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Plants, like other complex organisms, host a diverse set of 
microbes. The assembly of these microbial communities is 
shaped both by host–microbe and microbe–microbe interac-

tions. These interactions may be of any symbiotic type, mutualistic, 
commensal or parasitic and are dictated by the balance of inhibition 
and facilitation of growth by both the host and other microbes. As 
has been exemplified in many studies, interactions between organ-
isms are dynamic, depending on evolutionary history1,2 and the cur-
rent biotic3,4 and abiotic5,6 environment.

Many facets of plant–microbe interactions have been studied 
in considerable detail, not least because of their implications for 
agriculture and ecology. Colonization of the plant depends on the 
ability of microbes to proliferate on and in the host but also on the 
ability of the host to promote or restrict microbial growth. In the 
case of pathogens, there is often a co-evolutionary arms race, in 
which plants evolve recognition and immune tools to control the 
microbes, while microbes evolve evasion and an offensive arsenal to 
further populate the plant7,8. These co-evolutionary dynamics typi-
cally fuel the generation of genetic diversity within both host and 
microbe, and the dependence of microbial colonization and host 
health on intraspecific variation has been widely documented1,9–11. 
Nonetheless, the extent to which intraspecific host variation shapes 
the composition of its microbiota appears to be comparatively 
small5,6, with the most dramatic effects seen for specific taxa that are 
recognized by the immune system12,13. In contrast, abiotic factors5,6 
and local reservoirs of microbes have a large influence on the com-
position of microbial communities3,14,15.

Colonizing microbes exert differential effects on host health—
from harmful16 to beneficial17. These effects are often related to 
microbial load because overpopulation of the plant by microbes 
can negatively impact its health9,18. This raises questions about the 

ability of the host plant to differentially recognize and respond to 
a consortium of microbes with a range of functions, that is, differ-
entiating friend from foe in a complex assembly of microbial taxa. 
The numerous constraints resulting from multiple host–microbe 
and microbe–microbe interrelations create a complex system of 
relationships, making extrapolation of rules from simplified sys-
tems likely difficult. For example, overpopulation of the plant by 
one microbe can result in negative health impacts, but these might 
be mitigated in the presence of other microbes17,19. As one example, 
interactions between different bacterial taxa have been shown to 
affect host root development20,21.

Whereas studies of microbe–microbe interactions in planta 
have paved the way for important findings regarding their impact 
on the host20,21 or overall community14,15, the effect of the host 
on such microbial interactions has been considered less often22. 
A powerful tool for establishing causality in microbe–microbe 
and plant–microbe interactions is provided by synthetic com-
munities23. A limitation has been the ability to distinguish closely 
related taxa in either natural or synthetic microbial communi-
ties, which are usually profiled using 16S rDNA sequences. Until 
recently, strains with similar but not identical 16S rDNA segments 
have been collapsed as Operational Taxonomic Units (OTUs). 
However, even strains with identical 16S rDNA sequences can 
differ functionally due to variation in gene content24–26, not least 
because of ubiquitous horizontal gene transfer27, reflecting that 
16S rDNA sequences evolve (much) more slowly than the rest of 
the genome. The role of fine-grained taxonomic differences has 
often been overlooked in the context of characterizing and analys-
ing plant microbiota, limiting our understanding of how genetic 
variation among closely related strains affects plant–microbe–
microbe interactions.
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In a previous study, Karasov and colleagues11 surveyed 
Pseudomonas populations from leaves of wild Arabidopsis thaliana 
plants in southwest Germany. Among these, one lineage, which was 
highly pathogenic in axenic infections, often dominated endophytic 
microbial communities of A. thaliana leaves. This lineage was iso-
lated from plants without any visible disease symptoms, suggesting 
that other factors, including co-colonizing microbes, were mitigating 
its pathogenic potential in nature. Candidates for such effects include 
other co-occurring Pseudomonas lineages that did not appear to 
have any substantial impacts on host health when tested individually.

Here we took advantage of this collection of wild Pseudomonas 
isolates11 to investigate intraspecific host–microbe–microbe 
dynamics by infecting A. thaliana plants with synthetic communi-
ties. Employing genome barcoding, we were able to track individ-
ual isolates in multi-strain consortium contexts regardless of their 
genome-wide similarity. Specifically, we examined interactions 
between different pathogenic and commensal Pseudomonas strains 
with the host leaves and among each other, and the linkage of these 
to host health. We found that the host facilitated protective com-
mensal–pathogen interactions, revealing complex interactions that 
could not easily be detected by studying pairwise host–microbe or 
microbe–microbe relationships.

results
Barcoding of Pseudomonas isolates and experimental design. To 
test possible host–commensal–pathogen dynamics in a local popu-
lation, we spray inoculated six A. thaliana accessions with synthetic 
bacterial communities composed of pathogenic and commensal 
Pseudomonas candidates. Because we wanted to study interactions 
that are likely to occur in nature, we used A. thaliana genotypes 
that originated from the same plant populations near Tübingen, 
Germany28, from which the Pseudomonas strains had been isolated 
(Fig. 1a). Classification of Pseudomonas lineages as pathogenic or 
commensal was based on observed effects in axenic infections11. 
Only one lineage, previously named OTU5, which dominated local 
plant populations, was associated with pathogenicity, both based on 
negative impact on rosette weight and visible disease symptoms11. 
We henceforth call this lineage ATUE5 (isolates sampled from 
‘Around TUEbingen, group 5’) and all other Pseudomonas lineages 
from the Karasov collection non-ATUE5. We interchangeably use 
the terms ‘pathogens’ or ‘ATUE5’, and ‘commensals’ or ‘non-ATUE5’.

Seven pathogenic Pseudomonas and seven commensal isolates 
were selected, prioritizing those with the highest prevalence in the 
field collection11 (Fig. 1b), estimated from the number of similar 
isolates with nucleotide sequence divergence of less than 0.0001 
in their core genome. The 14 Pseudomonas isolates were classi-
fied as belonging to four OTUs based on 16S rDNA clustering 
at 99% sequence identity. Because of the high relatedness of sev-
eral of the isolates, we could not rely upon a single endogenous 
genetic marker to distinguish them in a community context, and 
we therefore genome barcoded all of the isolates. We employed the 
mini-Tn7 system29 to insert a single copy of a 22 bp-long unique 
sequence, flanked by universal priming sites, into the chromo-
some of each isolate (Extended Data Fig. 1a). We validated the 
sequence of all barcodes in the corresponding isolates using Sanger 
sequencing (Supplementary Table 1) and confirmed correct inte-
gration by barcode-specific polymerase chain reaction (PCR, 
Supplementary Fig. 1a). Barcode amplification yielded the expected 
products on DNA extracted from infected A. thaliana individuals 
(Supplementary Fig. 1b). While barcoding slightly impaired the 
in vitro growth of isolates P3 and P4, most barcoded strains grew 
similarly well as the non-barcoded parental strains when tested in a 
lysogeny Broth (LB) medium (Supplementary Fig. 2).

Next, we constructed three synthetic communities using the 
barcoded isolates: an exclusively pathogenic community, com-
prising the seven ATUE5 isolates (PathoCom); an exclusively  

commensal community, comprising the seven non-ATUE5 isolates 
(CommenCom); and a joint community comprising all 14 isolates, 
both pathogens and commensals (MixedCom). Isolates were mixed 
in equal proportions (based on OD600 readout), and their absolute 
starting concentration was identical in each synthetic community. 
Thus, the inoculum of the MixedCom with 14 isolates had twice the 
total number of bacterial cells per volume as either the PathoCom 
or CommenCom inoculum.

The community experiments were conducted with plants grown 
on soil in the presence of other microbes acquired from the envi-
ronment. We chose to perform non-axenic experiments rather 
than with axenically grown plants because infection outcomes on 
soil seemed more consistent with phenotypes observed in the field. 
Specifically, the focal bacterial strains had been isolated from wild 
plants that were not obviously diseased11. In the lab, axenic infec-
tions with these strains often had rapid and dramatic effects, killing 
plants as early as three days post infection (DPI) (Supplementary 
Fig. 3). In contrast, inoculated soil-grown plants had only mild dis-
ease symptoms and decreased size even 12 DPI (Supplementary Fig. 
3). Also, to more closely mimic natural infections, which probably 
occur through the air, we chose to inoculate plants by spraying with 
bacterial suspensions rather than direct leaf infiltration, the more 
common method for testing the effects of leaf pathogenic bacteria 
in A. thaliana.

Twenty-one days after sowing, we spray inoculated rosettes of 
plants raised in growth chambers with the three synthetic commu-
nities or with a buffer (Control). At 12 DPI, we sampled the fresh 
rosettes, weighed them and extracted DNA from them. We measured 
absolute abundance of each isolate by coupling barcode-specific 
PCR and sequencing-based amplicon counting with quantitative 
PCR (qPCR). Including an amplicon from an A. thaliana gene in 
the qPCR assay allowed us to estimate absolute isolate abundances 
as the ratio of bacterial to plant cells (Extended Data Fig. 1b).

Because we used a non-sterile system, interactions of barcoded 
isolates with the plant or with each other could potentially be 
affected by the presence of other bacteria that colonized the plants 
from the environment. To gauge how important other environmen-
tal bacteria, especially other Pseudomonas strains, were, we quan-
titatively measured the total bacterial community profile based on 
the fourth hypervariable (V4) region of 16S rDNA, employing a 
recent method that measures not only community composition but 
also absolute bacterial load30. Although 16S rDNA-based profiling is 
not suitable to differentiate our Pseudomonas isolates from all other 
environmental Pseudomonas strains or from each other, comparing 
the uninfected with infected plants (among all three synthetic com-
munities) showed that (1) environmental Pseudomonas load was 
small in uninfected plants and (2) total Pseudomonas load alone was 
higher than the cumulative load of all non-Pseudomonas bacteria 
in infected plants. We therefore conclude that cumulative bacterial 
load was mainly driven by the inoculated Pseudomonas strains in 
infected plants (Extended Data Fig. 2), suggesting that environmen-
tal microbes do not interfere in a specific manner with our system.

Host effects on composition of synthetic communities. The six A. 
thaliana genotypes used were originally sampled from a maximum 
of 40 km apart28 in the same geographic region (Fig. 1a) and they 
also were all from the same host genetic group31. In accordance, we 
expected host genotype to have limited effects on the composition 
of our synthetic communities of co-occurring Pseudomonas isolates. 
While not large, there was nevertheless a significant effect of host 
genotype, explaining 5% to 12% of compositional variation in the 
different communities, as determined by permutational multivari-
ate analysis of variance (PERMANOVA) with Bray–Curtis distances 
(Table 1). For comparison, the difference between experiments 
explained 4–26% of compositional variation. Analysis of similarities 
within each experiment indicated similar trends as PERMANOVA, 
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with genotype having a significant effect on isolate composition in 
each synthetic community (Supplementary Table 2a).

We then examined bacterial composition clustering according to 
host genotype by applying multi-level comparison using pairwise 
‘adonis’ based on Bray–Curtis distances. Some pairs of genotypes 
differed in their effects on all three communities (Supplementary 
Table 2b), an observation that was supported by non-metric 
multi-dimensional scaling (NMDS) ordination of bacterial compo-
sition in each treatment (Extended Data Fig. 3a). The cumulative 
load of all isolates was associated with the loading on the NMDS1 
axis (Pearson’s r >0.99 and P value <2.2 × 10−16 for all three com-
munities), suggesting that a part of the compositional differences 
between host genotypes was due to absolute rather than relative 
abundance. In agreement, we observed differences in total bacterial 
load among the host genotypes, and the nature of the differences 
was treatment dependent (Extended Data Fig. 3b).

Host-dependent pathogenicity, growth promotion or protection. 
Plant weight in our experiments was a function of treatment and 
host genotype, and interaction between the two, implying that the 

six A. thaliana accessions were differentially affected by similar treat-
ments, as inferred from model comparison using leave-one-out cross 
validation and a two-way ANOVA test (Supplementary Table 3a,b). 
PathoCom infection reduced plant growth during the 12 days of the 
experiment (Fig. 2, Extended Data Fig. 4a and Supplementary Fig. 4), 
with weight decrease being the least in Lu3-30 and TueWal-2, indi-
cating a certain level of resistance to PathoCom members in these 
accessions. The mean reduction to Control for the individual host 
genotypes was 29.1 mg (59.3, 1.4) for Lu3-30; 30.0 mg (46.4, 13.4) for 
TueWal-2; 77.2 mg (96.4, 54.2) for Kus3-1; 93.1 mg (123.5, 67.7) for 
Schl-7; 92.5 mg (116.4, 66.0) for Ey15-2; and 53.9 mg (82.6, 27.0) for 
HE-1 (95% confidence intervals in brackets, Extended Data Fig. 4b).

To validate that the effect of the PathoCom on plant weight was 
due to bacterial activity and not merely a host response to the inocu-
lum (for example, pathogen-associated molecular pattern [‘PAMP’] 
triggered immunity), we infected plants with heat-killed PathoCom. 
We found a minor weight decrease in three out of the six acces-
sions, but the overall contribution to weight reduction was small 
(Supplementary Fig. 5; heat-killed PathoCom accounts for 14% of 
the variation explained by the living PathoCom in the model shown).
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In contrast to PathoCom, infections with CommenCom led to a 
slight increase in fresh weight, suggesting plant growth promotion 
activity or alternatively, protection from resident environmental 
pathogens (Extended Data Fig. 4a). This effect was independent of 
the host genotype (Extended Data Fig. 4b).

Importantly, the negative effects of the PathoCom members were 
greatly reduced in the MixedCom experiment. Plants infected with 
MixedCom grew to a similar extent as the control, with the excep-
tion of the genotype Ey15-2, which continued to suffer a substantial 
weight reduction when infected by the mixed community, with a 
mean reduction relative to Control of 48.5 mg (74.8, 22.6; Fig. 2, 
Extended Data Fig. 4b and Supplementary Fig. 4). Nonetheless, the 
growth reduction of Ey15-2 was less than that caused by PathoCom. 
Hence, co-colonization of pathogenic Pseudomonas with commen-
sals led to enhanced growth, with the exact extent depending on 
host genotype.

Because the pathogenic Pseudomonas strains used here are much 
more lethal when inoculated on sterile plants11, we wanted to test 
whether environmentally derived microbes affected the observed 
interactions in a specific manner. We therefore performed a similar 
experiment in an axenic system on MS agar. The major trends that 
we had observed on soil were recapitulated, including the protec-
tion against ATUE5 by CommenCom members and the reduced 
protection of Ey15-2 by CommenCom members against patho-
gens (Supplementary Fig. 6). This does not exclude that members 
of the environmental microbiota enhance or dampen some of the 
observed effects, but if they do, they do so in a general manner and 
they are not essential for the observed effects.

In aggregate, these results support the role of ATUE5 strains as 
pathogenic and provide additional evidence for protection against 
ATUE5 by commensal Pseudomonas strains that coexist with 
ATUE5 in nature. Next, we therefore wanted to learn whether and 
how changes in bacterial abundance or shifts in Pseudomonas com-
munity composition led to differential impacts on growth of the 
infected plants.

Load-dependent impact of pathogens and commensals. We 
hypothesized that the total cumulative load of all inoculated strains, 
regardless of their taxonomy, should be an important explana-
tory variable for weight differences among treatments. We based 
this expectation on the association previously found between 
prevalence in the field and pathogenicity for similar Pseudomonas 
isolates11. Contrary to our hypothesis, we found that while the dif-
ferences in plant weight between treatments were considerable, 
the bacterial loads of MixedCom and PathoCom were similar 
with high probability, as deduced from quantification of barcodes 
(Fig. 3a). This result implies that plant weight is also a function of 
bacterial composition and not load per se. In agreement with this 
inference, the load–weight relationships were found to be treat-
ment dependent, indicating that weight can be better predicted 
by load within a treatment than by load among treatments (Delta 
Elpd = −52.9, standard error = 9.4, when comparing the model 
[weight ~ treatment × log10(isolate load) + treatment + log10(isolate 
load) + genotype + experiment + error] to the same model with-
out the interaction factor [treatment × log10(isolate load)] using 
leave-one-out cross validation; Methods).

We noticed that the regression slope of PathoCom was more 
negative than the regression slope of CommenCom, suggesting 
that ATUE5 isolates had a stronger negative impact on weight per 
bacterial cell than non-ATUE5 isolates (Fig. 3b and Extended Data 
Fig. 5a; CommenCom mean effect difference to PathoCom: 12.0 mg 
[4.4,19.5] at 95% credible interval of the parameter log10(isolate 
load) × treatment, based on Extended Data Fig. 5a). From the recip-
rocal angle, that of the host, it can be seen that plants were less tol-
erant to ATUE5 isolates than to non-ATUE5 isolates. MixedCom 
presented a regression slope between the two exclusive synthetic 
communities, implying that the impact on plant growth resulted 
from both groups, ATUE5 and non-ATUE5, with the MixedCom 
mean effect difference to PathoCom being 4.8 mg (based on 
Extended Data Fig. 5a, [−1.6, 11.8] 95% Bayesian credible interval 
of the parameter log10(isolate load) × treatment). Lastly, we observed 
differential regression slopes between the host genotypes, particu-
larly among PathoCom- and CommenCom-infected hosts, reveal-
ing different levels of tolerance to the same groups of Pseudomonas 
isolates (Extended Data Fig. 5b,c).

Although these results suggest general ATUE5 and non-ATUE5 
effects, they may still be due to a few dominant strains that out-
competed the others. For example, high competition in the early 
phases of plant colonization may lead to later exclusion of a subset 
of strains. In such a scenario, these latter strains would not become 
established in the plant and would therefore not be particularly rel-
evant. In contrast, we found that in all three synthetic communities, 
each strain had robustly colonized the plants at the end of the exper-
iment (Extended Data Fig. 6a), confirming that the observed weight 
differences in host plants are compatible with effects of entire com-
munities. As expected, some strains were more abundant than oth-
ers, although there was no individual dominant strain in any of the 
communities (Extended Data Fig. 6b).

We have described two general differences between pathogenic 
and commensal Pseudomonas: (1) on average, pathogens have a 
greater impact per a given load on plant growth than commensals 
do and (2) pathogens can reach higher titre in A. thaliana leaves 
than commensals can. Together, this points to dual effects of patho-
gens on plant health. To explain how commensal non-ATUE5 iso-
lates were able to mitigate the harmful impact of pathogenic ATUE5 
in MixedCom, we next addressed the bacterial compositionality in 
MixedCom-infected hosts.

Protection by commensal members and pathogen suppres-
sion. Given that (1) MixedCom-infected plants grew better than 
PathoCom-infected plants (Fig. 2, Extended Data Fig. 4a and 
Supplementary Fig. 4), (2) there was no considerable difference in 

Table 1 | PerMANOvA of synthetic community composition in 
inoculated plants

Treatment Df Sum 
Sq

Pseudo-F R2 Pr(>f) variation 
source

PathoCom 5 4.83 4.67 0.12 0.0005 Geno

1 1.68 8.11 0.04 0.0005 Exp

5 1.08 1.04 0.03 0.3973 Geno:Exp

158 32.68 NA 0.81 NA residuals

169 40.27 NA 1.00 NA Total

CommenCom 5 2.36 3.88 0.08 0.0005 Geno

1 7.32 60.19 0.26 0.0005 Exp

5 1.53 2.52 0.05 0.0030 Geno:Exp

139 16.89 NA 0.60 NA residuals

150 28.10 NA 1.00 NA Total

MixedCom 5 2.17 1.99 0.05 0.0020 Geno

1 6.29 28.89 0.13 0.0005 Exp

5 2.03 1.86 0.04 0.0020 Geno:Exp

170 36.99 NA 0.78 NA residuals

181 47.47 NA 1.00 NA Total

Analyses are based on Bray–Curtis distances of the 14 isolates, constrained by host genotype 
(Geno) and experiment (Exp) to estimate their effects on the explained variance. n = 170 
for PathoCom, n = 151 for CommenCom, and n = 182 for MixedCom. Statistically significant 
relationships (P <0.05) are in bold. Df, degrees of freedom; Sum Sq, sum of squares; F, F statistic; 
NA, not available.
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total load between PathoCom- and MixedCom-infected plants (Fig. 
3a) and (3) pathogens were found to cause more damage per cell 
(Fig. 3b and Extended Data Fig. 5a), we expected commensal mem-
bers to dominate MixedCom.

Consistent with our expectations, the composition of MixedCom 
was more similar to CommenCom than PathoCom (Fig. 4a). We 
then analysed the change in bacterial abundance due to the mixture 
of pathogens and commensals at the isolate level. We compared the 
absolute abundance of each isolate among the treatments: patho-
genic isolates were compared between PathoCom and MixedCom, 
and commensals between CommenCom and MixedCom. In 
general, the abundance of pathogens was substantially lower in 
MixedCom, while the abundance of commensals was either sim-
ilar or slightly higher in MixedCom (Fig. 4b). Thus, the mixture 

of pathogens and commensals led to pathogen suppression, while 
commensal load was largely unchanged in MixedCom compared 
with CommenCom. Therefore, non-ATUE5 isolates appear to be 
more competitive in the MixedCom context than ATUE5 isolates. 
The abundance change of each isolate in the presence of additional 
community members was similar among the host genotypes, imply-
ing that commensal–pathogen interactions were mostly conserved 
(Extended Data Fig. 7 and Supplementary Table 4). We therefore 
tested for direct, host-independent interactions among isolates with 
an in vitro growth-inhibition assay (Methods).

Each of the 14 isolates was examined for growth inhibition 
against all other isolates, covering all possible combinations of 
binary interactions. In total, three strains out of the 14 had inhibi-
tory activity; all were non-ATUE5 (Fig. 4c). Specifically, C4 and C5 
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showed the same pattern: both inhibited all pathogenic isolates but 
P1, and both inhibited the same two commensals, C6 and weakly 
C3. C3 inhibited three ATUE5 isolates: P5, P6 and P7. In sum-
mary, the in vitro assay provides evidence that among the tested 
Pseudomonas isolates, direct inhibition was a trait unique to com-
mensals, and susceptible bacteria were primarily pathogens. This 
supports the notion that ATUE5 and non-ATUE5 isolates employ 
divergent competition strategies, or that if they use the same mecha-
nism, they differ in the effectiveness of such a mechanism.

The in vitro results recapitulated the general trend of pathogen 
inhibition found among treatments in planta. Nevertheless, we 
observed major discrepancies between the two assays. First, P1 was 
not inhibited by any isolate in the host-free assay (Fig. 4c), though 
it was the most inhibited member in planta among the communi-
ties (Fig. 4b). Second, no commensal isolate was inhibited in planta 
among communities (Fig. 4b), while two commensals, C3 and C6, 
were inhibited in vitro (Fig. 4c). Both observations are compat-
ible with an effect of the host on microbe–microbe interactions. 
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isolates was measured in all communities, including PathoCom and CommenCom, which contained only seven of the 14 isolates, to account for potential 
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non-ATUE5). Abundance mean difference was estimated with the model [log10(isolate load) ~ treatment × experiment + treatment + experiment + error] 
for each individual strain. Thus, the treatment coefficient was estimated per isolate. Dots indicate the median estimates, and vertical lines represent 95% 
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The experiments were repeated three times with two technical replicates. Only inhibitions observed in at least two independent experiments and in 
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load) ~ treatment × experiment + treatment + experiment + error] for each individual strain. Thus, the treatment coefficient was estimated per isolate. Dots 
indicate the median estimates, and vertical lines represent 95% Bayesian credible intervals of the fitted parameter. ‘Combi’ indicates combination of the 
isolates C3,C4,C5 and C7, and n = 23.
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To explore such effects, we analysed all pairwise microbe–microbe 
abundance correlations within MixedCom-infected hosts. When 
we used absolute abundances, all pairwise correlations were posi-
tive, also in CommenCom and PathoCom (Extended Data Fig. 8a), 
consistent with there being a positive correlation between abso-
lute abundance of individual isolates and total abundance of the 
entire community (Supplementary Fig. 7), that is, no isolate was 
less abundant in highly colonized plants than in sparsely colonized 
plants. This indicates that there does not seem to be active killing 
of competitors in planta in the CommenCom, which is probably 
not surprising. With relative abundances, however, a clear pattern 
emerged with a cluster of commensals that were positively corre-
lated, possibly reflecting mutual growth promotion, and several 
commensal strains being negatively correlated with both P6 and C7, 
possibly reflecting unidirectional growth inhibition (Fig. 4d). We 
did not observe the same correlations within CommenCom among 
commensals and within PathoCom among pathogens as we did for 
either subgroup in MixedCom, reflecting higher-order interactions. 
Thus, interactions among pathogens were constrained by the pres-
ence of commensals and vice versa (Extended Data Fig. 8b).

The in planta patterns measured in complex communities did 
not fully recapitulate what we had observed in vitro with pairwise 
interactions. We therefore investigated individual commensal iso-
lates for their ability to suppress pathogens in planta and also tested 
the entourage effect. We focused on the three commensals C3, C4 
and C5, which had directly inhibited pathogens in vitro, and as a 
control C7, which had not shown any inhibition activity in vitro. 
We infected plants with mixtures of PathoCom and each of the four 
individual commensals and also with PathoCom mixed with all four 
commensals. Because pathogen inhibition seemed to be indepen-
dent of the host genotype, we arbitrarily chose HE-1. Regardless 
of the commensal isolate, only P1 was suppressed with high prob-
ability in all commensal-including treatments (Fig. 4e), with P2, 
P3 and P4 being substantially inhibited only by the mixture of all 
four commensals. Together with the lack of meaningful differences 
between individual commensals, this indicates that pathogen inhi-
bition is either a function of commensal dose or a result of interac-
tion among commensals.

An important finding was that four commensal strains had much 
more similar inhibitory activity in planta than in vitro and that the 
combined action was greater than the individual effects. Together, 
this suggested that the host contributes to the observed interac-
tions between commensal and pathogenic Pseudomonas isolates. To 
begin to investigate this possibility, we next studied potential host 
immune responses with RNA sequencing.

Defensive response elicited by non-ATUE5. For the RNA- 
sequencing experiment, we treated plants of the genotype Lu3-30 
with the three synthetic communities and also used a bacteria-free 
control treatment. We sampled the treated plants 3 DPI and 4 
DPI, thus increasing the ability to pinpoint differentially expressed 
genes (DEGs) between treatments that are not highly time specific. 
Exploratory analysis indicated that the two time points behaved sim-
ilarly, and they were combined for further in-depth analysis.

We first looked at DEGs in a comparison between infected 
plants and control (Supplementary Table 5); with PathoCom, there 
were only 14 DEGs; with CommenCom, there were 1,112 DEGs; 
and with MixedCom, there were 1,949 DEGs, suggesting that the 
CommenCom isolates, which are also present in the MixedCom, 
elicited a stronger host response than the PathoCom members. 
Furthermore, the high number of DEGs in MixedCom, higher 
than both PathoCom and CommenCom together, suggested a syn-
ergistic response derived from inclusion of both PathoCom and 
CommenCom members. Alternatively, this could also be a conse-
quence of the higher initial inoculum in the 14-member MixedCom 
than either the 7-member PathoCom or 7-member CommenCom, 

or a combination of the two effects (Fig. 5a,b and Extended Data 
Fig. 9). The genes induced by the MixedCom fell into two classes: 
Group 5 (Fig. 5a,b) was also induced, albeit more weakly, by the 
CommenCom but not by the PathoCom. This group was over-
represented for non-redundant gene ontology (GO) categories 
linked to defence (Fig. 5c) and most likely explains the protec-
tive effects of commensals in the MixedCom. Specifically, among 
the top ten enriched GO categories in the shared MixedCom and 
CommenCom set, eight relate to immune response or response 
to another organism (‘defence response’, ‘multi-organism process’, 
‘immune response’, ‘response to stimulus’, ‘response to biotic stimu-
lus’, ‘response to other organism’, ‘immune system process’, ‘response 
to stress’; Fig. 5c).

Group 4 was only induced in MixedCom, either indicating syn-
ergism between commensals and pathogens or reflecting a conse-
quence of the higher initial inoculum. This group included a small 
number of redundant GO categories indicative of defence, such as 
‘salicylic acid mediated signalling pathway’, ‘multi-organism pro-
cess’, ‘response to other organism’ and ‘response to biotic stimulus’ 
(Supplementary Table 6). Moreover, the MixedCom response cannot 
simply be explained by synergistic effects or commensals suppress-
ing pathogen effects because there was a prominent class, Group 2, 
which included genes that were induced in the CommenCom but 
to a much lesser extent in the PathoCom or MixedCom. From their 
annotation, it was unclear how they can be linked to infection (Fig. 
5c). About 500 genes (Group 1) that were downregulated by all bac-
terial communities are unlikely to contain candidates for commen-
sal protection (Fig. 5a).

Cumulatively, these results imply that the CommenCom 
members elicited a defensive response in the host regardless of 
PathoCom members, while the mixture of both led to additional 
responses. To better understand if selective suppression of ATUE5 
in MixedCom infections may have resulted from the recognition of 
both non-ATUE5 and ATUE5 (reflected by a unique MixedCom 
set of DEGs) or solely non-ATUE5 (a set of DEGs shared by 
MixedCom and CommenCom), we examined the expression of key 
genes related to the salicylic acid pathway and downstream immune 
responses. Activation of the salicylic acid pathway was previously 
related to increased fitness of A. thaliana in the presence of wild 
bacterial pathogens, a phenomenon which was attributed to an 
increased systemic acquired resistance32.

We observed a general trend of higher expression in MixedCom- 
and CommenCom-infected hosts for several such genes (Fig. 5d). 
Examples are PR1 and PR5, marker genes for systemic acquired 
resistance and resistance execution. Therefore, according to the 
marker genes we tested, non-ATUE5 elicited a defensive response 
in the host, regardless of ATUE5 presence.

We conclude that the expression profiles of non-ATUE5-infected 
Lu3-30 plants point to an increased defensive status, supporting our 
hypothesis regarding host-mediated ATUE5 suppression. We note 
that ATUE5 suppression was not associated with full plant protec-
tion and thus control-like weight levels in all plant genotypes. One 
accession, Ey15-2, was only partially protected in the MixedCom 
(Fig. 2), despite levels of pathogen inhibition being not very differ-
ent from other host genotypes (Extended Data Fig. 7).

Lack of protection explained by a single pathogenic isolate. The 
fact that Ey15-2 was only partially protected by MixedCom (Fig. 2) 
underlines the importance of the host genotype in plant–microbe–
microbe interactions, apparently reflecting the dynamics between 
microbes and plants in wild populations. We therefore wanted to 
reveal the cause for this differential interaction.

Our first aim was to rank compositional variables in MixedCom 
according to their impact on plant weight, regardless of host geno-
type. Next, we asked whether any of the top-ranked variables could 
explain the lack of protection in Ey15-2. With Random Forest analysis,  
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we estimated the weight-predictive power of all individual isolates 
in MixedCom and three cumulative variables: total bacterial abun-
dance, total ATUE5 abundance and total non-ATUE5 abundance. 
We found that the best weight-predictive variable was the abun-
dance of pathogenic isolate P6, followed by total bacterial load and 
total ATUE5 load, which were probably confounded by the abun-
dance of P6 (Fig. 6a). In agreement, P6 was the dominant ATUE5 in 
MixedCom (Fig. 6b and Extended Data Fig. 10a). We thus hypoth-
esized that the residual pathogenicity in MixedCom-infected Ey15-2 
was caused by P6. Although P6 grew best in Ey15-2, the difference to 
most other genotypes was unlikely to be important (Extended Data 
Fig. 10b). However, P6 was particularly dominant in Ey15-2 (Fig. 6b).

Given that pathogen load in Ey15-2 was driven to a substantial 
extent by P6, we assumed that this isolate had a stronger impact on 
the weight of Ey15-2 than on other accessions. We experimentally 

validated that removal of P6 restored protection when Ey15-2 was 
infected with the MixedCom (Fig. 6c). To confirm that restored pro-
tection was due to the interaction of commensals with the five other 
pathogenic isolates (P1–P5), rather than simply removal of P6, we 
also treated Ey15-2 with PathoCom only, but not P6. The removal of 
P6 did not diminish the negative weight impact of PathoCom (P1–
P5, Supplementary Fig. 8), implying that it was indeed the interac-
tion between commensals with five out of six pathogenic isolates 
that mitigated the harmful effect of pathogens in Ey15-2 plants.

Discussion
We have aimed to understand how complex interactions between 
closely related Pseudomonas strains affect plant health, considering 
host–microbe, microbe–microbe and host–microbe–microbe rela-
tionships. Not surprisingly, we found that genetics mattered at all 
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levels: membership of Pseudomonas strain in either a commensal or 
pathogenic clade; genetic variation within each Pseudomonas clade; 
and genetic diversity among A. thaliana host strains. Commensal 
Pseudomonas can protect A. thaliana from the effects of patho-
genic Pseudomonas by reducing their proliferation within the plant. 
However, although this was a general phenomenon, one A. thali-
ana genotype was only partially protected, and this was due to this 
genotype being particularly susceptible to a specific Pseudomonas 
pathogen. Together, this demonstrates how the host environment 
can affect microbe–microbe interactions.

The importance of protective interactions for plant health has 
been demonstrated in both agricultural and wild contexts3,19,33. 
Our results reveal the extreme specificity of these interactions, 
with closely related pathogenic isolates interacting differently 
with protective strains. We found that upon co-infection with 
a mixture of pathogens and commensals, pathogens were pref-
erentially suppressed. Perhaps our most important finding was 
that different plant responses were induced by the three different 
synthetic communities, comprising either only commensals, only 
pathogens or both. Specifically, commensals but not pathogens 
induced a transcriptome signature of defence, and these were fur-
ther enhanced in the presence of pathogens. In addition, there 
were sets of genes that were no longer induced when plants were 
infected by the mixed community rather than only commensals 
and sets of genes specifically induced only by the mixed commu-
nity. This suggests not only that microbe–microbe interactions 
alter the plant response but also that these altered plant responses 
are causal for the differential proliferation of commensals and 
pathogens in plants affected with mixed communities. Synergistic 
host responses have been demonstrated, for example, in Medicago 
truncatula, following infections with two classes of symbionts, 
rhizobia and mycorrhizal fungi34. These findings support the 
hypothesis that the complex interplay between the plant immune 
system and the microbiota goes beyond individual plant–patho-
gen interactions, eventually leading to microbial homoeostasis35. 
The exact mechanism behind the synergistic effect we describe 
must still be investigated, though known cases of host-dependent 
protective interactions provide plausible explanations. For exam-
ple, early exposure to harmless rhizosphere microbes can prime 
the plant to suppress at a later time point a broad range of patho-
gens even in distal tissues, a phenomenon known as induced sys-
temic resistance28.

Another strength of our study is that we used naturally 
co-occurring biological material, namely strains of the A. thali-
ana host and Pseudomonas bacteria that had been isolated from 
a single geographic area. Our results potentially help to explain 
why the Pseudomonas pathogens used here, which are lethal in 
mono-associations, seem to cause only limited disease in the field11, 
namely their effects being modified by other microbes, including 
other Pseudomonas strains.

A limitation of the current study was that we examined only a few 
commensal isolates and tested them mostly in complex mixtures. A 
next logical step will be to test the protective effects of individual 
commensal Pseudomonas strains from the local Tübingen collection 
to explore (1) how common protection by commensal Pseudomonas 
is, (2) how much it depends on the genotype of the pathogen and (3) 
what the genes are that support protection.

We used pathogenic isolates that share over 99% of their 16S 
rDNA signature and are highly similar in their core genome. 
Nonetheless, we found functional differences relating to both host–
microbe and microbe–microbe interactions, exemplified by an 
individual pathogenic Pseudomonas isolate that both dominated 
the mixed synthetic communities and that caused a lack of protec-
tion in one host genotype. In agreement, Karasov and colleagues11 
had already found that members of this clade of Pseudomonas differ 
substantially in their ability to cause disease in mono-associations.

Friedman and colleagues36 accurately predicted microbial com-
munity structures in the form of trios based on information about 
pairwise interactions. How easily, however, higher-order com-
munities can be predicted from pairwise interactions remains 
to be seen, although recent statistical advances are promising37,38. 
The genome-barcoding method we developed allows strain-level 
tracking and thus can be implemented to understand multi-strain 
community assembly. However, in its current format, it is limited 
to low-throughput studies, mainly due to the cumbersome clon-
ing and transformation serial process. An alternative is presented 
by high-throughput experiments that combine whole-genome 
sequencing with statistical reconstitution of known haplotypes26,39 
and which could be employed to study the dynamics of more com-
plex communities.

More and more studies are revealing effects that can be found 
only by the ensemble of relationships. For example, inflammatory 
bowel disease40 has been linked to changes in microbial community 
structure rather than to an individual microbe. Another example 
is provided by plant beneficial consortia, in which only microbial 
mixtures—but not any single strain—triggered pathogen suppres-
sion41,42. Further advancements in understanding the effects of 
plant–microbe–microbe interactions on plant health may improve 
agriculture practices, allowing the development of more sustainable 
plant protection methods43–45.

Methods
Plant material. Arabidopsis thaliana accessions HE-1, Lu3-30, Kus3-1, Schl-7, 
Ey15-2 and Tue-Wal2, all originally collected from around Tübingen, Germany28 
(Supplementary Table 7), were used in this study. Seeds were sterilized by 
overnight incubation at −80 °C, followed by ethanol washes (shake seeds for 
5–15 min in solution containing 75% EtOH and 0.5% Triton-X-100 and then 
wash seeds with 95% EtOH and let them dry in a laminar flow hood). Seeds were 
stratified in the dark at 4 °C for 6–8 days before planting in potting soil (CLT 
Topferde, einheitserde.de). Plants were grown in 60-pot trays (Herkuplast Kubern), 
in which compatible mesh-net pot baskets were inserted to allow for subsequent 
relocation of the pots. Plants were grown in short days (8 h of light) at 23 °C with 
light intensity of 125–175 μmol m−2 s−1 and relative humidity of 65%.

Barcoding Pseudomonas isolates. Excluding the E. coli strains that were used for 
cloning, all 14 bacterial isolates used in this study were classified as Pseudomonas 
and collected from two locations around Tübingen11 (Supplementary Table 1). The 
procedure of genome barcoding of the 14 bacterial isolates included: preparation 
of random barcodes, cloning of barcodes into pUC18R6KT-mini-Tn7T-Km and 
co-transformation of bacteria with the recombinant pUC18R6KT-mini-Tn7T-Km 
derivative and pTNS2 helper, both from29. Preparation of barcodes and the 
flanking priming sites was done by double stranding two overlapping single strand 
oligonucleotides: one that contains restriction sites, a universal priming site, 16 
random nucleotides and an overlapping region (Bar1) and another that contains 
the reverse complement overlapping region, the second universal priming site and 
restriction sites (Bar2, Supplementary Fig. 9); oligonucleotide details are provided 
in Supplementary Table 8. The two overlapping single strand oligonucleotides 
were mixed in an equimolar fashion (5 ng each, 2 μl in total) together with 0.2 μl 
Q5 high-fidelity DNA polymerase (New England Biolabs), 1× Q5 5× reaction 
buffer and 225 μM dNTP in a total reaction volume of 20 μl. The mixture was 
made double-stranded reaction in a thermocycler (Bio-Rad Laboratories) with 
the following programme: 95 °C for 40 s, 55 °C for 60 s and 72 °C for 3 min. The 
resulting product was cloned into pUC18R6KT-mini-Tn7T-Km using restriction 
enzymes XhoI and SacI and ligation with T4 DNA ligase (Thermo Fisher Scientific) 
and transformed into Pir1 competent E. coli (Thermo Fisher Scientific). Bacterial 
colonies were validated as successful transformants by PCR with primers p1 and p2 
(Supplementary Table 8). Positive colonies were grown in LB overnight and then 
used for subsequent plasmid isolation (GeneJET Plasmid Miniprep Kit, Thermo 
Fisher Scientific). About 150 pUC18R6KT-mini-Tn7T-Km recombinant plasmids 
were obtained. Sanger sequencing was conducted on a subset of the plasmids 
using primer p1 to determine their barcode sequences. Fourteen barcode-positive 
plasmids were randomly selected and co-transformed with plasmid pTNS2 to 
genome barcode the selected 14 Pseudomonas isolates as described29. Briefly, 
Pseudomonas strains were grown overnight in LB, pelleted and washed with 
300 mM sucrose solution to create electrocompetent cells and were finally 
electroporated with the recombinant pUC18R6KT-mini-Tn7T-Km derivatives and 
pTNS2 in a 1:1 ratio. Transformed Pseudomonas isolates were grown on selective 
LB-agar media with 30 mg ml−1 Kanamycin, and colonies were validated by PCR 
with primers p1 and p2 (Supplementary Table 8 and Supplementary Fig. 1a). 
Positive colonies were grown overnight in LB with 30 mg ml−1 kanamycin, and 
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one portion was stored at −80 °C in 25% glycerol, while the other was used for 
DNA extraction (Puregene DNA extraction kit, Invitrogen) followed by Sanger 
sequencing to validate the barcode sequences (Supplementary Table 1).

Comparison of growth of barcoded and parental isolates. To compare the 
growth of the 14 barcoded bacteria with their respective parents, both barcoded 
and parental isolates were grown overnight in LB and 10 mg ml−1 nitrofurantoin 
(an antibiotic to which our Pseudomonas strains are resistant), diluted 1:10 in 
the following morning and grown for an additional 3 h until they entered log 
phase. Subsequently, bacteria were pelleted at 3,500 g and resuspended in LB to a 
concentration of OD600 = 0.0025 in a 96-well microtitre plate with a transparent, 
flat bottom (Greiner Bio One). Finally, the plate was incubated in a plate reader 
at 28 °C while shaking for 10 h (Robot Tecan Infinite M200, Tecan Life Sciences). 
OD600 was measured in 1 h intervals.

Synthetic community infections and plant sampling. Barcoded isolates were 
grown overnight in LB and 30 mg ml−1 kanamycin, diluted 1:10 the following 
morning, grown for an additional 3 h until they entered log phase, pelleted at 
3,500 g, resuspended in 10 mM MgSO4, pelleted again at 3,500 g and resuspended 
in 10 mM MgSO4 to a concentration of OD600 = 0.2. Barcoded isolates were mixed 
at a concentration of OD600 = 0.0143 per isolate. Thus, the total concentration per 
synthetic community was OD600 = (0.0143 × number of isolates), the seven-member 
PathoCom and CommenCom had total concentrations of OD600 = ~0.1 and the 
14-member MixedCom a total concentration of OD600 = ~0.2. Per plant, 2.5 ml of 
inoculum was prepared. Control treatment was sterile 10 mM MgSO4 solution. 
Heat-killed PathoCom was prepared by incubating the PathoCom at 100 °C for 
2 h. All solutions with synthetic communities were stored at 4 °C overnight, and 
infections were conducted the following morning.

Leaves of soil-grown plants were spray infected 21 days after sowing with an 
airbrush (BADGER 250-1, Badger Air-Brush Co.), with each plant sprayed on both 
the abaxial and adaxial side for about 1.5 s each. Plants of the same treatment group 
were placed together in 60-pot trays (Herkuplast Kubern) in which compatible 
mesh-net pot baskets were pre-inserted to allow for subsequent relocation of the 
pots. After the treatment, the transportable pots were reshuffled in new 60-pots trays 
to form a full randomized block design, thus each tray contained plants from all 
treatments in equal amounts. The randomized trays were covered with a transparent 
lid to increase humidity (Bigger Greenhouse 60 × 40 cm, Growshop Greenbud). Four 
DPI, two built-in openings in the lids were opened to allow for better air flow and to 
limit humidity. Eight DPI, lids were removed. Twelve DPI, the rosettes of all treated 
plants were detached using sterilized scalpel and tweezers, weighed, washed from 
epiphytes (sterile distilled water, 70% EtOH with 0.1% Triton-X-100, and then again 
with sterile distilled water), dried using sterilized paper towels and sampled in 2 ml 
screw cap tubes prefilled with 1 mm Garnet sharp particles. Tubes with the sampled 
plants were flash frozen in liquid N2 and stored at −80 °C.

For infections on MS agar, the PathoCom was diluted 1:10 to OD600 = 0.01, and 
12- to 14-day-old plants were infected by dripping 200 μl of the corresponding 
inoculum onto whole rosettes.

DNA extraction, barcode PCR and qPCR. DNA was extracted from frozen 
samples as described11. Briefly, samples were subjected to bead beating in the 
presence of 1.5% sodium dodecyl sulfate and 1 mm Garnet sharp particles, 
followed by sodium dodecyl sulfate cleanup with 1/3 volume 5 M potassium acetate 
and then SPRI beads. The DNA extract was subject to a two-step PCR procedure. 
The first PCR step amplified the genome-integrated barcodes and added short 
overhangs, using the primer p3 and the primers p4–p9. The latter are different 
versions of one primer with frameshifting nucleotides (Supplementary Table 
8), allowing for better clustering on the Illumina flow cells and thus sequencing 
quality as described46. Each primer frameshift version was used for a different 
PCR plate with 96 samples. The second PCR step primed the overhangs to 
Illumina adaptors for subsequent sequencing using standard Illumina TruSeq 
primer sequences. Unique tagging of PCR samples was accomplished by using 96 
indexing primers combined with the six combinations of frameshift primers in the 
first PCR46, allowing multiplexing of up to 576 samples in one Illumina lane. The 
first PCR was done in 25 μl reactions containing 0.125 μl Taq I DNA polymerase 
(Thermo Fisher Scientific), 1× Taq1 10× reaction buffer, 0.08 μM each of forward 
and reverse primer, 225 μM dNTP and 1.5 μl of the template DNA. The first PCR 
was run for 94 °C for 5 min followed by 10 cycles of 94 °C for 30 s, 55 °C for 30 s, 
72 °C for 1 min and a final 72 °C for 5 min. Five μl of the first PCR product was 
used in the second PCR with tagged primers including Illumina adaptors in 25 μl 
containing 0.25 μl Q5 high-fidelity DNA polymerase (New England Biolabs), 
1× Q5 5× reaction buffer, 0.08 μM forward and 0.16 μM of reverse (tagging) primer 
and 200 μM dNTP. The final PCR products were cleaned twice using SPRI beads 
in a 1:1 bead-to-sample ratio and eluted in 15 μl. Samples were combined into one 
library in an equimolar fashion. Final libraries were cleaned twice using SPRI beads 
in a 0.6:1 bead-to-sample ratio to clean the primers from the product and were 
finally eluted in half of their original volume. Samples were sequenced by a MiSeq 
instrument (Illumina), using a 50 bp single-end kit.

To estimate the ratio of barcoded Pseudomonas to plant chromosomes, two 
qPCR reactions were conducted, one specific to the barcodes and the other 

targeting sequences from the A. thaliana single-copy gene GIGANTEA. For 
barcode-specific qPCR, primers p10 and p11 were used, and for plant-specific 
qPCR, primers p12 and p13 (Supplementary Table 8). qPCR reactions were done 
in 10 μl reactions containing ×1 Maxima SYBR green qPCR master mix ×2, 
0.08 μM each of forward and reverse primer and 1 μl of template DNA. qPCR 
reactions were run on a BioRad CFX384 Real-Time PCR System instrument 
with the following protocol: 94 °C for 2 min, 94 °C for 15 s and 60 °C for 1 min. 
Reactions were done in triplicates.

Host-associated microbial PCR library construction. We used a two-step 
amplification method, host-associated microbial PCR (hamPCR), to determine 
microbial composition relative to the plant30. Briefly, the host and microbe 
were differentially tagged by a two-cycle PCR (HM-tagging), followed by 
simultaneous amplification of the barcoded DNA molecules. For the A. thaliana 
hosts, we used primer pairs to target the single-copy GIGANTEA gene. For 
bacteria, we targeted the V4 region of 16S rDNA (515F–799R) while suppressing 
non-targeting amplification of mitochondrial and chloroplast DNA using peptide 
nucleic acid clamps30. Unique tagging of PCR samples was accomplished with 96 
indexing primers46. The library of pooled samples was sequenced on an Illumina 
HiSeq3000 instrument.

In vitro directional suppression assay. Pairwise in vitro interactions among the 14 
barcoded isolates were tested as described47 with modifications for Pseudomonas. 
Briefly, isolates were grown overnight in LB with 30 mg ml−1 kanamycin, diluted 
1:10 the following morning and regrown. One portion was taken from each 
isolate after 3 h when entering the log phase, diluted to a final concentration of 
OD600 = 0.001 in 15 ml warm LB with 1% agar and immediately poured into a 
square plate to form a uniform layer containing the test strain. Another portion 
was pelleted at 3,500 g, washed from residual LB in 10 mM MgSO4, pelleted again at 
3,500 g and resuspended in half of the original volume of 10 mM MgSO4. Roughly 
1 μl of each strain was printed onto the solidified agar layer containing the strain to 
be tested for sensitivity. Inhibition was estimated after 1–2 days incubation at 28 °C 
by measuring halo sizes47.

RNA sequencing. Plants from the genotype Lu3-30 were infected with Control, 
PathoCom, CommenCom and MixedCom as described below. Sampling was 
conducted 3 DPI and 4 DPI, with two replicates per treatment and time point. 
Plants were sampled using sterilized scalpel and tweezers and were immediately 
placed in 2 ml screw cap tubes prefilled with 1 mm Garnet sharp particles, flash 
frozen in liquid N2 and stored at −80 °C. RNA was extracted from frozen samples 
as described48. Briefly, frozen samples were ground and guanidine hydrochloride 
buffer was added, followed by phase separation and sediment removal. After 
adding 96% EtOH, the solution was loaded onto a plasmid DNA extraction column 
(QIAprep Spin Miniprep Kit, Qiagen) and washed several times before elution of 
the RNA. mRNA enrichment and sequencing libraries were prepared as previously 
described49. Briefly, mRNA was enriched using NEBNext Poly(A) mRNA Magnetic 
Isolation Module (New England Biolabs) followed by heat fragmentation. Next, 
first-strand synthesis (SuperScript II reverse transcriptase, Thermo Fisher 
Scientific) and second-strand synthesis (DNA polymerase I, New England 
Biolabs) were carried out, followed by end repair (T4 DNA polymerase, Klenow 
DNA polymerase and T4 Polynucleotide Kinase; New England Biolabs) and 
A-tailing (Klenow Fragment, New England Biolabs). Nextera-compatible universal 
adaptors50 were ligated to the products (T4 DNA ligase, New England Biolabs), 
followed by i5 and i7 PCR (Q5 polymerase, New England Biolabs). Size selection 
and DNA purification were carried out with SPRI beads. Samples were sequenced 
on a HiSeq3000 instrument (Illumina) using a 150 bp paired-end kit.

Map, phylogenetics and isolates abundance in the field. Locations of A. thaliana 
and Pseudomonas isolates (Supplementary Tables 1 and 7) were plotted using the 
‘ggmap’ function of the ggmap R package51. Phylogenetic analysis of the 14 selected 
Pseudomonas isolates was done using core genomes11. Maximum-likelihood 
phylogenies were constructed with RAxML (v.0.6.0) using the GTR + Gamma 
model52, and visualization was done by iTOL53. The abundance in the field of 
the selected isolates was estimated by binning similar isolates using a threshold 
of nucleotide divergence <0.0001 in the core genome. The mean number of 
substitutions per site was taken from the estimated branch length for the core 
genome-based phylogeny calculated by RAxML. Lastly, the number of binned 
isolates was divided by the total number of isolates11.

Growth analysis of parental and barcoded isolates. Growth of both parental and 
barcoded isolates was analysed using the function ‘SummarizeGrowthByPlate’ from 
the Growthcurver R package54. The change of barcoded isolates in comparison to 
their corresponding wild type (‘WT’) in growth rate, carrying capacity and area 
under the curve was calculated by the model: growth quantity ~ strain type (that is, 
parent/barcoded).

Plant weight analysis. All rosette fresh weight analyses and visualizations were 
generated using the function ‘dabest’ of the dabestr R package55,56. In brief, the 
function presents (1) all raw data points as a swarm plot ordered to display the 
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distribution and (2) the computed effect size after bootstrapping (in comparison 
to control plants), indicating the mean and 95% confidence interval. Thus, the 
computed confidence interval denotes the distribution of the effect size that is 
compatible with the data, reflecting the average change of weight (in mg) in respect 
to control plants after infection in a given treatment.

Combining barcode PCR and qPCR to estimate isolate load. All reads from 
barcode-PCR sequencing were mapped against a custom barcode database 
(Supplementary Table 1) using the algorithm BWA-MEM57 (version 0.7.17-r1188), 
and a count matrix of all 14 isolates for every plant sample was created. Samples 
with less than a total of 200 hits were discarded or resequenced (mean = 15,710). 
Counts were transformed to proportions by dividing the counts of each isolate in 
the total hits per sample, resulting in a relative abundance matrix.

qPCR results were analysed using the software Bio-Rad CFX Manager 
(v3.1) with default parameters. Quantification cycle (Cq) values smaller than 
32 were discarded, and barcoded bacterial load was determined by the equation 
bacterial load =

2.057−(barcode Cq)

2.027−(GIGANTEA Cq) . The exponent bases (2.057 and 2.027) were 
adjusted according to primer efficiency—as determined by a calibration curve 
derived from a series of dilutions. The relative abundance matrix was factorized 
by bacterial load (relative abundance multiplied by bacterial load per isolate) to 
manifest the ratio of bacterial to plant chromosomes per barcoded isolate.

Variance partitioning of microbial community composition. NMDS analyses 
used the function ‘metaMDS’ in the R package vegan58, adjusting dissimilarity 
index to Bray–Curtis (method = bray), number of dimensions to 3 (k = 3) 
and maximal iterations to 200 (trymax = 200). PERMANOVA was conducted 
using the function ‘adonis’, and analysis of similarities was conducted using 
the function ‘anosim’, also in the R package vegan58. Both were adjusted to 
Bray–Curtis dissimilarity index (method = bray) and 2,000 permutations 
(permutations = 2,000). Multi-level pairwise comparison using ‘adonis’ was 
conducted using the function ‘pairwise.adonis2’ in the R package pairwiseAdonis59.

Bacterial profiling with hamPCR. Bacterial profiling with hamPCR used a 
dedicated computational pipeline30. In short, all samples were filtered to remove 
mismatched sequences from the expected primers. Subsequently, all primer 
sequences were trimmed, followed by quality filtering and removal of chimeric 
sequences. Amplicon sequence variant counting and their respective taxonomic 
classification were done with a combination of VSEARCH60 and USEARCH1061. 
Amplicon sequence variant tables were generated and factorized by plant to 
quantify bacterial load for each sample.

Regression analysis. In all figures except Fig. 6b and Supplementary Fig. 16, 
posterior distributions of focal factors were estimated using the function ‘stan_glm’ 
in the R package rstanarm62. In Fig. 6b and Supplementary Fig. 16, ‘lmBF’ followed 
by the function ‘posterior’ in the R package BayesFactor63 was used to assess 
posterior distributions without a comparison to a control baseline. In Bayesian 
analyses, default priors were used. For both ‘stan_glm’ and ‘lmBF’, default iteration 
number was used (four Markov chains of 2,000 iterations each in ‘stan_glm’, and 
10,000 iterations in ‘lmBF’ and ‘posterior’). Markov chain Monte Carlo (‘MCMC’) 
convergence was assessed by the Rhat measure, resulting in values ranging from 
0.99 to 1.01. In all figures, we present for each factor of interest the median estimates 
(that is, the median of the posterior distribution) and the 95% credible intervals, 
corresponding to the intervals from 2.5% to 97.5% of the posterior distributions. 
The overlap between a coefficient’s 95% credible interval with a control baseline 
(zero) or another coefficient’s 95% credible interval was used as an indication 
for hypothesis testing, that is, the lack of overlap implied a substantial effect. 
Importantly, we considered the lack of overlap not only to gauge differences between 
coefficients but also the magnitude of difference, respecting the uncertainty of the 
population mean and the measured values. The exact model for every analysis is 
presented in the figure legends and the selected references for comparison.

To compare the effect of individual predictors in a model, the full model was 
compared to a different model, lacking the predictor of interest (for example, 
genotype). The comparison was conducted by a leave-one-out cross validation, 
using the function ‘loo_compare’ in the R package Loo64. This Bayesian-based 
model comparison provides an assessment of the prediction accuracy of a model 
with and without a specific predictor. We used leave-one-out cross validation 
because it has been shown to improve model selection in comparison to the 
common Akaike information criterion and deviance information criterion64. An 
additional advantage of leave-one-out cross validation is the opportunity to obtain 
approximate standard errors for estimated predictive errors to compare predictive 
errors between two models. The reported output is the difference in expected 
log-scaled predictive density (‘Delta Elpd’), as indicated in the text.

Isolate–isolate interaction network. All pairwise isolate–isolate Pearson 
correlations were calculated using the function ‘corr’ in the R package Hmisc65 and 
visualized with Cytoscape 3.7.066.

RNA-sequencing analysis. RNA-sequencing reads were mapped against the  
A. thaliana reference TAIR10 using STAR (v.2.6.0;67 with default parameters.  

A transcript count matrix was calculated using ‘featureCounts’68, while restricting 
counts to exons only. DEGs were identified with DESeq2 (v.1.22.2 (ref. 69)), 
using the model [gene_expression ~ treatment + time_point]. Genes with 
average counts of less than 5 were excluded from the analysis. Zero counts were 
converted to 1 to allow for the log conversion in unexpressed genes. Genes with 
log2FoldChange >|± 1| and FDR <0.05 (two-tailed Student’s t-test followed 
by Benjamini–Hochberg correction) were defined as DEGs. Euler diagrams 
were created using the function ‘euler’ in the R package eulerr70. Statistically 
overrepresented GO terms were identified using the BiNGO plugin (v3.0.3) for 
Cytoscape71. Summarization and the removal of redundant overrepresented GO 
terms was done with the web server REVIGO72 to extract main trends from the full 
output by BiNGO (Supplementary Table 6).

Statistical analysis. Statistical analyses were performed using the R environment 
version 3.5.1 unless mentioned otherwise. Sample sizes were not predetermined 
using statistical methods.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-sequencing data have been deposited with the European Nucleotide Archive 
(ENA) under study accession number PRJEB41069. Raw data of plant weights 
and the abundance of strains are deposited at https://github.com/orshalevsk/
Pseudomonas_SynComs_Athaliana.

Code availability
Code for statistical analyses and figure production is available at https://github.
com/orshalevsk/Pseudomonas_SynComs_Athaliana.
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Extended Data Fig. 1 | experimental design. a. Diagram of bacterial barcoding. b. Diagram of treatments and sampling.
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Extended Data Fig. 2 | Both Pseudomonas and total bacterial load are driven primarily by synthetic communities. a. Cumulative bacterial load (ratio of 
bacterial and host read counts, which is dimensionless; Methods) in plant rosettes after control treatment or infection with each of the three synthetic 
communities. Cumulative load was analysed for (i) all bacterial reads classified at the genus level (‘total bacterial load’), (ii) all reads classified as 
‘Pseudomonas’, and (iii) all reads not classified as ‘Pseudomonas’ at the genus level. Unclassified reads were discarded. b. Load mean differences between 
plants infected with each of the synthetic communities to control plants. (See panel A for absolute loads.) Mean difference was calculated per cumulative 
load type (Total bacterial load, Pseudomonas load and non-Pseudomonas load), using the model [log10 (Cumulative load) ~ treatment + error], that is, the 
same model was computed for all three data subsets. Dots indicate the median estimates, vertical lines 95% Bayesian credible intervals of the fitted 
parameter, and the dashed line the control baseline. c. Load mean difference between the cumulative non-Pseudomonas to Pseudomonas load in plants 
treated with control, or each of the three synthetic communities. Mean difference was calculated per treatment (control, PathoCom, CommenCom and 
MixedCom) using the model [log10 (Cumulative load) ~ Genus_classification + error] that is, the same model was computed for all four data subsets. The 
‘Genus_classification’ predictor was set to either Pseudomonas or non-Pseudomonas Classification. Dots indicate the median estimates, vertical lines 95% 
Bayesian credible intervals of the fitted parameter, and the dashed line the Pseudomonas load baseline. DNA of Ey15-2 plants was randomly sampled across 
the two experiments, and among the four treatments. n=17 for control plants, n=12 for PathoCom-infected plants, n=18 for CommenCom-infected plants, 
and n=24 for MixedCom-infected plants. The V4 16S region, as well as the A. thaliana gene GIGANTEA were targeted30.

NATure eCOLOgy & evOLuTiON | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaTurE EcOlOgy & EvOluTiON ArticlesNaTurE EcOlOgy & EvOluTiON

Extended Data Fig. 3 | Comparison of composition and load of the 14 barcoded isolates on different A. thaliana genotypes. a. Nonmetric 
multidimensional scaling (NMDS) based on Bray-Curtis distances between six A. thaliana genotypes, in one representative experiment (October 2018). 
Each synthetic community was analysed separately. The abundance of all 14 barcoded isolates was considered, also among PathoCom and CommenCom 
to account for cross contaminations and technical distortions. Shapes denote the different genotypes, and bacterial load is indicated from blue to red. b. 
Isolate load of the six A. thaliana genotypes, among the three synthetic communities. Isolate load was defined as the cumulative abundance of all barcoded 
isolates that composed a synthetic community. Dots indicate the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted 
parameter, following the model [log10(isolate load) ~ genotype + experiment + error].
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Extended Data Fig. 4 | Effects of treatment and treatment-by-genotype on fresh rosette weight. Both effects were assessed using the model [weight 
~ treatment * genotype + treatment + genotype + experiment + error]. a. Mean weight difference of plants infected with each of the three synthetic 
communities relative to control - that is, the treatment coefficients. b. Mean treatment effect differences between the six A. thaliana genotypes used in this 
study - that is, the treatment * genotype coefficients. Kus3-1 was randomly selected as a reference; dots indicate the median estimates, and vertical lines 
95% Bayesian credible intervals of the fitted parameter.
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Extended Data Fig. 5 | effect of total load on weight, per treatment and genotype. a. Mean slope difference of the three synthetic communities. The 
slope difference indicates the effect of the treatment on the correlation between weight and isolate load - that is treatment * log10(cumulative isolate 
load) - following the model [weight ~ treatment * log10(cumulative isolate load) + treatment + log10(cumulative isolate load) + genotype + experiment 
+ error]. PathoCom was selected as a reference. Dots indicate the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted 
parameter. related to Fig. 3B. b. Correlation of log10(cumulative isolate load) with rosette fresh weight, for each of the genotypes within each of the three 
synthetic communities. Shaded areas indicate 95% confidence intervals of the correlation. Colour codes in the bottom left box, on the right. c. Mean slope 
difference of the six A. thaliana genotypes used in this study. The slope difference indicates the effect of the genotype on the correlation between weight 
and isolate load - that is genotype * log10(cumulative isolate load) - following the model [weight ~ genotype * log10(cumulative isolate load) + treatment + 
log10(cumulative isolate load) + experiment + error]. Each treatment was analysed individually, thus the model was utilized for each treatment separately. 
Kus3-1 was randomly selected as a reference. Dots indicate the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted 
parameter. related to panel B. n=170 for PathoCom, n=151 for CommenCom, and n=182 for MixedCom. n=77-94 for the six A. thaliana genotypes.
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Extended Data Fig. 6 | Load of each isolate in plants infected with PathoCom, CommenCom or MixedCom, 12 days post infection. a. raw data. b. The 
estimated abundance of each isolate, derived from the model [log10(isolate load) ~ isolate]. Each treatment was analysed separately, thus the model 
was used for the subset of each treatment. Dots indicate the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted parameter. 
n=170 for PathoCom, n=151 for CommenCom, and n=182 for MixedCom.
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Extended Data Fig. 7 | effect of host genotype on abundance changes of the 14 barcoded isolates. MixedCom compared to the exclusive community 
(that is, PathoCom for ATUE5 and CommenCom for non-ATUE5). Abundance effect mean differences were estimated with the model [log10(isolate load) ~ 
genotype * treatment + genotype + treatment + experiment + error] for each individual strain. Thus, the genotype * treatment coefficient was estimated 
per each barcoded isolate. Dots indicate median estimates, and vertical lines 95% Bayesian credible intervals of the fitted parameter.
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Extended Data Fig. 8 | Correlation networks of barcoded bacteria. a. Correlation networks of absolute abundance in PathoCom, CommenCom and 
MixedCom. b. Correlation networks of relative abundance in PathoCom and CommenCom. Strengths of negative and positive correlations are indicated 
from yellow to purple. Boldness of lines is related to the strength of correlation, and only correlations > |±0.2| are shown. Node colours indicate isolate 
classification as ATUE5 or non-ATUE5.
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Extended Data Fig. 9 | Comparison of PathoCom, CommenCom and MixedCom Degs across treatments. The average z-score is presented for each 
sample. Downregulated and upregulated DEGs were analysed separately. Number of DEGs in each category in brackets. n=4.

NATure eCOLOgy & evOLuTiON | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles NaTurE EcOlOgy & EvOluTiONArticles NaTurE EcOlOgy & EvOluTiON

Extended Data Fig. 10 | The abundance of P6 in MixedCom-infected hosts. a. Abundance of P6 compared with the other 13 barcoded bacteria in 
MixedCom-infected hosts, for all host genotypes. Dots indicate the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted 
parameter, following the model [log10(isolate load) ~ isolate * experiment + isolate + experiment + error]. Shaded area denotes the 95% Bayesian credible 
interval of the isolate P6. b. The abundance of P6 in MixedCom-infected hosts, compared between the six A. thaliana genotypes used. Dots indicate 
the median estimates, and vertical lines 95% Bayesian credible intervals of the fitted parameter, following the model [log10(isolate load) ~ genotype * 
experiment + genotype + experiment + error]. Shaded area denotes the 95% Bayesian credible interval of the host genotype Ey15-2.
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Sample size In a trial experiment we observed that the variation in weight of bacterial-infected plants was higher than control. This was in agreement with 
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- For RNA-seq analysis: genes with average counts of less than five were excluded from the analysis, following the practice of Nobori et al. 
(Nature plants, 2020).

Replication Main experiments were replicated at least twice (as detailed in the figure legend). We tested the batch (i.e. experiment) effect using a linear 
model and by independently analyze different experiments with the same pipeline. In all cases we found that major trends which are reported 
were reproducible. 
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