer, M. G. The Mathematical Theory of Quantitative Genetics (Oxford Univ. Press, 1980).

    Google Scholar 

  38. Turelli, M. & Barton, N. H. Dynamics of polygenic characters under selection. Theor. Popul. Biol. 38, 1–57 (1990).

    Google Scholar 

  39. Zeng, Z. B. Genotypic distribution at the limits to natural and artificial selection with mutation. Theor. Popul. Biol. 32, 90–113 (1987).

    CAS  PubMed  Google Scholar 

  40. Keightley, P. D. & Hill, W. G. Directional selection and variation in finite populations. Genetics 117, 573–582 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reed, D. R., Lawler, M. P. & Tordoff, M. G. Reduced body weight is a common effect of gene knockout in mice. BMC Genet. 9, 4 (2008).

    PubMed  PubMed Central  Google Scholar 

  42. Fisher, R. A., Immer, F. R. & Tedin, O. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance. Genetics 17, 107–124 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gimelfarb, A. Offspring–parent genotypic regression: how linear is it? Biometrics 42, 67–71 (1986).

    CAS  PubMed  Google Scholar 

  44. Santure, A. W. et al. Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Mol. Ecol. 24, 6148–6162 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Silva, C. N. S. et al. Insights into the genetic architecture of morphological traits in two passerine bird species. Heredity 119, 197–205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Becker, P. J., Hegelbach, J., Keller, L. F. & Postma, E. Phenotype-associated inbreeding biases estimates of inbreeding depression in a wild bird population. J. Evol. Biol. 29, 35–46 (2016).

    CAS  PubMed  Google Scholar 

  47. Huisman, J., Kruuk, L. E., Ellisa, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl Acad. Sci. USA 113, 3585–3590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pemberton, J. M., Ellis, P. E., Pilkington, J. G. & Bérénos, C. Inbreeding depression by environment interactions in a free-living mammal population. Heredity 118, 64–77 (2017).

    CAS  PubMed  Google Scholar 

  49. Hajduk, G. K. et al. Inbreeding, inbreeding depression, and infidelity in a cooperatively breeding bird. Evolution 72, 1500–1514 (2018).

    PubMed Central  Google Scholar 

  50. Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    PubMed  Google Scholar 

  51. Alatalo, R. V., Gustafsson, L. & Lundberg, A. Phenotypic selection on heritable size traits: environmental variance and genetic response. Am. Nat. 135, 464–471 (1990).

    Google Scholar 

  52. Koyama, H. Intraspecific competition among higher plants. VIII. Frequency distribution of individual plant weight as affected by the interaction between plants. J. Inst. Polytech. Osaka City Univ. 7, 73–94 (1956).

    Google Scholar 

  53. Mock, D. W. & Parker, G. A. The Evolution of Sibling Rivalry (Oxford Univ. Press, 1997).

    Google Scholar 

  54. Weiner, J. Asymmetric competition in plant populations. TREE 5, 360–364 (1990).

    CAS  PubMed  Google Scholar 

  55. Bassar, R. D. et al. The effects of asymmetric competition on the life history of Trinidadian guppies. Ecol. Lett. 19, 268–278 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Muller, M. & Groothuis, T. G. Within-clutch variation in yolk testosterone as an adaptive maternal effect to modulate avian sibling competition: evidence from a comparative study. Am. Nat. 181, 125–136 (2013).

    PubMed  Google Scholar 

  57. Nilsson, J.-A. & Svensson, M. Sibling competition affects nestling growth strategies in marsh tits. J. Anim. Ecol. 825–836 (1996).

  58. Gebhardt-Henrich, S. & Van Noordwijk, A. The genetical ecology of nestling growth in the great tit. Environmental influences on the expression of genetic variances during growth. Funct. Ecol. 8, 469–476 (1994).

    Google Scholar 

  59. Gebhardt-Henrich, S. Heritability of growth curve parameters and heritability of final size: a simulation study. Growth Dev. Aging 56, 23–33 (1992).

    CAS  PubMed  Google Scholar 

  60. Hadfield, J. D., Heap, E. A., Bayer, F., Mittell, E. A. & Crouch, N. M. A. Disentangling genetic and prenatal sources of familial resemblance across ontogeny in a wild passerine. Evolution 67, 2701–2713 (2013).

    PubMed  Google Scholar 

  61. Hadfield, J. D. Estimating evolutionary parameters when viability selection is operating. Proc. R. Soc. B 275, 723–734 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. Postma, E. in Quantitative Genetics in the Wild (eds Charmantier, A. et al.) 16–33 (Oxford Univ. Press, 2014).

  63. Dingemanse, N. J., Araya-Ajoy, Y. G. & Westneat, D. F. Most published selection gradients are underestimated: why this is and how to fix it. Evolution 75, 806–818 (2021).

    PubMed  Google Scholar 

  64. Arct, A., Drobniak, S., Mellinger, S., Gustafsson, L. & Cichon, M. Data from: Parental genetic similarity and offspring performance in blue tits in relation to brood size manipulation. Dryad (2020).

  65. Bebbington, K. et al. Data from: Consequences of sibling rivalry vary across life in a passerine bird. Dryad (2016).

  66. Bebbington, K. et al. Data from: Telomere length reveals cumulative individual and transgenerational inbreeding effects in a passerine bird. Dryad (2016).

  67. Becker, P. J. J. et al. Data from: Mother–offspring and nest mate resemblance but no heritability in early-life telomere length in white-throated dippers. Dryad (2015).

  68. Berzins, L. L., Gilchrist, H. G. & Burness, G. Data from: No assortative mating based on size in black guillemots breeding in the Canadian Arctic. Dryad (2015).

  69. Caizergues, A. E., Gregoire, A. & Charmantier, A. Data from: Urban versus forest ecotypes are not explained by divergent reproductive selection. Dryad (2018).

  70. Camacho, C., Canal, D. & Potti, J. Data from: Nonrandom dispersal drives phenotypic divergence within a bird population. Dryad (2014).

  71. Class, B. & Brommer, J. Data from: Can dominance genetic variance be ignored in evolutionary quantitative genetic analyses of wild populations? Dryad (2020).

  72. Cornell, A., Gibson, K. F. & Williams, T. D. Data from: Physiological maturity at a critical life-history transition and flight ability at fledging. Dryad (2017).

  73. Cox, A. R., Robertson, R. J., Lendvai, A. Z., Everitt, K. & Bonier, F. Data from: Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Dryad (2019).

  74. DeSimone, J. G., Clotfelter, E. D., Black, E. C. & Knutie, S. A. Data from: Avoidance, tolerance, and resistance to ectoparasites in nestling and adult tree swallows. Dryad (2017).

  75. Dubuc-Messier, G. et al. Data from: Gene flow does not prevent personality and morphological differentiation between two blue tit populations. Dryad (2018).

  76. Grunst, M. L., Raap, T., Grunst, A. S., Pinxten, R. & Eens, M. Data from: Artificial light at night does not affect telomere shortening in a developing free-living songbird: a field experiment. Dryad (2019).

  77. Husby, A., Schielzeth, H., Forstmeier, W., Gustafsson, L. & Qvarnström, A. Data from: Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits. Dryad (2012).

  78. Ihle, M. et al. Data from: Rearing success does not improve with apparent pair coordination in offspring provisioning. Zenodo (2019).

  79. Jacob, S. et al. Data from: Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in great tits. Dryad (2015).

  80. Krause, E. T., Krüger, O. & Schielzeth, H. Data from: Long-term effects of early nutrition and environmental matching on developmental and personality traits in zebra finches. Dryad (2018).

  81. Krist, M., Janča, M., Edme, A. & Dzuro, R. Data from: Are prenatal maternal resources more important in competitive than in benign postnatal environments? Dryad (2016).

  82. Krist, M., Remeš, V., Uvírová, L., Nádvorník, P. & Bureš, S. Data from: Egg size and offspring performance in the collared flycatcher (Ficedula albicollis): a within-clutch approach. Dryad (2010).

  83. Kvalnes, T. et al. Data from: Offspring fitness and the optimal propagule size in a fluctuating environment. Dryad (2018).

  84. Kvalnes, T. et al. Data from: Reversal of response to artificial selection on body size in a wild passerine. Dryad (2017).

  85. Moiron, M. et al. Data from: Functional relations between body mass and risk-taking behavior in wild great tits. Dryad (2018).

  86. Nishida, Y. & Takagi, M. Data from: Song performance is a condition-dependent dynamic trait honestly indicating the quality of paternal care in the bull-headed shrike. Dryad (2018).

  87. Nord, A. & Nilsson, J.-A. Data from: Incubation temperature affects growth and energy metabolism in blue tit nestlings. Dryad (2011).

  88. Pap, P. L. et al. Data from: Selection on multiple sexual signals in two central- and eastern-European populations of the barn swallow. Dryad (2019).

  89. Perrier, C., Delahaie, B. & Charmantier, A. Data from: Heritability estimates from genome wide relatedness matrices in wild populations: application to a passerine, using a small sample size. Dryad (2018).

  90. Podofillini, S. et al. Data from: Benefits of extra food to reproduction depend on maternal condition. Dryad (2020).

  91. Poissant, J., Morrissey, M. B., Gosler, A. G., Slate, J. & Sheldon, B. C. Data from: Multivariate selection and intersexual genetic constraints in a wild bird population. Dryad (2016).

  92. Poorboy, D. et al. Data from: Experimental cross-fostering of eggs reveals effects of territory quality on reproductive allocation. Dryad (2018).

  93. Rioux Paquette, S., Pelletier, F., Garant, D. & Bélisle, M. Data from: Severe recent decrease of adult body mass in a declining insectivorous bird population. Dryad (2014).

  94. Sakaluk, S. K. et al. Data from: Genetic and environmental variation in condition, cutaneous immunity, and haematocrit in house wrens. Dryad (2014).

  95. Simpson, R. K. & McGraw, K. J. Data from: Multiple signaling in a variable environment: expression of song and color traits as a function of ambient sound and light. Dryad (2017).

  96. Song, Z. et al. Data from: Silver spoon effects of hatching order in an asynchronous hatching bird. Dryad (2018).

  97. Torres, R., Chin, E., Rampton, R. & Williams, T. D. Data from: Are there synergistic or antagonistic effects of multiple maternally-derived egg components (antibodies and testosterone) on offspring phenotype? Dryad (2019).

  98. Vermeulen, A., Müller, W. & Eens, M. Data from: Vitally important - does early innate immunity predict recruitment and adult innate immunity? Dryad (2016).

  99. Weber, B. M. et al. Data from: Pre- and post-natal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity, and survival of nestling house wrens. Dryad (2019).

  100. Santiago-Alarcon, D. & Parker, P. G. Sexual size dimorphism and morphological evidence supporting the recognition of two subspecies in the Galápagos dove. Condor 109, 132–141 (2007).

    Google Scholar 

  101. Santos, E. S. A. & Nakagawa, S. Breeding biology and variable mating system of a population of introduced dunnocks (Prunella modularis) in New Zealand. PLoS ONE 8, e69329 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Joanes, D. N. & Gill, C. A. Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. D 47, 183–189 (1998).

    Google Scholar 

  103. Thomson, C. E. et al. Selection on parental performance opposes selection for larger body size in a wild population of blue tits. Evolution 71, 716–732 (2017).

    PubMed  Google Scholar 

  104. Thomson, C. E. & Hadfield, J. D. No evidence for sibling or parent–offspring coadaptation in a wild population of blue tits, despite high power. Evolution 73, 28–41 (2019).

    PubMed  Google Scholar 

  105. Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10 (2018).

    PubMed  Google Scholar 

  106. Branco, M. D. & Dey, D. K. A general class of multivariate skew-elliptical distributions. J. Multivar. Anal. 79, 99–113 (2001).

    Google Scholar 

  107. Azzalini, A. & Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. B 65, 367–389 (2003).

    Google Scholar 

  108. Arellano-Valle, R. B. & Azzalini, A. On the unification of families of skew-normal distributions. Scand. J. Stat. 33, 561–574 (2006).

    Google Scholar 

  109. Azzalini, A. The Skew-Normal and Related Families (Institute of Mathematical Statistics Monographs, Cambridge Univ. Press, 2013).

  110. Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).

    CAS  PubMed  Google Scholar 

  111. Quaas, R. L. & Pollak, E. J. Mixed model methodology for farm and ranch beef cattle testing programs. J. Anim. Sci. 51, 1277–1287 (1980).

    Google Scholar 

  112. Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Google Scholar 

  113. Gelman, A. & Rubin, D. B. et al. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Google Scholar 

  114. Lewandowski, D., Kurowicka, D. & Joe, H. Generating random correlation matrices based on vines and extended onion method. J. Multivar. Anal. 100, 1989–2001 (2009).

    Google Scholar 

  115. Janzen, F. J. & Stern, H. S. Logistic regression for empirical studies of multivariate selection. Evolution 52, 1564–1571 (1998).

    PubMed  Google Scholar 

  116. Butler, D., Cullis, B. R., Gilmour, A. R., Gogel, B. J. & Thompson, R. ASReml-R Reference Manual Version 4 (VSN International, 2017).

Download references


We thank our many field assistants for help with data collection; S. Nakagawa, A. Moller, D. Santiago-Alarcon, R. Jovani, S. Sales and N. Rodriguez for providing raw data; and E. McFarlane, J. Gauzere and E. Ivimey-Cook for helpful discussions. This work was funded by the Natural Environment Research Council (NE/P000924/1) and a Royal Society Fellowship to J.D.H., and supported by Lord Rosebery and the Dalmeny estate.

Author information

Authors and Affiliations



J.L.P. and J.D.H. conceived and designed the project. J.L.P., H.E.L., C.E.T. and J.D.H. generated the data. J.L.P. and J.D.H. analysed the data and wrote the paper. All authors read and approved the paper.

Corresponding author

Correspondence to Joel L. Pick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks David Houle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Tables 1–20 and Figs. 1–18.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pick, J.L., Lemon, H.E., Thomson, C.E. et al. Decomposing phenotypic skew and its effects on the predicted response to strong selection. Nat Ecol Evol 6, 774–785 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing