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The development of cancer is an evolutionary process1,2. 
Acquisition of genomic alterations including mutations and 
somatic copy-number alterations (SCNAs) drives the emer-

gence of genetically heterogeneous subpopulations of cancer cells or 
subclones3, resulting in intra-tumour heterogeneity (ITH). A sub-
set of genomic alterations (termed ‘drivers’) endows subclones with 
increased fitness. Subclones compete for resources, including physi-
cal space, and undergo expansion or extinction according to their 
fitness under selective pressures imposed by the tumour micro-
environment (TME) or therapeutic intervention. With advances 
in next-generation sequencing, clonal architecture and evolution-
ary features have been elucidated in a variety of tumour types4–7. 
However, the ability to predict clinically relevant evolutionary tra-
jectories remains limited.

One potential to enhance this ability lies in the detection and 
characterization of ongoing clonal evolution. ITH provides a sub-
strate for the selection of competent clones8. Detection of ITH is 
sampling dependent, and accurate measurement of diversity is 
enhanced by sampling of multiple small tumour areas9. While mac-
rodiversity (that is, the number of subclones in the whole tumour) 
reflects the established clonal diversity within a tumour, clonal 
diversity at a narrow spatial scale, or microdiversity (that is, the 
number of subclones within a single tumour sample), could rep-
resent under-detected ongoing clonal evolution (Fig. 1a). Both 
macrodiversity6,7 and microdiversity have clinical implications. 
Microdiversity predicts poor survival in paediatric kidney cancer10 
and contributes to invasion in breast tumours11. Clonal diversifica-
tion sometimes manifests as parallel evolution, that is, the selection 
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Fig. 1 | Construction of in silico tumours. a, Schematic illustrating future evolutionary trajectories delineated by present under-detected subclones.  
b, Schematic of probabilistic growth, death and driver acquisition in a coarse-grained cellular automaton model. c, Schematic of two growth modes: ‘surface 
growth’ with proliferation predominating at the tumour surface and ‘volume growth’ with proliferation throughout the tumour volume. d, Schematic figure of 
three levels of measurements: from 3D tumour to 2D tumour slice and 2D tumour regions within the slice. e, Representative in silico tumours under volume 
growth (i) and surface growth (ii), respectively, from a 3D view, showing tumour voxels harbouring gain of chromosome arm events (green) and loss of 
chromosome arm events (red), with different shades reflecting different driver events.
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of distinct mutations in the same gene in distinct subclones4,5,7,12–15. 
More recently, parallel evolution of SCNAs was demonstrated 
through mirrored subclonal allelic imbalance16. Thus, understand-
ing microdiversity could offer important insights into clinically rel-
evant evolutionary potential.

Despite increasing understanding of ITH and macrodiversity, 
understanding of the temporal features of clonal evolution remains 
limited owing to ethical and logistical challenges in obtaining serial 
single- or multi-regional biopsies from patients17. While longitudi-
nal profiling of circulating tumour DNA permits clonal tracking 
over time18–21, this approach provides no resolution of the spatial 
outgrowth or organization of clones. To improve the understanding 
of spatial and temporal features of clonal diversification, we devel-
oped a coarse-grained cellular automata model of tumour growth 
with stochastic acquisition of driver events (Fig. 1b). Various 
forms of non-spatial mathematical models have been formulated 
to describe different types of tumour growth dynamics, including 
exponential and polynomial growth22,23. More recently, modelling 
work incorporating spatial elements of tumour growth found an 
impact of growth modes on the classification of neutral evolution 
and selection24–27. Previous analysis of clear cell renal cell carci-
noma (ccRCC) supports the predomination of active proliferation 
at the tumour surface in a subset of tumours28, and we recently 
described varying rates of proliferation across the tumour29. In this 
study, we evaluated the effects of different tumour growth modes 
on spatial and temporal features of clonal diversification in our 
model, focusing on two simple growth modes: (i) uniform growth 
throughout the tumour volume (referred to as the ‘volume growth 
model’) and (ii) active proliferation restricted to the tumour sur-
face (referred to as the ‘surface growth model’) (Methods and Fig. 
1c). We additionally investigated a broader set of model conditions 
including the implementation of necrosis in the tumour interior, 
building upon our recent study29. We related our model to the 
TRAcking Cancer Evolution through therapy (Rx) (TRACERx) 
Renal study, which previously evaluated the genomic profiles and 
spatial coordinates of 756 patient tumour (PT) regions from 66 
tumours29. Tumours with high clonal diversity do not necessarily 
harbour metastasizing clones30, suggesting that the development 
of metastatic competence and continuing subclonal diversifica-
tion may be uncoupled in the tumour as independent evolutionary 
processes. Through combined modelling and clinical analysis, we 
show how tumour growth modes determine the extent and trajec-
tories of clonal diversity. Crucially, we explore temporal aspects 
of tumour evolution that would otherwise be inaccessible from 
single-timepoint biopsies.

Results
Generation of an agent-based model recapitulating ccRCC evo-
lution. To understand the spatial and temporal features of clonal 

diversification, we developed a coarse-grained cellular automaton  
model to simulate the evolutionary dynamics of ccRCCs (see 
Methods for a detailed description). The model includes 12 genes 
and 14 SCNAs (Extended Data Fig. 1) identified as canonical driver 
events in ccRCCs in the TRACERx Renal study7. Each model 
unit, referred to as a ‘tumour voxel’, represents a tumour volume 
of 1 mm3. Tumour voxels stochastically undergo growth, death and 
acquisition of driver events upon growth. As proliferation pro-
ceeds, some tumour voxel acquires a driver event conferring selec-
tive advantages, manifested in the current study as an increase in 
the growth probability (pgrowth). Two ways of implementing selec-
tive advantages are considered, being referred to as ‘saturated’ and 
‘additive’ driver advantage models. In the saturated driver advantage 
model, the pgrowth of a tumour voxel can be at one of three levels 

{p(initial)growth , p
(moderate)
growth , p(maximal)

growth } . Each driver endows a tumour voxel 

with one of these levels, and the relative differences in selective 
advantage of drivers, denoted as s, are assumed to reflect their asso-
ciation with the Ki67 score in tumour regions (Extended Data Fig. 1)  
and their frequencies in the clinical cohort7. For simplicity, individual 

driver gene mutations are assigned with p(initial)growth , whereas four 

SCNAs with strong association with Ki67 score (7q gain, 20q gain,  
4q loss and 8p loss) are assumed to be the strongest drivers assigned 

with p(maximal)
growth , and therefore their acquisition would lead 

to the biggest increase in growth probability. Importantly, the 
saturated model is implemented with only two levels of selec-
tive advantage, and the growth probability of a tumour voxel 
becomes saturated at 1 if acquiring the strongest driver. The 
additive driver advantage model has a more graduated imple-
mentation of selective advantage in which the growth prob-
ability of a tumour voxel is defined by all the drivers it harbours, 

pgrowth = p(initial)growth +
∑

k pgrowth_k, where pgrowth_k reflects the amount 

of growth probability added by driver k (Extended Data Fig. 2). The 
amount pgrowth_k varies between drivers and is assigned according to 
different strengths of their association with Ki67 score (Extended 
Data Figs. 1and 2).

Additional assumptions are made to keep the model mini-
mal. Individual driver gene mutations are assumed to be acquired 
with a greater probability (pdriver) than SCNAs. A second mutation 
in the same gene is assumed to never occur in the same tumour 
voxel. As the majority of ccRCCs have clonal VHL inactivation 
events, in general and in the TRACERx Renal cohort7, the founder 
tumour voxel is assumed to harbour VHL inactivation together 
with 3p loss as a clonal event. Based on data from the TRACERx 
Renal study7, and functional evidence31,32, mutations in PBRM1 or 
BAP1 are assumed to enhance the probability of SCNA acquisition. 

Fig. 2 | Growth modes impact the extent of clonal diversification and tumour fitness. a, Schematic of the whole-tumour analysis of clonal diversity.  
b, Heatmap showing the average number of clones (that is, parental clone and subclones) with respect to driver acquisition probability (pdriver) and selective 
coefficient (s) in the volume growth (i) and surface growth (ii) models. The average is calculated from 50 in silico tumours per parameter condition. Clones 
with a whole-tumour CCF of at least 0.05 are counted. c, Whole-tumour CCF of parental and largest subclones in in silico tumours under volume growth 
(i,ii) and surface growth (iii), respectively. Average fitness in a tumour slice for each simulation is presented as a heatmap. Driver acquisition probabilities 
in these sets of simulations are pdriver = 2 × 10−4 (i), 1 × 10−3 (ii) and 2 × 10−4 (iii). ‘Parental (3p loss, VHL)’ clone is shown along with up to five subclones 
with a whole-tumour CCF of 0.01 or higher. All remaining subclones are represented in the ‘other’ group. d, Whole-tumour CCF of parental clone in in silico 
tumours under volume growth and surface growth with varying driver acquisition probabilities. n = 100 for each condition. e, Shannon diversity index in 
in silico tumours under volume growth and surface growth with varying driver acquisition probabilities. n = 100 for each condition. f,g, Mean fitness of 
randomly sampled (10% of all) tumour voxels against the mean fitness of the central-most (10%) tumour voxels, in models with saturated (f) and additive 
(g) driver advantages. Data points reflect sets of simulations with varying growth patterns (colour), driver acquisition rates (size) and implementation of 
necrosis (symbol). Heatmaps indicate the fitness in representative in silico tumours under surface growth without or with the implementation of necrosis. 
Statistical annotations in d and e reflect two-sided Wilcoxon tests: **** P ≤ 0.0001. In box plots in d and e, the ends of the box reflect the lower (Q1) and 
upper (Q3) quartiles, with the difference indicating the IQR; the horizontal line dividing the box reflects the median; the ends of the vertical line indicate the 
extreme values within the range from Q1− 1.5× IQR to Q3+ 1.5× IQR; dots beyond the vertical line indicate potential outliers.
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Mutations and acquisition of SCNAs are assumed to be proliferation 
dependent, which implies that DNA replication and chromosome 
mis-segregation are the main source of genomic alterations. Lastly, 

the selective advantage endowed by a driver is assumed to be fixed, 
so the variation in driver advantage dependent on changing envi-
ronments is not considered in the current study.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean fitness of tumour voxels in random samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
fit

ne
ss

 o
f t

um
ou

r 
vo

xe
ls

sa
m

pl
ed

 a
t c

en
tr

e

Growth pattern

Surface growth

Volume growth

Driver acquisition rate

p
driver

 = 1 × 10–3

p
driver

 = 6 × 10–4

p
driver

 = 2 × 10–4

Necrosis

Absent

Present

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean fitness of tumour voxels in random samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
fit

ne
ss

 o
f t

um
ou

r 
vo

xe
ls

sa
m

pl
ed

 a
t c

en
tr

e

Growth pattern

Surface growth

Volume growth

Driver acquisition rate

p
driver

 = 1 × 10–3

p
driver

 = 6 × 10–4

p
driver

 = 2 × 10–4

Necrosis

Absent

Present

Fitness
0.25 0.50 0.75 1.00

0 0.25 0.50

Whole-tumour CCF (tumour level)

0.50 0.75

Whole-tumour CCF (tumour level)

0.25 0.50 0.75

Whole-tumour CCF (tumour level)

0.75 1.00

M
od

el
 r

ep
lic

as

0 0.25 1.00

M
od

el
 r

ep
lic

as

0 1.00

M
od

el
 r

ep
lic

as

Subclone

Other

Subclone 5

Subclone 4

Subclone 3

Subclone 2

Subclone 1

Parental
(3p loss, VHL) 

(i) (ii) (iii)
pdriver = 2 × 10–4 pdriver = 1 × 10–3 pdriver = 2 × 10–4

Volume growth Surface growth Volume growth 

Volume growth model Surface growth model
(i) (ii)

0 
× 

10
–4

1 
× 

10
–4

2 
× 

10
–4

3 
× 

10
–4

4 
× 

10
–4

5 
× 

10
–4

6 
× 

10
–4

7 
× 

10
–4

8 
× 

10
–4

9 
× 

10
–4

1 
× 

10
–4

0

  0.2

  0.4

  0.6

  0.8

1.0

S
el

ec
tiv

e 
co

ef
fic

ie
nt

, s

1.0 1.5 2.0 2.5 3.0 3.5

Number of clones

0 
× 

10
–4

1 
× 

10
–4

2 
× 

10
–4

3 
× 

10
–4

4 
× 

10
–4

5 
× 

10
–4

6 
× 

10
–4

7 
× 

10
–4

8 
× 

10
–4

9 
× 

10
–4

1 
× 

10
–3

Driver acquisition probability (p
driver

) Driver acquisition probability (p
driver

)

0

  0.2

  0.4

  0.6

  0.8

1.0

S
el

ec
tiv

e 
co

ef
fic

ie
nt

, s

1.0 1.2 1.4 1.6 1.8 2.0

Number of clones

b

(i) Count clones in 3D tumour

3D tumour

Subclones

c

a

**** **** **** **** ****

0

2

4

6

8

2 × 10–4 4 × 10–4 6 × 10–4 8 × 10–4 0.001

Driver acquisition probability

S
ha

nn
on

 d
iv

er
si

ty

Condition

Surface

Volume

**** **** **** **** ****

0

0.25

0.50

0.75

1.00

2 × 10–4 4 × 10–4 6 × 10–4 8 × 10–4 0.001

Driver acquisition probability

W
ho

le
-t

um
ou

r 
C

C
F

 o
f p

ar
en

ta
l c

lo
ne

Condition

Surface

Volume

d e

(ii) Calculate the whole-tumour CCF of clones and 
Shannon diversity 

Fitness

0.25 1.00

Fitness

f g

0.25 0.50 0.75 1.00

NATuRE ECOLOGY & EvOLuTION | VOL 6 | JANUARY 2022 | 88–102 | www.nature.com/natecolevol 91

http://www.nature.com/natecolevol


Articles NaturE EcOlOGy & EvOlutION

Each simulation starts from a single tumour voxel carry-
ing VHL and 3p loss and ends when the size exceeds 1 million 
tumour voxels, reflecting a tumour diameter of approximately 
12 cm. Simulated tumours are analysed at multiple spatial scales  
(Fig. 1d). A flow diagram of the simulation procedure is presented 
in Extended Data Fig. 3.

Growth modes impact the extent of clonal diversification. We 
hypothesized that the growth mode influences the extent of clonal 
diversification. To test this, we first assessed the clonal diversity at 
the end of a simulation. Tumours under volume growth commonly 
harboured only parental clone with the lack of further subclonal 
diversification or contained a single dominant subclone, whereas 
tumours under surface growth harboured multiple advantageous 
subclones (Fig. 1e). Intriguingly, expanding subclones in tumours 
under surface growth were also associated with changes in tumour 
morphology. These subclones initially appeared as bulging struc-
tures in a localized manner and subsequently outgrew to cover 
large areas of the tumour surface. Next, we counted the number of 
clones in the whole tumour (Fig. 2a,b). Under volume growth, sub-
clones were only observed in tumours with larger s and larger pdriver 
(Fig. 2b). By contrast, under the surface growth model, for a wide 
range of s, tumours with small to moderate pdriver harboured more 
subclones (Fig. 2b). We then illustrated the fractions of a tumour 
that subpopulations occupied and tumour fitness (measured as the 
average growth probabilities of tumour voxels in a tumour slice, 
Methods). Overall, volume growth models depicted a dichotomous 
pattern of clonal evolution and fitness: limited evidence of clonal 
diversification with low tumour fitness (Fig. 2c(i)) or presence 
of a single dominant clone with high tumour fitness (Fig. 2c(ii)). 
The latter pattern reflected early fixation of a highly fit clone in a 
subset of ‘born to be bad’ tumours. In comparison, in the surface 
growth model, extensive subclonal diversification and enhanced 
tumour fitness were evident in nearly all cases, even with a small 
pdriver (Fig. 2c(iii)). With a large pdriver, almost all tumours achieved 
peak fitness (Extended Data Fig. 1). More extensive subclonal diver-
sification was also noted in models with additive driver advantages 
(Supplementary Note 1 and Extended Data Fig. 2). These differ-
ences between growth models were quantitatively reflected in the 
whole-tumour cancer cell fraction (CCF) of the parental clone  
(Fig. 2d) and Shannon diversity index (Methods and Fig. 2e). Using 
these two metrics, greater extent of diversification in the surface 
growth model was also noted for conditions with still smaller pdriver 
(Supplementary Fig. 1) or smaller s (Supplementary Fig. 2). In the 
interest of characterizing patterns of subclonal diversification and 
contrasting the two growth modes, we limit our parameter analysis, 
to s = 1 and a range of pdriver from 2 × 10−4 to 1 × 10−3.

We further incorporated central necrosis into a subset of 
models to evaluate its impact on clonal diversification29. In brief, 
where necrosis was incorporated, tumour voxels located far from 

the tumour surface underwent death with an elevated probability 
(pnecrosis = 0.5) (Methods). In both growth modes, incorporation of 
necrosis generally led to a greater extent of clonal evolution and 
higher fitness observed at the end of simulations (Extended Data 
Fig. 4 and Supplementary Fig. 3). To further investigate the impact 
of necrosis on fitness at different parts of a tumour, we collected 
samples of centrally, marginally or randomly located tumour voxels 
(Methods). Surface growth models in general achieved higher fit-
ness than volume growth models, as evidenced in random samples 
(Fig. 2f,g and Supplementary Figs. 4 and 5). When necrosis was 
implemented, fitness in the tumour centre was significantly elevated 
in the surface growth models (Fig. 2f,g, Supplementary Note 2 and 
Supplementary Figs. 4 and 5), in keeping with our recent study29. 
More broadly, surface growth led to more extensive subclonal diver-
sification, corresponding to highly branched tumour evolution, 
while volume growth resulted either in tumours with limited evi-
dence of clonal diversification or in tumours with early fixation of 
a fit subclone corresponding to punctuated evolution. Interestingly, 
these modes of evolution correspond to evolutionary subtypes iden-
tified in ccRCC7. A subset of tumours with low fitness has limited 
subclonal diversification, while other tumours have an early fixation 
of a highly fit clone resulting in rapid clonal sweep7. There are also 
tumours with extensive subclonal diversification, characterized by 
a range of drivers.

Growth modes impact the spatial distribution of clonal diversity.  
We next examined the spatial distribution of clonal diversity  
(Fig. 3a and Methods). Under surface growth, multiple subclones, 
representing macrodiversity, outgrew to occupy distinct spatially 
contiguous areas with hotspots of microdiversity frequent near the 
tumour edge (Fig. 3b). In the representative volume growth model, 
a single dominant subclone was observed with a more uniform dis-
tribution of microdiversity hotspots (Fig. 3c). Next, we explored 
whether similar patterns were present in ccRCC. Using regions 
that contain at least two subclones as a proxy for microdiversity 
hotspots in the TRACERx Renal data, we observed both spatial pat-
terns of microdiversity corresponding to the surface growth model 
(for example, ‘K234’) and volume growth model (for example, 
‘K446’) (Fig. 3d). Consistently between the surface growth model 
and clinical data, while microdiversity was generally high near the 
edge, there was variation along the edge, with higher microdiversity 
apparently at the more bulging regions.

Intriguingly, the cumulative probability distribution with respect 
to the normalized distance from microdiversity hotspots to tumour 
centre, d, depicted power-law scaling (Fig. 3e), suggesting that the 
probability of observing spots with high microdiversity along the 
radius of a tumour could be estimated using a simple mathematical 
formula (that is, P(D ≤ d) ≈ dk, where k is the power-law exponent 
to be fitted). In comparison, the surface growth model displayed 
a larger k (Fig. 3f and Supplementary Fig. 6), indicating a greater  

Fig. 3 | Growth modes impact the spatial features of clonal diversification. a, Schematic figure and procedure for the analysis of microdiversity within a 
2D tumour slice. b,c, Spatial maps of subclones (i) and microdiversity (ii) in a representative in silico tumour under surface growth (b) or volume growth 
(c) with pdriver = 2 × 10−4, showing tumour voxels that belong to the parental clone (grey) and other subclones (randomly generated colours). d, Maps 
of regional biopsies with the number of subclones within a biopsy, colour coded in two cases (K234 and K446) in the TRACERx Renal study. Hues from 
red to purple to blue reflect decreasing number of subclones. ‘Low’ and ‘High’ reflect one and four subclones in K234 or two and four subclones in K446, 
respectively. e, Cumulative probability distribution, P(D ≤ d), of the normalized distances to tumour centre in in silico tumours under surface growth and 
volume growth and in ccRCC tumours. n = 100 for each model condition for surface growth (‘S’) and volume growth (‘V’). ‘pdriver = 2 × 10−4’ indicates a 
driver acquisition probability of 2 × 10−4. A total of 606 PT regions from 54 ccRCC tumours are considered for this analysis. ‘Null model’ reflects a power 
law with an exponent of 2. f, Bootstrapped power-law exponent k, as in P(D ≤ d) ≈ d

k, fitted to cumulative probability distributions generated from 
bootstrap samples (Methods) with n = 100 k values per condition. g,h, Bootstrapped power-law exponent k in ccRCC tumours partitioned according 
to relapse status (g) or rate of disease progression (h) with n = 100 k values per condition. Statistical annotations in f–h reflect two-sided Wilcoxon 
tests: **** P ≤ 0.0001. In box plots in f–h, the ends of the box reflect the lower (Q1) and upper (Q3) quartiles, with the difference indicating the IQR; the 
horizontal line dividing the box reflects the median; the ends of the vertical line indicate the extreme values within the range from Q1− 1.5× IQR to 
Q3+ 1.5× IQR; dots beyond the vertical line indicate potential outliers.
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likelihood of microdiversity hotspots being enriched near the 
tumour edge. Critically, spatial homogenization of subclone pat-
terns abolished the characteristic scaling behaviour (Supplementary 

Note 3 and Extended Data Fig. 5), demonstrating the importance 
of spatial elements of tumour growth in generating microdi-
versity. Models with additive driver advantages showed similar  
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distributions of microdiversity hotspots (Supplementary Note 4 and 
Extended Data Fig. 6). The incorporation of necrosis into the model 
re-adjusted the spatial profile in surface growth models, leading to 
the enrichment of additional microdiversity hotspots in the necrotic 
tumour centre (Supplementary Note 4 and Extended Data Fig. 6). 
The power-law pattern was also observed in 54 tumours with micro-
diversity hotspots (Fig. 3e). Moreover, there was an association 
between the power-law scaling exponent k with relapse status (Fig. 3g)  
and the rate of disease progression (Fig. 3h) in the TRACERx Renal 
study (Supplementary Table 1), where tumours mapped to a poorer 
clinical outcome are typically associated with a steeper spatial dis-
tribution of microdiversity hotspots and enrichment towards the 
tumour margin (Supplementary Note 5 and Supplementary Fig. 7).  
Tumours with attenuated progression showed a steep gradient of 
microdiversity hotspots, consistent with surface growth mod-
els. Interestingly, both tumours with no progression and those 
with rapid progression show a shallow gradient of microdiversity 
hotspots, nicely corresponding to volume growth models with 
limited evidence of evolution and with early fixation of a fit clone, 
respectively. The observation of spatial features of clonal diversity 
(Supplementary Table2) adds to our previous finding that the over-
all genetic diversity correlated with patient clinical outcome7.

Growth modes impact the spatial patterns of parallel evolution 
events and youngest subclones. As subclonal diversification could 
involve acquisition of, and be facilitated by, distinct mutations in 
the same gene at spatially separate locations, we next evaluated the 
frequency of parallel evolution events and their spatial features. In 
the TRACERx Renal study, parallel evolution was observed in 28 
tumours, with each event spanning a variable number of regions 
(Supplementary Note 6 and Supplementary Table 3). Interestingly, 
parallel mutation events with limited clonal expansion (spanning 
only a single region) showed distinct spatial patterns in different 
ccRCCs, suggesting that ongoing convergent evolution in the same 
gene could operate at varying locations of a tumour (Fig. 4a). In 
some cases (for example, K252), such events were all close to the 
margin; in other cases (for example, K520), they were located far 
from the edge (Fig. 4a,b). We hypothesized that the observed dis-
tinct patterns of parallel mutation events could be attributed to the 
patterns of proliferation and accordingly recent subclone births. To 
test this, we returned to the computational model and examined 
whether and how different growth models differ in the patterns of 
youngest subclones (Fig. 4c). Consistent with the patterns of micro-
diversity, we observed a preferential distribution of the youngest 
subclones near the tumour edge in the surface growth model and a 
more uniform distribution in the volume growth models (Fig. 4d(i) 
and Extended Data Fig. 7). Interestingly, when necrosis was incor-
porated, surface growth models often showed a bimodal distribu-
tion, with youngest subclones being born either near the tumour 

surface or in the necrotic interior, a pattern that was rarely observed 
in volume growth models (Fig. 4d(ii)).

Motivated by the diverse patterns of youngest subclones observed 
in models with different growth modes, we then turned to the clini-
cal data. Focusing on the 20 ccRCC cases most extensively sampled 
(n ≥ 10 regions) from TRACERx Renal, we observe events that 
spanned a single region (assumed to be the most recent/youngest 
subclones) close to the tumour margin (for example, K523, K360 
and K234) and located at varying distances from the tumour margin 
(for example, K156, K165 and K272) (Fig. 4e,f and Extended Data 
Fig. 7). Observations of these representative cases characterized by 
high levels of clonal diversity7 suggest that they evolved via surface 
growth but that necrosis in K156, K165 and K272 enabled birth of 
young subclones in the interior. Intriguingly, histological assessment 
of K156 showed the presence of paucicellular areas both macroscopi-
cally (Supplementary Fig. 8) and microscopically (Fig. 4g) in the 
interior of the tumour, which interfaced youngest subclones, in con-
trast to the interior of K523 (Fig. 4h). These observations suggest that 
continuing proliferation and clonal evolution occur at the tumour 
margin but are also facilitated by available space in the interior.

Growth modes impact the temporal features of clonal diversifi-
cation. We investigated temporal features of clonal diversification 
through in silico time-course analysis. Overall, the number of sub-
clones remained limited in volume growth models but increased 
over time before reaching a plateau in surface growth models  
(Fig. 5a,b and Extended Data Fig. 8). Thus, surface growth and vol-
ume growth models initially showed similar extent of clonal diver-
sification with subsequent divergence. Notably, when necrosis was 
implemented, volume growth models were minimally impacted, but 
we observe a dramatic reduction in clonal diversity at later stages of 
tumour growth in surface growth models, especially when additive 
driver advantages were implemented (Extended Data Fig. 8). This 
reflected a ‘pruning’ effect on the clonal structure with elimination 
of the less fit subclones. These observations reconciled previous 
observation of a non-monotonic relationship between tumour size 
and number of clones, including the collapse of clonal diversity at 
very large tumour sizes7.

As the birth of a new subclone is defined by the acquisition of new 
driver events in a tumour voxel, expectedly, surface growth models, 
which showed more extensive clonal diversification, accumulated a 
larger number of drivers, at a faster rate, than volume growth mod-
els (Extended Data Fig. 8). Nevertheless, in contrast to the rate of 
clonal diversification, the number of accumulated drivers increased 
monotonically over time in the surface growth models. Repeat sim-
ulations under surface growth clearly exhibited an altered direction 
of ‘evolutionary flows’, indicating out-competence of advantageous 
subclones and reduction of overall clonal diversity at later stages 
(Fig. 5c). Underlying these observations, surface growth led to  

Fig. 4 | Growth modes impact the spatial features of parallel evolution and youngest subclones. a, Distance from regions harbouring parallel mutational 
events that span a single region to the tumour margin. Red rectangles indicate the two representative cases shown in b. b, Maps of regions containing 
parallel mutation events in two representative cases (PBRM1 events in K520 (i) and BAP1 events in K252 (ii)) in the TRACERx Renal study. Distinct parallel 
mutation events are indicated using different colours. For regions containing more than two parallel mutations, two colours are applied simultaneously. 
Double-headed arrow indicates the measurement of distance to tumour edge. c, Schematic of the analysis of youngest subclones within a 2D tumour  
slice. d, Distance from the positions of youngest subclones to the tumour margin, in models without (i) or with (ii) the implementation of necrosis.  
n = 100 youngest subclones from each simulation are analysed and shown as grey points, with the mean distance to margin indicated with a coloured 
vertical bar. n = 50 simulations are shown, arranged from small to large mean distance to margin (top to bottom) for each model condition. Surface 
growth and volume growth models are shown in red and blue, respectively, with increasing driver acquisition probabilities indicated by increasing colour 
intensity. e, Distance from regions harbouring genomic alterations that span a single region to the tumour margin. Only tumours with at least ten regions 
are included. Red rectangles indicate the two representative cases shown in f. f, Maps of regional biopsies with the number of subclones within a biopsy 
colour coded in two representative cases (K523 and K156) in the TRACERx Renal study. Hues from red to purple to blue reflect decreasing number of 
subclones. ‘Low’ and ‘High’ reflect one and four subclones in K523 or one and six subclones in K156, respectively. Regions harbouring events that span a 
single region are marked by arrows, green if located within 10 mm from the tumour edge and orange otherwise. g,h, Histological images of representative 
areas from tumour regions of K156 (g) and K523 (h). Vertical dashed line in a,d and e corresponds to a distance of 10 mm.

NATuRE ECOLOGY & EvOLuTION | VOL 6 | JANUARY 2022 | 88–102 | www.nature.com/natecolevol94

http://www.nature.com/natecolevol


ArticlesNaturE EcOlOGy & EvOlutION

polynomial growth with longer time to reach the stopping condi-
tion, while volume growth resulted in exponential growth (Extended 
Data Fig. 8). The faster growth rate in volume growth models means 

a large contribution of parental clone to overall tumour growth and 
shorter time for advantageous subclones to outgrow and compete, 
leading to tumours with limited diversification.
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Early indication of evolutionary potential. We have previously 
shown that evolutionary features correlate with clinical outcomes 
and could be used to guide patient management7. Therefore, it 
is of particular interest to examine whether the computational 
model could be used to suggest predictive features for the likely 
evolutionary trajectories and therefore clinical behaviour of  
individual tumours.

Of note, early-stage tumours under distinct growth modes 
appeared indistinguishable with respect to the number of subclones 
(Fig. 5a). We specifically investigated features that could indicate 
subsequent subclonal diversification in the surface growth model 
and noted the appearance and outgrowth of budding structures 
(Fig. 5d). Notably, as the tumour grew with gained fitness, the 
contour circularity of a tumour slice initially decreased and then 
recovered, concomitant with the initial increase and subsequent 
reduction in clonal diversity, respectively (Fig. 5e). Exploratory sim-
ulations attempting at ‘replaying’ evolution (that is, re-simulating 
clonal evolution from a historical tumour state with established 
clonal structure as a starting point) starting from different tumour 
sizes suggested that evolution was more repeatable if starting 
from a historical tumour state with budding structures emerging 
(Supplementary Note 7 and Extended Data Figs. 9 and 10).

With respect to the above findings, the radiological features of 46 
tumours with diameter <7 cm in the TRACERx Renal study were 
evaluated (Supplementary Table 4). By qualitative examination of 
radiological images, budding structures were apparent at the surface 
of 16 tumours and evident in the tumour ex vivo (one representa-
tive, K523, is shown in Fig. 5f,g). In this case, adjacent to the bud-
ding structures were regions with high clonal diversity, consistent 
with surface growth models. Interestingly, the presence of budding 
in these 16 sub-7-cm tumours exhibiting increasing diversity as a 
function of tumour size, combined with the absence of budding 
and low diversity in some larger tumours (Fig. 5h), showed clear 
concordance with the temporal trend of clonal diversification and 
morphological variation observed in the surface growth models. 
The failure of this trend to continue in larger tumours supports 
the observed collapse of subclonal diversity in simulated tumours 
under surface growth.

Discussion
Genetic ITH arises when clonally related populations of cells in 
the tumour acquire distinct genomic alterations, endowing the 
subclones with a range of fitness advantages. Our understanding 
of how major subclones sculpt evolutionary trajectories has been 
gleaned primarily from multi-region sampling and deep sequenc-
ing. However, our understanding of the temporal features of 
clonal evolution and our ability to predict evolutionary trajectories 
remain limited. Therefore, we focus on spatial and temporal char-
acterization of clonal diversity to elucidate predictive features for  

evolutionary potential, summarized in Fig. 6. To this end, we devel-
oped an agent-based model to study tumour growth and clonal 
evolution, with a focus on examining the contribution of different 
modes of growth, namely surface and volume growth, and the pres-
ence or absence of central necrosis to spatial and temporal features 
of clonal diversity.

Adding to previous modelling work on spatial elements of tumour 
growth24–27,33–37, our model demonstrates that growth modes impact 
subclonal diversification. Specifically, volume growth resulted in 
either limited evidence of evolution or punctuated evolution with 
early fixation of a fit clone, whereas surface growth gave rise to 
branched evolution with extensive subclonal diversification (Fig. 6).  
Intriguingly, surface growth models revealed a non-monotonic 
variation in clonal diversity over time with a dramatic collapse of 
diversity at large tumour sizes, consistent with the apparent rela-
tionship between static data of tumour size and clonal diversity in 
the TRACERx Renal study. These temporal features of clonal diver-
sity informed by the model raise the possibility that evolutionary 
modes are not a static property but instead can undergo a dynamic 
switch from a branched to an apparently punctuated sub-type, with 
peak diversity occurring in the past, during tumour development.

Spatial analyses further uncovered that microdiversity hotspots 
and youngest subclones were more uniformly distributed in vol-
ume growth models while predominantly near the tumour margin 
in surface growth models (Fig. 6). As in the model, the spatial dis-
tribution of microdiversity hotspots exhibited a power-law pattern 
in ccRCCs. Strikingly, the exponent of the power law was associ-
ated with previously described different classes of ccRCC evolu-
tion. Tumours with attenuated progression had a larger exponent, 
which is consistent with their more branched phylogenetic trees. 
Both indolent mono-driver and aggressive poly-driver tumours 
had lower exponents, suggesting volume growth patterns, with the 
aggressive tumours simply determined in our model by the early 
acquisition of multiple strong drivers.

Investigation on the impact of necrosis in our model further 
broadened our understanding of the spatial and temporal features 
of clonal diversification. (Fig. 6). Incorporation of necrosis led to 
enhanced fitness in the tumour interior, suggestive of selection of 
fitter clones, in keeping with our recent study29. Furthermore, with 
necrosis, tumours under surface growth harboured additional 
microdiversity hotspots and youngest subclones at the centre. The 
pattern of youngest subclones was corroborated by the analysis of 
sequencing data and further supported by histological evidence of 
interface between tumour and acellular areas, suggesting that sur-
face growth with necrosis incorporated could explain the evolution 
of some ccRCCs. Our recent work in the context of TRACERx Renal 
demonstrated that metastasis-competent subclones are enriched at 
the tumour centre, suggesting that environmental factors favoured 
their selection, possibly through acquisition of advantageous traits 

Fig. 5 | Growth modes impact the temporal features of clonal diversification. a, Number of subclones as a function of the diameter of a 2D tumour slice 
in in silico tumours under surface growth and volume growth, for n = 50 simulations with pdriver = 6× 10−4 for each condition. b, KDE with respect to the 
number of subclones and the diameter of a 2D tumour slice in in silico tumours under volume growth (i) and surface growth (ii). Each KDE plot is based 
on 250 simulations (50 per condition) under five conditions with pdriver = 2× 10−4

,4× 10−4
, 6× 10−4

, 8× 10−4 and 1× 10−3. c, Vector maps of 
evolutionary flows over time with respective to the number of subclones and the average number of drivers accumulated among tumour voxels in surface 
growth models without (i) or with (ii) the implementation of necrosis. n = 50 simulations with pdriver = 6× 10−4 are shown. d, The spatial patterns of 
parallel mutations in PBRM1 (upper, distinct events in different colours) and microdiversity (lower) over time in a representative in silico tumour under 
surface growth. The arrows indicate budding structures preceding subclonal expansion. e, Time evolution with respect to the number of subclones and 
the mean fitness of the tumour slice, along with the diameter of tumour slice, contour circularity and average number of drivers accumulated, in surface 
growth models. n = 50 simulations with pdriver = 6× 10−4 are shown. f, Axial image in the corticomedullary contrast phase of a representative case 
(K523) showing budding structure on the tumour surface (red arrow). Outlines in red reflect the tumour contour giving volumetric tumour coverage.  
g, Maps of tumour regions with the number of subclones colour coded in a representative case. Hues from red to purple to blue reflect decreasing number 
of subclones. ‘Low’ and ‘High’ reflect one and four subclones, respectively. h, The number of subclones as a function of ultimate tumour size in the 
TRACERx Renal study, overlaid with KDE based on simulated data. Tumours with size up to 7 cm and with radiologically evident budding structures are 
highlighted (orange). Contours reflect 90% probability density based on in silico tumours under surface growth (red) and volume growth (blue) in Fig. 6b.
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youngest subclones and microdiversity hotspots and enhancement of fitness near the tumour margin. The incorporation of central necrosis causes the 
loss of macrodiversity but at the same time permits continued subclonal diversification in the tumour interior, evidenced by the enrichment of youngest 
subclones and microdiversity hotspots. In contrast, volume growth models give rise to dichotomous patterns of tumour growth and clonal evolution, 
developing tumours that are either indolent with ‘lack of evolution’ or aggressive with early birth of fitter subclone and rapid progression. The distributions of 
youngest subclones, microdiversity hotspots and fitness in volume growth models are more uniform than those in surface growth models.
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such as epithelial-to-mesenchymal transition. In the current study, 
we present a complementary, and non-exclusive, perspective that 
necrosis could accelerate the rate of evolution, via turnover of 
tumour mass, to achieve enhanced fitness in the tumour centre.

Finally, tracking advantageous subclones over time in silico illu-
minated the rapid increase of their prevalence in small tumours, 
marked by the appearance of budding structures, concomitant with 
subclonal diversification in surface growth models. Intriguingly, 
budding structures were radiologically apparent in 16 early-stage 
ccRCC tumours, a subset of which already showed high clonal 
diversity, by molecular profiling. While budding structures in our 
model arose from advantageous subclonal outgrowth, alternative 
mechanisms cannot be excluded33,38.

To conclude, we have developed a model that enables us to 
understand how spatial patterns of growth and necrosis determine 
patterns of clonal diversity in space and time (Fig. 6). We validate 
our findings using patient data, thereby opening the potential for 
predicting future clinical behaviour, precision medicine’s holy grail.

Methods
Computational model. Tumour growth and clonal evolution in a spatio-temporal 
context have increasingly been studied with the aid of computational models 
that incorporate spatial elements of tumour growth and acquisition of genomic 
alterations24,25,33,34. Spatial patterns of tumour growth24–27 have been shown to 
impact the ability to classify neutral evolution in contrast to selection, suggesting 
that spatial growth of a structured population interplays with evolutionary forces 
(driver acquisition, selection and genetic drift) to shape the spatial patterning of 
subclones.

In the present study, to establish an understanding of the spatial and temporal 
features of clonal diversification and to enhance the ability to predict evolutionary 
trajectories in ccRCC, we constructed a coarse-grained cellular automaton 
model to simulate tumour growth and clonal evolution. A basic model unit 
reflects a tumour volume of 1 × 1 × 1 mm3, referred to as a ‘tumour voxel’. The 
full simulation lattice comprises 200 × 200 ×200 lattice sites, each of which can 
accommodate a single tumour voxel when a tumour grows. As a simulation 
proceeds, tumour voxels stochastically undergo growth, death and acquisition of 
driver events upon growth (Extended Data Fig. 3). The subsequent sections detail 
the model components and assumptions.

Growth and death. Tumour voxels stochastically undergo growth and death, 
with baseline probabilities per simulation step of pgrowth = 0.25 and pdeath = 0.05, 
respectively. Upon death, a tumour voxel is removed from the simulation lattice, 
rendering the site empty and available for accommodating new tumour voxels. 
Two different modes of spatial tumour growth are considered: surface growth and 
volume growth (Fig. 1c). For surface growth, proliferation only takes place when 
space is available, namely when at least 1 of the 26 neighbouring lattice sites of the 
tumour voxel selected to divide is empty. Upon duplication of a parent tumour 
voxel, one child tumour voxel retains the position of the parent while the other is 
placed at a randomly selected adjacent empty site. For volume growth, all tumour 
voxels can proliferate. Upon duplication, one child tumour voxel retains the 
position of the parent while the other is placed at a selected adjacent site according 
to the rule described below and pushes tumour voxels in that orientation outward. 
The process for selecting an adjacent site includes two steps: (1) random sampling 
of 10 candidate positions out of the 26 neighbouring lattice sites and (2) selection 
of the orientation (that is, pointing from the position of the parent tumour voxel 
to the candidate position) giving the smallest distance from the tumour surface, 
similar to the algorithm described in ref. 34.

Driver events. A panel of 26 ccRCC drivers that were highlighted previously7, 
including mutations in 12 genes and 14 SCNAs, are considered in the present work 
(Extended Data Fig. 1). For simplicity, the selective advantage conferred by a driver 
is assumed to manifest as growth advantage.

Two ways of implementing selective advantages are considered and referred 
to as ‘saturated’ and ‘additive’ driver advantage models. In the saturated driver 
advantage model, the pgrowth of a tumour voxel can be at one of three levels 
{p(initial)growth , p(moderate)

growth , p(maximal)
growth }. Each driver endows a tumour voxel with one 

of these growth probabilities, and the relative differences in selective advantage 
of drivers are assumed to reflect their association with the Ki67 score in tumour 
regions (Extended Data Fig. 1) and their frequencies in the clinical cohort7. 
In a general form, p(moderate)

growth = g(s)p(initial)growth  and p(maximal)
growth = h(s)p(initial)growth  are 

functions of the baseline growth probability, where h(s) ≥ g(s) ≥ 1 reflect the 
growth advantages relative to the baseline. As one specific implementation, 
p(initial)growth = 0.25, p(moderate)

growth = (1 + s)p(initial)growth  and p(maximal)
growth = (1 + s)2p(initial)growth , 

where 0 ≤ s ≤ 1 reflects the selective advantage. For simplicity, individual driver 
gene mutations are assigned with p(initial)growth , whereas four SCNAs with strong 
association with Ki67 score (7q gain, 20q gain, 4q loss and 8p loss) are assumed 
to be the strongest drivers assigned with p(maximal)

growth  and therefore their acquisition 
would lead to the biggest increase in growth probability. Importantly, the saturated 
model is implemented with only two levels of selective advantage, and the growth 
probability of a tumour voxel becomes saturated at 1 if acquiring the strongest 
driver. In comparison, the additive driver advantage model has a more graduated 
implementation of selective advantage. In this implementation, each driver adds 
a certain amount of growth probability to the tumour voxel that acquires the driver, 
namely pgrowth = p(initial)growth +

∑

k
pgrowth_k, where pgrowth_k reflects the amount of 

growth probability added by driver k (Extended Data Fig. 2). pgrowth is set to 1 if 
the calculated probability exceeds 1. The amount pgrowth_k varies between drivers, 
reflecting the different strengths of their association with the Ki67 score (Extended 
Data Fig. 1). Three different scenarios were explored to reflect different amounts of 
growth probability endowed by drivers on average, as determined by the sk of the 
weakest driver, namely min(sk), and the difference in sk between consecutive two 
drivers in their advantages, namely Δsk (Extended Data Fig. 2).

Upon proliferation of a parent tumour voxel, child tumour voxels inherit 
existing driver events harboured by the parent tumour voxel and stochastically 
acquire new drivers. Individual driver gene mutations are assumed to be acquired 
with a greater probability (pdriver) than SCNAs (0.001pdriver). A second mutation 
in the same gene is assumed to never occur in the same tumour voxel, but 
multiple independent, distinct mutations in the same gene may be acquired in 
parallel within a simulated tumour in different tumour voxels. As the majority 
of ccRCCs have clonal VHL inactivation events, in general and in the TRACERx 
Renal cohort7, the founder tumour voxel is assumed to harbour VHL inactivation 
together with 3p loss as a clonal event. The subpopulation of tumour voxels that 
only harbour these two events is referred to as the parental clone. Based on their 
association with a high weighted genome instability index in the data from the 
TRACERx Renal study7, and functional evidence31,32, mutations in PBRM1 or 
BAP1 are assumed to enhance the probability of SCNA acquisition (to pdriver). A 
range of driver acquisition probabilities have been studied to explore the impact 
on the patterns we investigate (see Supplementary Note 8 for considerations for the 
selection of pdriver values in the coarse-grained model). Mutations and acquisition of 
SCNAs are assumed to be proliferation dependent, implying that DNA replication 
and chromosome mis-segregation is the main source of genomic alterations. Lastly, 
the selective advantage endowed by a driver is assumed to be fixed, so the variation 
in driver advantage dependent on changing environments is not considered in the 
current study.

Necrosis. Building upon our previous work29, necrosis is implemented in a subset 
of model conditions to evaluate its impact on features of clonal diversification. 
Specifically, tumour voxels located at a distance greater than dnecrosis = 15mm 
from the tumour surface undergo death with a probability of pnecrosis. A probability 
of pnecrosis = 0.5 is used in this study, in keeping with our previous work. Like the 
spontaneous death described above, upon necrosis-induced death, a tumour voxel 
is removed from the simulation lattice, rendering the site empty and available for 
accommodating new tumour voxels.

Simulation. The procedure for simulating events of death, proliferation and 
acquisition of driver events is illustrated in a flow diagram (Extended Data Fig. 3). 
Briefly, each simulation starts from a single tumour voxel (that is, founder tumour 
voxel) that harbours a VHL mutation and 3p loss as truncal events, placed at the 
centre of the lattice, (x0, y0, z0). During the evaluation of possible death events, 
for each of all tumour voxels alive, pdeath is compared with a random number 
generated in the range [0, 1]. If pdeath is larger, a death event occurs, resulting in 
the lattice site being freed to accommodate a newly born tumour voxel in the 
future. During the evaluation of possible proliferation events, for each of all valid 
tumour voxels (see above for the difference between surface growth and volume 
growth), pgrowth is determined according to the driver events harboured (see above 
for the difference between ‘saturated’ and ‘additive’ models of fitness advantage) 
and compared with a random number generated in the range [0, 1]. If pgrowth is 
larger, a proliferation event occurs, resulting in a new tumour voxel being created 
nearby. During the evaluation of possible acquisition of driver events, for each of 
all the daughter tumour voxels just arising from proliferation and for each of the 
ccRCC drivers, pdriver is compared with a random number generated in the range 
[0, 1]. If pdriver is larger and that driver is not currently harboured by the tumour 
voxel, acquisition of the driver takes place in the given tumour voxel. In a subset 
of simulations, necrosis is implemented. During the evaluation of necrotic death 
events, for each of all tumour voxels alive, if it is located at a distance greater than 
dnecrosis from the tumour surface, pnecrosis is compared with a random number 
generated in the range of [0, 1]. If pnecrosis is larger, a necrotic death event occurs, 
resulting in the lattice site being freed to accommodate a newly born tumour 
voxel in the future. The simulation runs until the tumour grows to at least 1 
million tumour voxels after the last simulation step. The computer code is written 
in CUDA C++.
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Evolutionary replay. The procedure for simulating evolutionary replay is 
illustrated in a flow diagram (Extended Data Fig. 9). Briefly, a preparation step 
is performed to create evolutionary snapshots of a simulated tumour at different 
timepoints. Specifically, each snapshot contains precise information about the 
positions, subclone identities and drivers of all tumour voxels. At the beginning of 
evolutionary replay, N replicate tumours are reconstructed, each with a copy of the 
same evolutionary snapshot at a given timepoint t. Then, these replicate tumours 
undergo the events described above, each with a different unique random seed, and 
grow to the predefined stopping size. Evolutionary outcomes from these replicate 
tumours are evaluated and compared.

Model analyses. Levels of analysis. Analyses are conducted at three different levels 
(Fig. 1d): (1) the whole-tumour level, which takes into account all tumour voxels 
in the three-dimensional (3D) volume, (2) the tumour slice level, which takes into 
account all tumour voxels within a two-dimensional (2D) plane (z = z0) and (3) 
the regional biopsy level, which takes into account tumour voxels within regional 
biopsies. A regional biopsy is defined as all tumour voxels within a region in the 2D 
slice. Spatially uniform sampling is performed in this study. This process is carried 
out by locating the centres of candidate regional biopsies in the 200 mm × 200 mm 
2D lattice with a spacing of 20 mm and collecting all voxels within a distance of 
5 mm from each biopsy centre.

CCF of subclones. The CCF of a subclone is calculated as the number of tumour 
voxels that belong to a subclone divided by the total number of tumour voxels in 
the domain of interest, depending on the level of analysis. A subclone is identified 
by a set of driver events, shared by a subpopulation of tumour voxels, which are 
accumulated within the subclone-initiating tumour voxel. A subclone-initiating 
tumour voxel is defined as a tumour voxel that acquires a new driver event upon 
birth. A subclone is considered detectable if the CCF is greater than 0.01.

Shannon diversity index. As a measure of clonal diversity, the Shannon diversity 
index is defined as S =

∑

i
−fi ln fi, where fi is the CCF of subclone i. All subclones 

are considered in this calculation.

Number of drivers accumulated. The drivers (including both mutations and SCNAs) 
harboured by each tumour voxel within a tumour slice are counted at each timepoint. 
The average number of drivers among all tumour voxels is then calculated.

Fitness. The fitness of a tumour voxel is defined as the instantaneous growth 
probability, pgrowth, dependent on the set of drivers harboured by that tumour 
voxel. In representative cases, the fitness of tumour voxels is mapped within a 2D 
tumour slice. To examine the spatial features of tumour fitness, the distances from 
every tumour voxel to the centre of a tumour slice and to the nearest point along 
the tumour contour are calculated, respectively. The central-most 10% of tumour 
voxels, with the shortest distances to the centre, and the marginal-most 10% of 
tumour voxels, with the shortest distances to the margin, are sampled to calculate 
a sample-average fitness. Additionally, another 10% of tumour voxels is randomly 
sampled for comparison. The ratio of the mean fitness of the central-most 10% 
of tumour voxels to that of the marginal-most 10% of tumour voxels, denoted as 
‘Ratio_C2M’, is calculated for each simulation.

Microdiversity. Microdiversity is defined as the number of subclones contained in 
a 3 × 3 mm2 region within the tumour slice. In representative cases, microdiversity 
is spatially mapped within a tumour slice, by sliding a 3 × 3 mm2 spatial 
window throughout the tumour slice. Microdiversity hotpots are defined as a 
subset of these small regions with five or more subclones. The distance from a 
microdiversity hotspot to the centre of a tumour slice is referred to as the distance 
to tumour centre (d1). The distance from a microdiversity hotspot to the nearest 
point along the tumour contour is referred to as the distance to tumour margin 
(d2). The normalized distance to tumour centre is defined as d = d1/(d1 + d2). 
The cumulative probability distribution, P(D ≤ d), of d is generated by combining 
microdiversity hotspots from repeat simulations. The power-law exponent is 
obtained by bootstrapping 100 samples of 400 hotspots per sample and fitting a 
power-law function to the cumulative probability distribution of d in each sample.

Youngest subclones. Youngest subclones are defined as the subclones that emerge 
closest to the end of a simulation. For the analysis of their spatial distribution, we 
recorded the 100 youngest subclones within a 2D tumour slice and, for each of 
them, measured the distance from its position to the tumour margin. The mean 
of the distances for these 100 subclones was calculated for comparison between 
different replicate simulations.

Contour circularity. Tumour contours are determined from 2D tumour slices. 
Smoothing is performed for each tumour voxel along the tumour contour by 
calculating the mean (x, y) position of this tumour voxel and adjacent tumour 
voxels. After smoothing, contour circularity is calculated as Circularity = 4π Area

Perimeter2 .

Temporal analysis. For the time-course study, 2D tumour slices are collected over 
multiple timepoints. The number of subclones is counted within each historical 

tumour slice. Kernel density estimation (KDE) with a Gaussian kernel is performed 
with respect to the number of subclones and the diameter of the tumour slice, 
based on all simulations under a given model condition, to produce a continuous 
density estimate.

Analyses of tumour data. TRACERx Renal cohort. Seventy-nine tumour sections 
of 66 unique primary tumours are included in this study. See the exclusion 
criterion in our previous publication29.

Computed tomography images. Contrast-enhanced computed tomography images 
were obtained using standard-of-care imaging sequences in 91 patients and curated 
using a local research picture archiving and communication system based on the 
Extensible Neuroimaging Archive Toolkit platform39. Outlines were drawn by 
consensus between an oncologist (S.T.C.S.) and a radiologist (D.A.), giving volumetric 
tumour coverage, from which image strips were prepared for rapid visualization of all 
tumour slices for all patients using an in-house script written in Python.

To detect presence or absence of budding structures in the contoured CT data, 
qualitative assessment of contoured tumours was performed by X.F. and S.T.C.S 
and verified by a radiologist (D.A.).

Histological analysis. Haematoxylin and eosin-stained histological sections of 
representative cases were evaluated by two pathologists (J.I.L. and C.E.S.). Each 
sample was qualitatively assessed for the relative amount of viable tumour cells, 
fibrosis and presence of necrosis.

Microdiversity. Spatial maps of regional clone diversity are created for two 
representative tumour sections. In these maps, regions are colour coded based on 
the number of subclones. Regions that harbour at least one subclone are treated as 
a proxy for microdiversity hotspots defined in the model analysis. In total, there are 
606 regions from 54 tumours that satisfy this criterion. In evaluation of association 
between microdiversity features and clinical annotations, subsets of tumours are 
considered. Subsets with different relapse statuses consist of 270 (‘relapse’) and 336 
regions (‘no relapse’), respectively. Subsets with different rates of disease progression 
consist of 276 (‘no progression’), 265 (‘attenuated progression’) and 65 regions 
(‘rapid progression’), respectively. For tumour regions, the normalized distance to 
tumour centre is measured as described above in Model analyses section.

Parallel evolution. Spatial maps of parallel mutational events in PBRM1 and in BAP1, 
respectively, are created for two representative tumours. In these maps, regions are 
coloured differently according to different parallel mutational events. Regions that 
harbour more than one event are indicated with multiple colours. To study the spatial 
distribution of mutational events with limited clonal expansion, the maximum 
distance from an event spanning a single region to the tumour margin is measured.

Statistical analysis. The two-sided Wilcoxon’s rank test was performed to compare 
a particular measurement between different conditions. Statistical significance is 
annotated within box plots using stat_compare_means (method = ‘wilcox.text’, 
label = ‘p.signif ’) in R.

Bootstrapping was performed to generate 100 random samples of 400 
microdiversity hotspots per sample with replacement, using in random.choice() 
in Python. The power-law exponent was then determined by fitting a power-law 
function to the cumulative probability distribution from each sample, using  
scipy.optimize.curve_fit() in Python.

The quantile–quantile (Q–Q) plot was generated to compare the actual 
distribution of microdiversity hotspots with a power-law distribution with the 
exponent as the median of fitted values in bootstrapping, using statsmodels.
graphics.gofplots.qqplot() in Python.

KDE was performed for simulations with respect to the size of tumour slice and 
the number of subclones, using seaborn.jointplot (kind = ‘kde’) in Python.

R v.3.6.2 and Python v.3.7.7 were used for these analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Multi-region sequencing data that support the analysis in this study were published 
in the previous TRACERx Renal study7 and are deposited in the European 
Genome-Phenome Archive https://ega-archive.org/studies/EGAS00001002793.
Data on spatial features of microdiversity and parallel evolution and characterization 
of budding structures in tumours are provided in the Supplementary Tables. Source 
data are provided with this paper and are available on GitHub repositories https://
github.com/FrancisCrickInstitute/tumour-growth-patterns-impact-evolution and 
https://github.com/iamfuxiao/tumour-growth-patterns-impact-evolution40.

Code availability
CUDA C++ computer code developed for the study and analysis scripts for 
generating figures are available on GitHub repositories https://github.com/
FrancisCrickInstitute/tumour-growth-patterns-impact-evolution and https://
github.com/iamfuxiao/tumour-growth-patterns-impact-evolution40.
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Extended Data Fig. 1 | Saturated model of driver advantages. (a) Ki67 immunohistochemistry (IHC) score in patient tumour (PT) regions where a 
particular driver is present. (b) Schematic figure of probabilistic growth of tumour voxels, with the growth probability of a tumour voxel defined by the 
strongest driver. (c) A table summarising the assumed levels of growth probabilities endowed by individual drivers. (d) Whole-tumour CCF of parental 
and largest subclones in in-silico tumours under Volume Growth (i) and Surface Growth (ii-iii), respectively. Average fitness in a tumour slice for each 
simulation is presented as a heat map. Driver acquisition probabilities in these sets of simulations are p

driver

= 6× 10−4 in (i), 6× 10−4 in (ii), 1×10−3 
in (iii), respectively. ‘Parental (3p loss, VHL)’ clone is shown along with up to five subclones with a whole-tumour CCF of 0.01 or higher. All remaining 
subclones are represented in the ‘other’ group.
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Extended Data Fig. 2 | See next page for caption.

NATuRE ECOLOGY & EvOLuTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNaturE EcOlOGy & EvOlutION ArticlesNaturE EcOlOGy & EvOlutION

Extended Data Fig. 2 | Additive model of driver advantages. (a) Schematic figure of probabilistic growth of tumour voxels, with the growth probability of 
a tumour voxel cumulatively determined by the drivers harboured. (b) A table summarising the assumed amount of growth probabilities added by each 
driver (p

growth_k for a driver k). Three scenarios were explored, indicated in the table by p
growth_k of the weakest driver, namely, min(p

growth_k), and the 
difference in p

growth_k between consecutive two drivers as in the strength of their association with Ki67 IHC score, namely, Δp
growth_k. (c-d) Whole-tumour 

cancer cell fraction (CCF) of parental and largest subclones in in-silico tumours under Volume Growth (c) and Surface Growth (d), respectively, under the 
indicated parameter conditions. ‘Parental (3p loss, VHL)’ clone is shown along with up to five subclones with a whole-tumour CCF of 0.01 or higher. All 
remaining subclones are represented in the ‘other’ group. N = 100 for each condition.

NATuRE ECOLOGY & EvOLuTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles NaturE EcOlOGy & EvOlutIONArticles NaturE EcOlOGy & EvOlutION

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Flow diagram illustrating the modules and procedure of simulation. . Each simulation starts from a single tumour voxel that 
harbours a VHL mutation and 3p loss and runs until the tumour grows to at least 1 million voxels. During a model iteration, events including death, 
proliferation, acquisition of drivers, and necrosis are evaluated and simulated.

NATuRE ECOLOGY & EvOLuTION | www.nature.com/natecolevol

http://www.nature.com/natecolevol


Articles NaturE EcOlOGy & EvOlutIONArticles NaturE EcOlOGy & EvOlutION

Extended Data Fig. 4 | Clonal diversity in models with necrosis incorporated. Whole-tumour CCF of parental clone and largest subclones in in-silico 
tumours under the indicated parameter conditions. Average fitness in a tumour slice for each simulation is presented as a heat map. ‘Parental (3p loss, VHL)’ 
clone is shown along with up to five subclones with a whole-tumour CCF of 0.01 or higher. All remaining subclones are represented in the ‘other’ group.
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Extended Data Fig. 5 | Spatial features of microdiversity in random sampling models and under spatial homogenisation of subclone patterns. (a) 
Schematic figure of random sampling of spots in one dimension (1D), two dimensions (2D), and three dimensions (3D). (b) Cumulative probability 
distribution, P(D ≤ d), of the normalised distance to tumour centre in null models with spots randomly sampled in 1D (olive), 2D (purple), and 3D 
(orange). (c-d) Representative examples of a simulated tumour slide before and after spatial homogenisation of subclone patterns in Surface Growth (c) 
and Volume Growth (d) models, respectively. (e-f) Cumulative probability distribution, P(D ≤ d), of the normalised distance to tumour centre in models 
before (red in e, blue in f) and after (grey) spatial homogenisation of subclone patterns, in Surface Growth (e) and Volume Growth (f) models, respectively.
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Extended Data Fig. 6 | Heat maps and spatial features of microdiversity in various model conditions. (a) Saturated driver advantages without 
incorporation of necrosis, (b) Additive driver advantages without incorporation of necrosis, (c) Saturated driver advantages with incorporation of necrosis, 
and (d) Additive driver advantages with incorporation of necrosis. N = 50 simulations for each condition in the probability denstiy distribution plots.
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Extended Data Fig. 7 | The spatial distribution of recent subclones in models with additive driver advantages and in examples of ccRCCs. (a) Distance 
from youngest subclones to the tumour margin, in models without (i) or with (ii) incorporation of necrosis. N=100 youngest subclones from each 
simulation are analysed and shown as grey points, with the mean distance to margin indicated with a coloured vertical bar. N=50 simulations are shown 
and arranged from small to large mean distance to margin (top to bottom) for each model condition. Surface Growth and Volume Growth models are 
shown in red and blue, respective, with increasing driver acquisition probabilities indicated with increasing colour intensity. (b) Distance from to regions 
harbouring events that span a single region to the tumour margin. All tumours that harbour at least one such event are included. The mean distance to 
margin in a tumour is indicated with a vertical bar. (c) Maps of regional biopsies with the number of subclones within a biopsy colour coded in six cases 
in the TRACERx Renal study. Two cases (K523 and K156) are also presented in Main Fig. 4. Hues from red to purple to blue reflect decreasing number 
of subclones. Regions harbouring events that span a single region are marked by arrows: in green if located within 10 mm from the tumour edge and 
otherwise in orange.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Time-course analysis of clonal diversification in various model conditions. (a) The number of subclones in tumour slice over 
time in several model conditions: (i) models with saturated driver advantages and necrosis incorporated, (ii) models with addtive driver advantages, and 
(iii) models with additive driver advantages and necrosis incoporated. (b) Vector maps of evolutionary flows over time with respective to the number of 
subclones and the average number of drivers accumulated among tumour voxels in Surface Growth models without (i) or with (ii) the implementation 
of necrosis. Models with additive driver advantages are shown. (c) The average number of drivers accumulated in tumour voxels within a tumour slice 
over time in several model conditions: (i) models with saturated driver advantages and necrosis incorporated, (ii) models with additive driver advantages, 
and (iii) models with additive driver advantages and necrosis incoporated. (d) The time to reach the final size in Saturated (i) and Additive (ii) models 
of driver advantages. Volume and Surface Growth models are shown in blue and in red, respectively. In each panel in (a-c), N = 50 simulations with 
p
driver

= 6× 10−4 are shown.
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Extended Data Fig. 9 | Flow diagram illustrating the procedure of evolutionary replay in silico.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Evolutionary replay in silico. (a) Schematic figure for description of evolutionary replay. (b) Spatial maps of subclones over time 
in a representative in-silico tumour under Surface Growth with p

driver

= 2× 10−4. (i)-(iv) mark historical tumour states selected as starting points for 
evolutionary replay. (c) Spatial maps of subclones at the end of two evolutionary replays that use (i)-(iv) in (b) as starting states. (d) Shannon diversity 
index at the end of evolutionary replays that start with different historical tumour states. From left to right reflect increasing sizes at which historical 
tumour states were collected for evolutionary replay. (e-f) Evolutionary replay performed based on in-silico tumours under Surface Growth (e) and under 
Volume Growth with p

driver

= 6× 10−4, respectively. Dashed line in grey in panels (d-f) reflects the reference Shannon diversity index at the end of the 
original simulation.
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Population characteristics Of the 101 TRACERx renal clear-cell renal cell carcinoma cases, there were 68 males and 33 females, with the median age of 
64 (range: 34 - 84).

Recruitment TRACERx Renal Inclusion Criteria: 
1) Age 18- years or older 
2) Patients with histopathologically confirmed renal cell carcinoma, or suspected renal cell carcinoma, proceeding to 
neoadjuvant therapy and/or nephrectomy/metastasectomy, or identified as having progressive disease 
3) Or in patients undergoing nephrectomy for non-malignant disease 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical trial registration NCT03226886

Study protocol Details of the TRACERx Renal clinical study can be found here: https://clinicaltrials.gov/ct2/show/study/NCT03226886.

Data collection Clinical, genomic and follow-up data will be collected between July 6, 2017 and September 1, 2023 (final data collection date for 
primary outcome measure).

Outcomes Primary Endpoint: to validate ITH index and WGII as stage and grade independent prognostic markers of progression free survival in 
patients with ccRCC mutation in a gene of interest.
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