Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework

Abstract

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature’s contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets—the actions that are necessary for the goals to be met—should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ecosystems are central to meeting all three objectives of the CBD.
Fig. 2: A theory of change to support the design of action targets to achieve an ecosystem goal.
Fig. 3: Reviewed indicators for an ecosystem goal, with recommendations for their further development and use.

References

  1. Convention on Biological Diversity (UN, 1992).

  2. Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/

  3. Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).

  4. Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).

  5. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.3831673

  6. Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).

  7. Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    CAS  PubMed  Google Scholar 

  8. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    CAS  PubMed  Article  Google Scholar 

  9. Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).

    Article  Google Scholar 

  11. Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).

    Article  Google Scholar 

  12. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

    CAS  PubMed  Article  Google Scholar 

  14. Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    PubMed  Article  Google Scholar 

  15. Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).

    PubMed  Article  Google Scholar 

  16. Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).

  17. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  18. Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).

    CAS  PubMed  Article  Google Scholar 

  19. Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).

    Article  Google Scholar 

  20. Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).

    Article  Google Scholar 

  21. Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/107096

  22. Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/111273

  23. Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  24. Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).

    Article  Google Scholar 

  26. Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).

  27. Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).

    Article  Google Scholar 

  28. Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).

    PubMed  Article  CAS  Google Scholar 

  29. Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).

  31. Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).

    Article  Google Scholar 

  32. Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).

    Google Scholar 

  33. Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).

    Article  Google Scholar 

  34. Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).

    Article  Google Scholar 

  35. Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).

    CAS  PubMed  Article  Google Scholar 

  36. Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).

    CAS  PubMed  Article  Google Scholar 

  37. Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).

    PubMed  Article  Google Scholar 

  38. Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).

    PubMed  Article  Google Scholar 

  39. Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).

    Article  Google Scholar 

  40. Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).

    PubMed  Article  Google Scholar 

  41. Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).

    Article  Google Scholar 

  42. Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).

    PubMed  Article  Google Scholar 

  43. Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).

    CAS  PubMed  Article  Google Scholar 

  44. Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).

    Article  Google Scholar 

  45. Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).

    Article  Google Scholar 

  46. Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).

    Article  Google Scholar 

  47. Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).

  49. Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article  Google Scholar 

  50. Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).

  51. Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).

    PubMed  Article  Google Scholar 

  52. DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    CAS  PubMed  Article  Google Scholar 

  53. Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    PubMed  Article  Google Scholar 

  54. Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS  PubMed  Article  Google Scholar 

  55. Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).

    Article  Google Scholar 

  56. Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).

    Article  Google Scholar 

  57. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  PubMed  Article  Google Scholar 

  58. Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).

  59. Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    PubMed  Article  Google Scholar 

  60. Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).

  61. Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).

    PubMed  Article  Google Scholar 

  62. Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).

    Article  Google Scholar 

  63. Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).

  64. Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).

    PubMed  Article  Google Scholar 

  65. Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).

  66. Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).

  67. Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).

    Article  Google Scholar 

  68. Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).

    Article  Google Scholar 

  69. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).

  70. Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).

    CAS  PubMed  Article  Google Scholar 

  72. Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    PubMed  Article  Google Scholar 

  74. Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).

    Article  Google Scholar 

  75. Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS  PubMed  Article  Google Scholar 

  76. Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).

    Article  Google Scholar 

  77. Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).

    Article  Google Scholar 

  79. Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).

    PubMed  Article  Google Scholar 

  81. Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).

    Article  Google Scholar 

  82. Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).

    Article  Google Scholar 

  83. SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml

  84. Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml

  85. Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).

  86. Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).

  87. UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).

  88. Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).

  89. Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).

  90. Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).

    Article  Google Scholar 

  91. Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).

    Article  Google Scholar 

  92. Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).

    Article  Google Scholar 

  93. Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).

  94. Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).

  95. Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).

    Google Scholar 

  96. Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).

  97. Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).

    PubMed  Article  Google Scholar 

  98. Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).

    Article  Google Scholar 

  99. Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).

    Article  Google Scholar 

  100. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  PubMed  Google Scholar 

  101. Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).

    CAS  PubMed  Article  Google Scholar 

  102. Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  104. Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).

    Article  Google Scholar 

  106. Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).

    PubMed  Article  Google Scholar 

  107. Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).

    Article  Google Scholar 

  108. Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Article  Google Scholar 

  109. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    CAS  PubMed  Article  Google Scholar 

  110. Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).

    Article  Google Scholar 

  112. Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).

    Article  Google Scholar 

  113. Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).

    Article  Google Scholar 

  115. Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).

    CAS  PubMed  Article  Google Scholar 

  116. Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).

    CAS  PubMed  Article  Google Scholar 

  117. Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).

    Article  Google Scholar 

  118. Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).

    PubMed  Article  Google Scholar 

  119. Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).

    Article  Google Scholar 

  120. Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).

    PubMed  Article  Google Scholar 

  121. Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).

    Article  Google Scholar 

  122. Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).

    Article  Google Scholar 

  124. Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).

    PubMed  Article  Google Scholar 

  126. Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  127. Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).

    Article  Google Scholar 

  128. Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).

    Article  Google Scholar 

  129. Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).

    Article  Google Scholar 

  130. Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).

    PubMed  Article  Google Scholar 

  132. Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).

    Article  Google Scholar 

  134. Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).

    Article  Google Scholar 

  135. Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).

    Article  Google Scholar 

  136. Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).

    Article  Google Scholar 

  137. Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).

    PubMed  Article  CAS  Google Scholar 

  138. Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).

    Article  Google Scholar 

  139. Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).

    PubMed  Article  Google Scholar 

  140. Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).

    Article  Google Scholar 

  141. Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).

    Article  Google Scholar 

  142. The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/

  143. An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/

  144. Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).

  145. Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    Article  Google Scholar 

  146. Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).

    Article  Google Scholar 

  147. Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    Article  Google Scholar 

  148. Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).

    Article  Google Scholar 

  150. Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).

    Article  Google Scholar 

  151. Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).

    Article  Google Scholar 

  152. Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).

    Article  Google Scholar 

  153. McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).

    Article  Google Scholar 

  155. Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  156. Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article  Google Scholar 

  157. Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).

    Article  Google Scholar 

  158. Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).

    Article  Google Scholar 

  160. Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).

    Article  Google Scholar 

  161. Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).

    Article  Google Scholar 

  162. Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).

    Article  Google Scholar 

  163. Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).

  164. Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).

  165. Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Article  Google Scholar 

  166. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  PubMed  Article  Google Scholar 

  167. Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    CAS  PubMed  Article  Google Scholar 

  168. Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).

    PubMed  Article  Google Scholar 

  169. Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS  PubMed  Article  Google Scholar 

  171. Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).

    Google Scholar 

  172. Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).

    CAS  PubMed  Article  Google Scholar 

  173. Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).

    Article  Google Scholar 

  174. Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).

    Article  Google Scholar 

  175. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  176. Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).

    Article  Google Scholar 

  177. Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).

  178. Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  179. Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).

    Article  Google Scholar 

  180. Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).

    Article  Google Scholar 

  181. Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).

    Article  Google Scholar 

  182. Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).

    Google Scholar 

  183. Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).

  184. McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).

    Article  Google Scholar 

  185. Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Ali (UNEP-WCMC) for her comments on an earlier draft. We acknowledge the following funding bodies: the Australian Research Council (FT190100234, to E.N.; LP170101143, to E.N., D.A.K., H.G., N.J.M., J.E.M.W.; DP170100609, to E.N.), Veski and the Office of the Chief Scientist of Victoria (IWF01, to E.N.); funding provided to IUCN by MAVA Foundation (to E.N.).

Author information

Authors and Affiliations

Authors

Contributions

E.N. led the conceptualization and writing of the paper. E.N., K.E.W., J.A.R., C.F.S. and S.L.S. undertook analysis and interpretation of data. K.E.W., J.A.R., C.F.S., S.L.S., A.A., T.M.B., N.D.B., S.-T.C., H.G., S.L.H., D.A.K., M.M., D.M., N.J.M., C.R.N., D.O., A.P., A.L.S. and J.E.M.W. contributed to discussion, drafting and writing.

Corresponding author

Correspondence to Emily Nicholson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks David Moreno Mateos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Methods.

Supplementary Tables 3 and 4

Supplementary Table 3 contains full results of the indicator review (summarized in Fig. 3). Supplementary Table 4 includes metadata detailing the criteria used in judgements in the review process.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nicholson, E., Watermeyer, K.E., Rowland, J.A. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat Ecol Evol 5, 1338–1349 (2021). https://doi.org/10.1038/s41559-021-01538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01538-5

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing