Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Refocusing multiple stressor research around the targets and scales of ecological impacts


Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual diagram of the ecological scale-target-based classification of stressors to quantify the impact of multiple simultaneous stressors on ecological communities.
Fig. 2: A framework for assessing the consistency and predictability of stressors.
Fig. 3: Criteria that models must satisfy to simulate the impacts of multiple stressors.


  1. 1.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Threats Classification Scheme (Version 3.2) (International Union for Conservation of Nature and Natural Resources, 2020);

  3. 3.

    Living Planet Report 2018: Aiming Higher (World Wildlife Fund, 2018).

  4. 4.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Halpern, B. S. & Fujita, R. Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131 (2013).

    Article  Google Scholar 

  6. 6.

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421 (2020).

    Article  Google Scholar 

  8. 8.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Burgess, B. J., Purves, D., Mace, G. & Murrell, D. J. Ecological theory predicts ecosystem stressor interactions in freshwater ecosystems, but highlights the strengths and weaknesses of the additive null model. Preprint at bioRxiv (2020).

  11. 11.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    PubMed  Article  Google Scholar 

  12. 12.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed  Article  Google Scholar 

  13. 13.

    Galic, N., Sullivan, L. L., Grimm, V. & Forbes, V. E. When things don’t add up: quantifying impacts of multiple stressors from individual metabolism to ecosystem processing. Ecol. Lett. 21, 568–577 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Ashauer, R. & Jager, T. Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ. Sci. Process Impacts 20, 48–57 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Caswell, H. in Ecotoxicology. A Hierarchical Treatment (eds Newman, M. C. & Jagoe, C. H) 255–292 (CRC Press, 1996).

  18. 18.

    Judd, A., Backhaus, T. & Goodsir, F. An effective set of principles for practical implementation of marine cumulative effects assessment. Environ. Sci. Policy 54, 254–262 (2015).

    Article  Google Scholar 

  19. 19.

    Schafer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).

    Article  Google Scholar 

  20. 20.

    Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).

    Google Scholar 

  21. 21.

    Beyer, J. et al. Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar. Environ. Res. 96, 81–91 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B Biol. Sci. 283, 20152592 (2016).

    Article  Google Scholar 

  23. 23.

    Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. (2017).

  24. 24.

    De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).

    Article  Google Scholar 

  25. 25.

    Goussen, B., Price, O. R., Rendal, C. & Ashauer, R. Integrated presentation of ecological risk from multiple stressors. Sci. Rep. 6, 36004 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Liess, M., Foit, K., Knillmann, S., Schafer, R. B. & Liess, H. D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Van den Brink, P. J. et al. Towards a general framework for the assessment of interactive effects of multiple stressors on aquatic ecosystems: results from the Making Aquatic Ecosystems Great Again (MAEGA) workshop. Sci. Total Environ. 684, 722–726 (2019).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Kooijman, S. A. L. M. Dynamic Energy Budgets in Biological Systems: Applications to Ecotoxicology (Cambridge Univ. Press, 1993).

  29. 29.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  30. 30.

    Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Bolker, B., Holyoak, M., Krivan, V., Rowe, L. & Schmitz, O. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84, 1101–1114 (2003).

    Article  Google Scholar 

  32. 32.

    Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).

    Article  Google Scholar 

  33. 33.

    Abrams, P. A., Menge, B. A., Mittelbach, G. G., Spiller, D. A. & Yodzis, P. in Food Webs: Integration of Patterns and Dynamics (eds G. A. Polis & K. O. Winemiller) 371–395 (Chapman & Hall, 1996).

  34. 34.

    Thompson, P. L., MacLennan, M. M. & Vinebrooke, R. D. Species interactions cause non‐additive effects of multiple environmental stressors on communities. Ecosphere 9, e02518 (2018).

    Article  Google Scholar 

  35. 35.

    Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B Biol. Sci. 365, 49–60 (2010).

    Article  Google Scholar 

  36. 36.

    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).

    Article  Google Scholar 

  40. 40.

    Ohlmann, M. et al. Diversity indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Ohlmann, M. et al. Mapping the imprint of biotic interactions on β‐diversity. Ecol. Lett. 21, 1660–1669 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Brun, P. et al. The productivity–biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Bracewell, S. et al. Qualifying the effects of single and multiple stressors on the food web structure of Dutch drainage ditches using a literature review and conceptual models. Sci. Total Environ. 684, 727–740 (2019).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kohler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 341, 759–765 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  46. 46.

    Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).

  47. 47.

    Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  48. 48.

    Jackson, M. C., Pawar, S. & Woodward, G. The temporal dynamics of multiple stressor effects: from individuals to ecosystems. Trends Ecol. Evol. (2021).

  49. 49.

    Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).

    Article  Google Scholar 

  50. 50.

    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Crespi, E. J., Williams, T. D., Jessop, T. S. & Delehanty, B. Life history and the ecology of stress: how do glucocorticoid hormones influence life‐history variation in animals? Funct. Ecol. 27, 93–106 (2013).

    Article  Google Scholar 

  53. 53.

    Matthiopoulos, J., Moss, R. & Lambin, X. The kin-facilitation hypothesis for red grouse population cycles: territory sharing between relatives. Ecol. Modell. 127, 53–63 (2000).

    Article  Google Scholar 

  54. 54.

    Moss, R., Watson, A. & Parr, R. Experimental prevention of a population cycle in red grouse. Ecology 77, 1512–1530 (1996).

    Article  Google Scholar 

  55. 55.

    Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Schmitz, O. J. Press perturbations and the predictability ofecological interactions in a food web. Ecology 78, 55–69 (1997).

    Google Scholar 

  58. 58.

    Ernest, S. K. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).

    Article  Google Scholar 

  59. 59.

    Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 4631–4636 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).

    Article  Google Scholar 

  61. 61.

    Pawar, S., Dell, A. I., Savage, V. M. & Knies, J. L. Real versus artificial variation in the thermal sensitivity of biological traits. Am. Nat. 187, E41–E52 (2016).

    PubMed  Article  Google Scholar 

  62. 62.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Yee, E. & Murray, S. Effects of temperature on activity, food consumption rates, and gut passage times of seaweed-eating Tegula species (Trochidae) from California. Mar. Biol. 145, 895–903 (2004).

    Article  Google Scholar 

  64. 64.

    Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, E429–E441 (2004).

    Article  Google Scholar 

  65. 65.

    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. (2014).

  66. 66.

    Vasseur, D. A. & McCann, K. S. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166, 184–198 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B Biol. Sci. 367, 2935–2944 (2012).

    Article  Google Scholar 

  69. 69.

    Binzer, A., Guill, C., Rall, B. C. & Brose, U. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob. Change Biol. 22, 220–227 (2016).

    Article  Google Scholar 

  70. 70.

    Sentis, A., Binzer, A. & Boukal, D. S. Temperature-size responses alter food chain persistence across environmental gradients. Ecol. Lett. 20, 852–862 (2017).

    PubMed  Article  Google Scholar 

  71. 71.

    Robinson, S. I., McLaughlin, Ó. B., Marteinsdóttir, B. & O’Gorman, E. J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. J. Anim. Ecol. 87, 634–646 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    McKee, D. et al. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48, 707–722 (2003).

    Article  Google Scholar 

  73. 73.

    McKee, D. et al. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshw. Biol. 47, 1557–1570 (2002).

    Article  Google Scholar 

  74. 74.

    Allen, A., Gillooly, J. & Brown, J. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  75. 75.

    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature‐dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).

    PubMed  Article  Google Scholar 

  76. 76.

    Clarke, A. & Fraser, K. Why does metabolism scale with temperature? Funct. Ecol. 18, 243–251 (2004).

    Article  Google Scholar 

  77. 77.

    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).

    Article  Google Scholar 

  78. 78.

    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B Biol. Sci. 365, 2081–2091 (2010).

    Article  Google Scholar 

  79. 79.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Relyea, R. A. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol. Appl. 15, 618–627 (2005).

    Article  Google Scholar 

  81. 81.

    Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl Acad. Sci. USA 110, 11039–11043 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Clements, W. H. & Rohr, J. R. Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).

  84. 84.

    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: discriminating between handling and digesting prey. Ecol. Monogr. 72, 95–112 (2002).

    Article  Google Scholar 

  85. 85.

    Jeschke, J. M. & Tollrian, R. Density-dependent effects of prey defences. Oecologia 123, 391–396 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Jorgensen, C., Ernande, B. & Fiksen, O. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evol. Appl. 2, 356–370 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Kuparinen, A., Kuikka, S. & Merila, J. Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  89. 89.

    Day, T., Abrams, P. A. & Chase, J. M. The role of size-specific predation in the evolution and diversification of prey life histories. Evolution 56, 877–887 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Heino, M., Pauli, B. D. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).

    Article  Google Scholar 

  91. 91.

    Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).

    Article  Google Scholar 

  92. 92.

    Beman, J. M., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211–214 (2005).

    Article  CAS  Google Scholar 

  93. 93.

    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 4, 1060–1068 (2020).

    PubMed  Article  Google Scholar 

  94. 94.

    Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).

    Article  Google Scholar 

  96. 96.

    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Duchet, C. et al. Pesticide‐mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9, e02179 (2018).

    Article  Google Scholar 

  100. 100.

    Halstead, N. T. et al. Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecol. Lett. 17, 932–941 (2014).

    PubMed  Article  Google Scholar 

  101. 101.

    Ferger, S. W. et al. Synergistic effects of climate and land use on avian beta‐diversity. Divers. Distrib. 23, 1246–1255 (2017).

    Article  Google Scholar 

  102. 102.

    Maris, V. et al. Prediction in ecology: promises, obstacles and clarifications. Oikos 127, 171–183 (2018).

    Article  Google Scholar 

  103. 103.

    Palmer, M. A. et al. Ecological science and sustainability for the 21st century. Front. Ecol. Environ. 3, 4–11 (2005).

    Article  Google Scholar 

  104. 104.

    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).

    Article  Google Scholar 

  105. 105.

    Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-generation ecological modelling: synthesis from a special issue. Ecol. Modell. 326, 177–187 (2016).

    Article  Google Scholar 

  106. 106.

    Geary, W. L. et al. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol. 4, 1459–1471 (2020).

    PubMed  Article  Google Scholar 

  107. 107.

    Rosenblatt, A. E., Smith-Ramesh, L. M. & Schmitz, O. J. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. Food Webs (2017).

  108. 108.

    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. (2019).

  109. 109.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    PubMed  Article  Google Scholar 

  110. 110.

    Gilljam, D., Curtsdotter, A. & Ebenman, B. Adaptive rewiring aggravates the effects of species loss in ecosystems. Nat. Commun. 6, 8412 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. 111.

    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).

    PubMed  Article  Google Scholar 

  112. 112.

    Thierry, A. et al. Adaptive foraging and the rewiring of size-structured food webs following extinctions. Basic Appl. Ecol. 12, 562–570 (2011).

    Article  Google Scholar 

  113. 113.

    Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl Acad. Sci. USA 105, 4191–4196 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Beckerman, A. P., Petchey, O. L. & Warren, P. H. Foraging biology predicts food web complexity. Proc. Natl Acad. Sci. USA 103, 13745–13749 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).

    Article  Google Scholar 

  116. 116.

    Williams, R. J., Brose, U. & Martinez, N. D. in From Energetics to Ecosystems: The Dynamics and Structure of Ecological Systems (eds Rooney, N. et al.) 37–51 (Springer, 2007).

  117. 117.

    Blanchard, J. L. et al. How does abundance scale with body size in coupled size‐structured food webs? J. Anim. Ecol. 78, 270–280 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Kerr, S. R. & Dickie, L. M. The Biomass Spectrum: A Predator–Prey Theory of Aquatic Production (Columbia Univ. Press, 2001).

  120. 120.

    Adams, M. P. et al. Informing management decisions for ecological networks, using dynamic models calibrated to noisy time-series data. Ecol. Lett. 23, 607–619 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Bode, M. et al. Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods Ecol. Evol. 8, 1012–1021 (2017).

    Article  Google Scholar 

  122. 122.

    McGowan, C. P., Runge, M. C. & Larson, M. A. Incorporating parametric uncertainty into population viability analysis models. Biol. Conserv. 144, 1400–1408 (2011).

    Article  Google Scholar 

  123. 123.

    Delmas, E., Brose, U., Gravel, D., Stouffer, D. B. & Poisot, T. Simulations of biomass dynamics in community food webs. Methods Ecol. Evol. 8, 881–886 (2017).

    Article  Google Scholar 

  124. 124.

    Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Tabi, A., Petchey, O. L. & Pennekamp, F. Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem. Ecol. Lett. 22, 1061–1071 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    O’Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L. & Mayer-Pinto, M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci. Total Environ. 684, 753–764 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  128. 128.

    Hampton, S. E. et al. Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology 94, 2663–2669 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).

    Article  Google Scholar 

  130. 130.

    Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: reframing the co‐occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).

    Google Scholar 

  131. 131.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2923–2934 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Brennan, G. L., Colegrave, N. & Collins, S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc. Natl Acad. Sci. USA 114, 9930–9935 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    De Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).

    Article  Google Scholar 

  136. 136.

    Ellner, S. P., Seifu, Y. & Smith, R. H. Fitting population dynamic models to time‐series data by gradient matching. Ecology 83, 2256–2270 (2002).

    Article  Google Scholar 

  137. 137.

    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Law, R., Plank, M. J., James, A. & Blanchard, J. L. Size‐spectra dynamics from stochastic predation and growth of individuals. Ecology 90, 802–811 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Hampton, S. E., Scheuerell, M. D. & Schindler, D. E. Coalescence in the Lake Washington story: interaction strengths in a planktonic food web. Limnol. Oceanogr. 51, 2042–2051 (2006).

    Article  Google Scholar 

  140. 140.

    Ives, A. R. Predicting the response of populations to environmental change. Ecology 76, 926–941 (1995).

    Article  Google Scholar 

Download references


A.P.B., B.I.S., P.S.A.B. and E.D. acknowledge funding from the NERC (NE/S001395/1). A.P.B. acknowledges funding from the NERC (NE/T003502/1). B.I.S. was also supported by a Royal Commission for the Exhibition of 1851 Research Fellowship. T.J.W. acknowledges funding from the NERC and the Defra Marine Ecosystem Research Programme (NE/L003279/1). O.L.P, A.G. and F.P. acknowledge support of the University of Zurich Research Priority Programme Global Change and Biodiversity.

Author information




B.I.S., P.S.A.B., J.L.B., T.C., E.D., A.G., C.A.G., U.J., F.P., O.L.P., T.P., T.J.W. and A.P.B. contributed to the ideas in this manuscript. B.I.S. wrote the first draft. B.I.S., P.S.A.B., J.L.B., T.C., E.D., A.G., C.A.G., U.J., F.P., O.L.P., T.P., T.J.W. and A.P.B. contributed to subsequent revisions.

Corresponding author

Correspondence to Benno I. Simmons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks James Orr, Ralf Schaefer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simmons, B.I., Blyth, P.S.A., Blanchard, J.L. et al. Refocusing multiple stressor research around the targets and scales of ecological impacts. Nat Ecol Evol 5, 1478–1489 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing