Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mycorrhizal dominance reduces local tree species diversity across US forests

Abstract

Ectomycorrhizas and arbuscular mycorrhizas, the two most widespread plant–fungal symbioses, are thought to differentially influence tree species diversity, with positive plant–soil feedbacks favouring locally abundant ectomycorrhizal tree species and negative feedbacks promoting species coexistence and diversity in arbuscular mycorrhizal forests. While seedling recruitment studies and cross-biome patterns of plant diversity and mycorrhizal dominance support this hypothesis, it remains to be tested at the forest stand level over continental scales. Here, we analyse approximately 82,000 forest plots across the USA to show that both ectomycorrhizal-dominated and arbuscular mycorrhizal-dominated forests show relatively low tree diversity, while forests with a mixture of mycorrhizal strategies support a higher number of tree species. Our findings suggest that mycorrhizal dominance, rather than mycorrhizal type, shapes tree diversity in forests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tree richness and ECM proportion at the plot scale across the USA.
Fig. 2: Relationships between ECM proportion and tree richness.
Fig. 3: Posterior coefficient estimates for the effects on tree richness (number of species).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the FIA programme47 at https://apps.fs.usda.gov/fia/datamart/CSV/ENTIRE.zip. The data for the tree mycorrhizal associations are available from Jo and Fei12 with the identifier https://doi.org/10.4231/R76D5R7S.

Code availability

The custom code of the analyses is available at Zenodo48 with the identifier https://doi.org/10.5281/zenodo.5713274.

References

  1. Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008).

  2. Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article  CAS  Google Scholar 

  3. Connell, J. H. & Lowman, M. D. Low-diversity tropical rain forests: some possible mechanisms for their existence. Am. Nat. 134, 88–119 (1989).

    Article  Google Scholar 

  4. Brundrett, M. in Advances in Ecological Research, Vol. 21 (eds Begon M. et al.) 171–313 (Academic Press, 1991).

  5. Allen, E. B. et al. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170, 47–62 (1995).

    Article  CAS  Google Scholar 

  6. Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2015).

    Article  Google Scholar 

  7. Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Article  CAS  Google Scholar 

  8. Teste, F. P. et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).

    Article  CAS  Google Scholar 

  9. van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    Article  CAS  Google Scholar 

  10. Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2 (U.S. Department of Agriculture, Forest Service, 2018).

  11. Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).

    Article  CAS  Google Scholar 

  12. Jo, I. & Fei, S. Responses of Dominant Tree-Mycorrhizal Associations to Anthropogenic Impacts in the USA (Purdue Univ. Research Repository, 2019).

  13. Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article  Google Scholar 

  14. Laliberté, E., Zemunik, G. & Turner, B. L. Environmental filtering explains variation in plant diversity along resource gradients. Science 345, 1602–1605 (2014).

    Article  Google Scholar 

  15. Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).

    Article  CAS  Google Scholar 

  16. Cleland, D. T. et al. Ecological Subregions: Sections and Subsections for the Conterminous United States. General Technical Report WO-76D (U.S. Department of Agriculture, 2007).

  17. Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. Camb. Philos. Soc. 94, 1857–1880 (2019).

    Article  Google Scholar 

  18. Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).

    Article  Google Scholar 

  19. Mariotte, P. et al. Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).

    Article  Google Scholar 

  20. Zemunik, G., Turner, B. L., Lambers, H. & Laliberté, E. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nat. Plants 1, 15050 (2015).

    Article  CAS  Google Scholar 

  21. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  CAS  Google Scholar 

  22. Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).

    Article  CAS  Google Scholar 

  23. Lin, G., McCormack, M. L. & Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 103, 1224–1232 (2015).

    Article  CAS  Google Scholar 

  24. Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).

    Article  CAS  Google Scholar 

  25. Mangan, S. A. et al. Negative plant–soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    Article  CAS  Google Scholar 

  26. Peh, K. S.-H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 99, 891–898 (2011).

    Article  Google Scholar 

  27. ter Steege, H. et al. Hyperdominance in the Amazonian tree flora. Science 342, 1243092 (2013).

    Article  Google Scholar 

  28. Newman, E. I. & Reddell, P. Relationship between mycorrhizal infection and diversity in vegetation: evidence from the Great Smoky Mountains. Funct. Ecol. 2, 259–262 (1988).

    Article  Google Scholar 

  29. Bahram, M. et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function. New Phytol. 227, 1189–1199 (2020).

    Article  CAS  Google Scholar 

  30. Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    Article  Google Scholar 

  31. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Article  Google Scholar 

  32. Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    Article  CAS  Google Scholar 

  33. Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).

    Article  CAS  Google Scholar 

  34. Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).

    Article  Google Scholar 

  35. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  36. Bürkner, P.-C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article  Google Scholar 

  37. Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2017).

  38. Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.2 https://CRAN.R-project.org/package=dplyr (2017).

  39. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

    Book  Google Scholar 

  40. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 3.3.3 https://CRAN.R-project.org/package=ggpubr (2018).

  41. Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.1 https://CRAN.R-project.org/package=ggspatial (2018).

  42. Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5 https://CRAN.R-project.org/package=raster (2019).

  43. Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).

    Article  Google Scholar 

  44. Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).

    Article  Google Scholar 

  45. Wickham, H. & Henry, L. tidyr: Tidy messy data. R package version 1.1.0 https://CRAN.R-project.org/package=tidyr (2019).

  46. Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 https://cran.r-project.org/web/packages/vegan/index.html (2017).

  47. Forest Inventory and Analysis; https://apps.fs.usda.gov/fia/datamart/CSV/ENTIRE.zip

  48. Carteron, A. alexiscarter/mycorrhiza_tree_diversity: custom code https://doi.org/10.5281/ZENODO.5713273 (2021).

Download references

Acknowledgements

Funding, including scholarships to A.C., was provided by Discovery Grants to E.L. (nos. RGPIN-2014-06106 and RGPIN-2019-04537) by the Natural Sciences and Engineering Research Council of Canada and a Nouveau Chercheur grant (no. 2016‐NC‐188823) by the Fonds de Recherche du Québec sur la Nature et Technologies (FRQNT). A.C. thanks the following institutions for providing generous scholarships: FRQNT (dossier no. 272522) and Université de Montréal through the Bourse d’Excellence Hydro-Québec.

Author information

Authors and Affiliations

Authors

Contributions

E.L., A.C. and M.V. conceived the ideas and designed the methodology. A.C., E.L. and M.V. analysed the data and interpreted the results. A.C. led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Alexis Carteron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Ecology & Evolution thanks Marcel van der Heijden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Relationship between ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) proportions in each plot.

Relationship between ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) proportions in each plot. 95 % of the plots have a cumulative sum of AM and EcM proportions > 0.99 (that is, most plots are located on the diagonal). Other plots (that is, below the diagonal) contain ericoid or non-mycorrhizal trees. The number of plots in the legend is presented on a log scale.

Extended Data Fig. 2 Map of arbuscular mycorrhizal (AM) proportion per plot.

Map of arbuscular mycorrhizal (AM) proportion (as the proportion of basal area per plot of tree with DBH > 12.7 cm known to associate with AM fungi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat Ecol Evol 6, 370–374 (2022). https://doi.org/10.1038/s41559-021-01634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01634-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing