Abstract
Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature’s contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets—the actions that are necessary for the goals to be met—should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Large-scale factors controlling biological communities in the Iberian Peninsula: an insight into global change effects on river ecosystems
Aquatic Sciences Open Access 18 August 2023
-
A function-based typology for Earth’s ecosystems
Nature Open Access 12 October 2022
-
Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean
Nature Sustainability Open Access 06 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Convention on Biological Diversity (UN, 1992).
Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/
Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).
Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).
Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.3831673
Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).
Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).
Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).
Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).
Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).
Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).
Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).
Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).
Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).
Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).
Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/107096
Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/111273
Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).
Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).
Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).
Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).
Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).
Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).
Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).
Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).
Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).
Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).
Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).
Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).
Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).
Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).
Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).
Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).
Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).
Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).
Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).
Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).
Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).
Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).
Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).
Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).
Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).
Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).
Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).
Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).
Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).
Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).
Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).
Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).
Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).
Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).
Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).
Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).
Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).
Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).
Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).
Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).
Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).
Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).
Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).
Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).
Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).
Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).
Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).
Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).
SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml
Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml
Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).
UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).
Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).
Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).
Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).
Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).
Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).
Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).
Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).
Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).
Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).
Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).
Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).
Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).
Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).
Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).
Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).
Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).
Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).
Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).
Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).
Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).
Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).
Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).
Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).
Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).
Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).
Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).
Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).
Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).
Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).
Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).
Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).
Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).
Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).
Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).
Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).
Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).
Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).
Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).
Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).
Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).
Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).
Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).
Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).
Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).
Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).
Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).
Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).
Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).
The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/
An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/
Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).
Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).
Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).
Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).
Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).
Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).
Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).
Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).
Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).
McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).
Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).
Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).
Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).
DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).
Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).
Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).
Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).
Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).
Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).
Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).
Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).
Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).
Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).
Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).
Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).
Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).
Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).
Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).
Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).
Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).
Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).
Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).
Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).
Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).
McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).
Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).
Acknowledgements
We thank N. Ali (UNEP-WCMC) for her comments on an earlier draft. We acknowledge the following funding bodies: the Australian Research Council (FT190100234, to E.N.; LP170101143, to E.N., D.A.K., H.G., N.J.M., J.E.M.W.; DP170100609, to E.N.), Veski and the Office of the Chief Scientist of Victoria (IWF01, to E.N.); funding provided to IUCN by MAVA Foundation (to E.N.).
Author information
Authors and Affiliations
Contributions
E.N. led the conceptualization and writing of the paper. E.N., K.E.W., J.A.R., C.F.S. and S.L.S. undertook analysis and interpretation of data. K.E.W., J.A.R., C.F.S., S.L.S., A.A., T.M.B., N.D.B., S.-T.C., H.G., S.L.H., D.A.K., M.M., D.M., N.J.M., C.R.N., D.O., A.P., A.L.S. and J.E.M.W. contributed to discussion, drafting and writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Ecology & Evolution thanks David Moreno Mateos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1 and 2 and Methods.
Supplementary Tables 3 and 4
Supplementary Table 3 contains full results of the indicator review (summarized in Fig. 3). Supplementary Table 4 includes metadata detailing the criteria used in judgements in the review process.
Rights and permissions
About this article
Cite this article
Nicholson, E., Watermeyer, K.E., Rowland, J.A. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat Ecol Evol 5, 1338–1349 (2021). https://doi.org/10.1038/s41559-021-01538-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-021-01538-5
This article is cited by
-
Large-scale factors controlling biological communities in the Iberian Peninsula: an insight into global change effects on river ecosystems
Aquatic Sciences (2023)
-
A function-based typology for Earth’s ecosystems
Nature (2022)
-
Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean
Nature Sustainability (2021)