Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained high rates of morphological evolution during the rise of tetrapods

Abstract

The fish-to-tetrapod transition is one of the most iconic events in vertebrate evolution, yet fundamental questions regarding the dynamics of this transition remain unresolved. Here, we use advances in Bayesian morphological clock modelling to reveal the evolutionary dynamics of early tetrapodomorphs (tetrapods and their closest fish relatives). We show that combining osteological and ichnological calibration data results in major shifts on the time of origin of all major groups of tetrapodomorphs (up to 25 million years) and that low rates of net diversification, not fossilization, explain long ghost lineages in the early tetrapodomorph fossil record. Further, our findings reveal extremely low rates of morphological change for most early tetrapodomorphs, indicating widespread stabilizing selection upon their ‘fish’ morphotype. This pattern was broken only by elpistostegalians (including early tetrapods), which underwent sustained high rates of morphological evolution for ~30 Myr during the deployment of the tetrapod body plan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of evolutionary trees and divergence times for the major groups of tetrapodomorphs using distinct tree calibration strategies.
Fig. 2: Shifts in diversification parameter estimates from the FBD process and LTT across time bins.
Fig. 3: Relative overall rates of morphological evolution in early tetrapodomorphs.
Fig. 4: Relative rates of evolution and inferred mode of selection across subdivisions of the phenotype in early tetrapodomorphs.
Fig. 5: Distribution of relative rates of evolution for each morphological partition across tetrapodomorphs.

Similar content being viewed by others

Data availability

All data generated and analysed are available online as Supplementary Data 1–3 at Harvard’s Dataverse Repositoryhttps://doi.org/10.7910/DVN/NNVTTD80Source data are provided with this paper.

Code availability

All R scripts, MrBayes command blocks and BEAST2 XML files are freely available online at Harvard’s Dataverse Repositoryhttps://doi.org/10.7910/DVN/NNVTTD80. R scripts for all protocols are also available on GitHub: https://github.com/tiago-simoes/MorphoEvol_Tetrapods.git.

References

  1. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).

  2. Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, 2002).

  3. Erwin, D. H. Novelty and innovation in the history of life. Curr. Biol. 25, R930–R940 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Simões, T. R., Vernygora, O. V., Caldwell, M. W. & Pierce, S. E. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat. Commun. 11, 3322 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lepage, D. Avibase-the world bird database. http://avibase.bsc-eoc.org/avibase.jsp (Accessed 15 February 2021).

  7. Uetz, P., Freed, P., Aguilar, R. & Hošek, J. The Reptile Database. http://www.reptile-database.org (Accessed 15 February2021).

  8. AmphibiaWeb. University of California, Berkeley, CA, USA https://amphibiaweb.org (Accessed 15 February 2021).

  9. Mammal Diversity Database (Version 1.2). American Society of Mammalogists 10.5281/zenodo.4139818 (Accessed 15 February 2021).

  10. Shubin, N. Your Inner Fish: A Journey Into the 3.5-Billion-Year History of the Human Body (Vintage Books, 2008).

  11. Clack, J. A. The fin to limb transition: new data, interpretations, and hypotheses from paleontology and developmental biology. Annu. Rev. Earth Planet. Sci. 37, 163–179 (2009).

    Article  CAS  Google Scholar 

  12. Clack, J. A. Gaining Ground: The Origin and Evolution of Tetrapods (Indiana Univ. Press, 2012).

  13. Ahlberg, P. E. Follow the footprints and mind the gaps: a new look at the origin of tetrapods. Earth Env. Sci. Trans. R. Soc. Edinb. 109, 115–137 (2018).

    Google Scholar 

  14. Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, P. S. L., Friedman, M. & Ruta, M. Late to the table: diversification of tetrapod mandibular biomechanics lagged behind the evolution of terrestriality. Integr. Comp. Biol. 53, 197–208 (2013).

    Article  PubMed  Google Scholar 

  16. Ruta, M., Krieger, J., Angielczyk, K. D. & Wills, M. A. The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates. Earth Env. Sci. Trans. R. Soc. Edinb. 109, 1–19 (2018).

    Google Scholar 

  17. Ahlberg, P. E. Elginerpeton pancheni and the earliest tetrapod clade. Nature 373, 420–425 (1995).

    Article  CAS  Google Scholar 

  18. Beznosov, P. A., Clack, J. A., Lukševičs, E., Ruta, M. & Ahlberg, P. E. Morphology of the earliest reconstructable tetrapod Parmastega aelidae. Nature 574, 527–531 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Clément, G. & Lebedev, O. Revision of the early tetrapod Obruchevichthys vorobyeva, 1977 from the Frasnian (Upper Devonian) of the North-western East European Platform. Paleontol. J. 48, 1082–1091 (2014).

    Article  Google Scholar 

  20. Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 43–48 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. Qvarnström, M., Szrek, P., Ahlberg, P. E. & Niedźwiedzki, G. Non-marine palaeoenvironment associated to the earliest tetrapod tracks. Sci. Rep. 8, 1–10 (2018).

    Article  CAS  Google Scholar 

  22. Friedman, M. & Brazeau, M. D. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods? Proc. R. Soc. Lond. B 278, 432–439 (2011).

    Google Scholar 

  23. Ronquist, F., Lartillot, N. & Phillips, M. J. Closing the gap between rocks and clocks using total-evidence dating. Philos. Trans. R. Soc. B 371, 20150136 (2016).

    Article  Google Scholar 

  24. Cloutier, R. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Stadler, T. & Warnock, R. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth-death process. Proc. R. Soc. Lond. B 286, 20190685 (2019).

    Google Scholar 

  26. Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    Article  PubMed  Google Scholar 

  27. Simões, T. R., Caldwell, M. W. & Pierce, S. E. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol. 18, 191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu, M., Ahlberg, P. E., Zhao, W.-J. & Jia, L.-T. A Devonian tetrapod-like fish reveals substantial parallelism in stem tetrapod evolution. Nat. Ecol. Evol. 1, 1470–1476 (2017).

    Article  PubMed  Google Scholar 

  29. Lu, J. et al. The earliest known stem-tetrapod from the Lower Devonian of China. Nat. Commun. 3, 1160 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Swartz, B. A marine stem-tetrapod from the Devonian of western North America. PLoS ONE 7, e33683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeffery, J. E., Storrs, G. W., Holland, T., Tabin, C. J. & Ahlberg, P. E. Unique pelvic fin in a tetrapod-like fossil fish, and the evolution of limb patterning. Proc. Natl Acad. Sci. USA 115, 12005–12010 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dickson, B., Clack, J. A., Smithson, T. R. & Pierce, S. E. Functional adaptive landscapes predict terrestrial capacity at the origin of limbs. Nature 589, 242–245 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Simões, T. R., Caldwell, M. W., Palci, A. & Nydam, R. L. Giant taxon-character matrices: quality of character constructions remains critical regardless of size. Cladistics 33, 198–219 (2017).

    Article  Google Scholar 

  34. Brazeau, M. D. Problematic character coding methods in morphology and their effects. Biol. J. Linn. Soc. 104, 489–498 (2011).

    Article  Google Scholar 

  35. Sereno, P. C. Logical basis for morphological characters in phylogenetics. Cladistics 23, 565–587 (2007).

    Google Scholar 

  36. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comp. Biol. 15, e1006650 (2019).

    Article  CAS  Google Scholar 

  38. King, B., Qiao, T., Lee, M. S. Y., Zhu, M. & Long, J. A. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst. Biol. 66, 499–516 (2017).

    PubMed  Google Scholar 

  39. O’Reilly, J. E. & Donoghue, P. C. Tips and nodes are complementary not competing approaches to the calibration of molecular clocks. Biol. Lett. 12, 20150975 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Close, R. A. et al. Diversity dynamics of Phanerozoic terrestrial tetrapods at the local-community scale. Nat. Ecol. Evol. 3, 590–597 (2019).

    Article  PubMed  Google Scholar 

  41. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  42. Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).

    Article  Google Scholar 

  43. Yang, Z. Molecular Evolution: A Statistical Approach (Oxford Univ. Press, 2014).

  44. Markey, M. J. & Marshall, C. R. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. Proc. Natl Acad. Sci. USA 104, 7134–7138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lemberg, J. B., Daeschler, E. B. & Shubin, N. H. The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting. Proc. Natl Acad. Sci. USA 118, e2016421118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacIver, M. A., Schmitz, L., Mugan, U., Murphey, T. D. & Mobley, C. D. Massive increase in visual range preceded the origin of terrestrial vertebrates. Proc. Natl Acad. Sci. USA 114, E2375–E2384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Molnar, J., Hutchinson, J. R., Diogo, R., Clack, J. A. & Pierce, S. E. Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition. Sci. Adv. 7, eabd7457 (2021).

    Article  PubMed  Google Scholar 

  48. Lennie, K. I., Manske, S. L., Mansky, C. F. & Anderson, J. S. Locomotory behaviour of early tetrapods from Blue Beach, Nova Scotia, revealed by novel microanatomical analysis. R. Soc. Open Sci. 8, 210281 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cantalapiedra, J. L., Prado, J. L., Fernández, M. H. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Luo, A., Duchêne, D. A., Zhang, C., Zhu, C.-D. & Ho, S. Y. W. A simulation-based evaluation of tip-dating under the fossilized birth–death process. Syst. Biol. 69, 325–344 (2020).

    Article  PubMed  Google Scholar 

  51. Aberer, A. J., Krompass, D. & Stamatakis, A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst. Biol. 62, 162–166 (2013).

    Article  PubMed  Google Scholar 

  52. Vernygora, O. V., Simões, T. R. & Campbell, E. O. Evaluating the performance of probabilistic algorithms for phylogenetic analysis of big morphological datasets: a simulation study. Syst. Biol. 69, 1088–1105 (2020).

    Article  PubMed  Google Scholar 

  53. Wright, A., Wagner, P. J. & Wright, D. F. Testing Character Evolution Models in Phylogenetic Paleobiology: A Case Study with Cambrian Echinoderms (Cambridge Univ. Press, 2021).

  54. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, 2957–2966 (2014).

    Article  CAS  Google Scholar 

  55. Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Warnock, R. C. M., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).

    Article  Google Scholar 

  57. Ho, S. Y., Phillips, M. J., Drummond, A. J. & Cooper, A. Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation. Mol. Biol. Evol. 22, 1355–1363 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bapst, D. W., Wright, A. M., Matzke, N. J. & Lloyd, G. T. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria). Biol. Lett. 12, 20160237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Paterson, J. R., Edgecombe, G. D. & Lee, M. S. Y. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. Proc. Natl Acad. Sci. USA 116, 4394–4399 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang, C. & Wang, M. Bayesian tip dating reveals heterogeneous morphological clocks in Mesozoic birds. R. Soc. Open Sci. 6, 182062 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M.-H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).

    Article  PubMed  Google Scholar 

  62. Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53, 47–67 (2004).

    Article  PubMed  Google Scholar 

  63. Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.7 http://beast.bio.ed.ac.uk/Tracer (2018).

  65. Warren, D. L., Geneva, A. J. & Lanfear, R. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Mol. Biol. Evol. 34, 1016–1020 (2017).

    CAS  PubMed  Google Scholar 

  66. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) (IEEE, 2010).

  67. Lee, M. S. Y. Multiple morphological clocks and total-evidence tip-dating in mammals. Biol. Lett. 12, 20160033 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Long, J. A. & Gordon, M. S. The greatest step in vertebrate history: a paleobiological review of the fish–tetrapod transition. Physiol. Biochem. Zool. 77, 700–719 (2004).

    Article  PubMed  Google Scholar 

  69. Goswami, A. & Polly, P. D. in Carnivoran Evolution: New Views on Phylogeny, Form and Function (eds Goswami, A. & Friscia, A.) 141–164 (Cambridge Univ. Press, 2010).

  70. Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS  PubMed  Google Scholar 

  71. Lloyd, G. T. Estimating morphological diversity and tempo with discrete character–taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article  Google Scholar 

  72. Lehmann, O. E. R., Ezcurra, M. D., Butler, R. J. & Lloyd, G. T. Biases with the Generalized Euclidean Distance measure in disparity analyses with high levels of missing data. Palaeontology 62, 837–849 (2019).

    Article  Google Scholar 

  73. Rencher, A. C. & Christensen, W. F. Methods of Multivariate Analysis (John Wiley & Sons, 2012).

  74. Budiaji, W. & Leisch, F. Simple K-medoids partitioning algorithm for mixed variable data. Algorithms 12, 177 (2019).

    Article  Google Scholar 

  75. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comp. Appl. Math. 20, 53–65 (1987).

    Article  Google Scholar 

  76. Van Der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  77. Van Der Maaten, L. Learning a parametric embedding by preserving local structure. Proc. Machine Learn. Res. 5, 384–391 (2009).

    Google Scholar 

  78. Rosa, B. B., Melo, G. A. & Barbeitos, M. S. Homoplasy-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Syst. Biol. 68, 657–671 (2019).

    Article  PubMed  Google Scholar 

  79. Ronquist, F., Huelsenbeck, J., Teslenko, M. & Nylander, J. A. A. MrBayes version 3.2 Manual: Tutorials and Model Summaries https://nbisweden.github.io/MrBayes/manual.html (2019).

  80. Simoes, T. R. & Pierce, S. E. Supplementary Data 1–4 for “Sustained High Rates of Morphological Evolution During the Rise of Tetrapods” https://doi.org/10.7910/DVN/NNVTTD (Harvard Dataverse, 2021).

Download references

Acknowledgements

We thank C. Zhang for discussions and J. Barido-Sottani for valuable assistance with the treeWoffset operator of BEAST2. We also thank M. Caldwell and K. Jones for comments on an earlier version of the manuscript. T.R.S. was supported by an Alexander Agassiz postdoctoral fellowship (Museum of Comparative Zoology, Harvard University) and a National Sciences and Engineering Council of Canada (NSERC) postdoctoral fellowship. Additional funds were provided by Harvard University to S.E.P.

Author information

Authors and Affiliations

Authors

Contributions

T.R.S. and S.E.P. conceived and designed the project. T.R.S. updated the morphological dataset, conducted phylogenetic and statistical analyses, interpreted the data and wrote the manuscript. S.E.P. updated the morphological dataset, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Tiago R. Simões.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Neil Brocklehurst and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Violin plots for estimates from SFBD free parameters across time bins.

a, violin plots from main tip-dating only analysis. b, violin plots after incorporating the age of the Zachełmie tracks. Net diversification nearly halves for the first and second time bins using the new divergence times. Relative extinction values also decrease but, to a lower extent, whereas median relative fossilization remains similar between analyses (see also Fig. 2). However, the new diversification scenario (B) suggests a less drastic reduction in net diversification values across time bins during early tetrapodomorph evolution.

Source data

Extended Data Fig. 2 Kernel density plot for the base of the clock rate among different calibration strategies.

Results for the main tip-dating analysis using the SFBD tree model (see also Supplementary Fig. 12, 13) and results from the main tip+node dating analysis (including trackway data) using the SFBD tree model (see also Supplementary Figs. 16, 17), with medians = 0.01083 vs 0.03514, respectively.

Source data

Extended Data Fig. 3 Comparison of divergence time and MCT topologies obtained across distinct analyses using distinct calibration strategies.

a, results from the main tip-dating analysis using the SFBD tree model (see also Supplementary Information Figs. 12, 13). b, results from the main tip+node dating analysis (including trackway data) using the SFBD tree model (see also Supplementary Information Figs. 16, 17). c, Results from the main tip+node dating analysis (including trackway data) using partitioned morphological clocks (see also Supplementary Information Figs. 18, 19). Node values represent median ages and purple error bars represent the 95% highest posterior density (HPD) intervals.

Extended Data Fig. 4 Overall relative rates of morphological evolution in early tetrapodomorphs using distinct calibration strategies.

a, rates of morphological evolution obtained from the main tip-dating only analysis. b, overall relative rates of morphological evolution obtained from the main tip+node dating analysis (including trackway age data) using a single clock partition. Under the new evolutionary scenario, (b) estimated rates of morphological evolution within Elpistostegalians are closer in magnitude to evolutionary rates in other clades in the tree. However, as the branches leading up to other tetrapodomorph lineages also become somewhat proportionally longer chronologically, Elpistostegalians still retained the highest relative rates of morphological evolution in the entire tree.

Extended Data Fig. 5 Relative rates of morphological evolution using partitioned morphological clocks.

Models and calibration parameters as in Extended Data Fig. 4b.

Extended Data Fig. 6 Display of significantly accelerating or decelerating rates of evolution across lineages.

Relative rates of morphological evolution using the same models and calibrations as in Extended Data Fig. 4b but using partitioned morphological clocks. Branch colouring indicates whether rates are significantly higher (> 1.297040, in red) or lower (< 0.735828, in blue) by one standard deviation from the background rate (=1.0). Grey branches indicate rates are not significantly different from background rates.

Extended Data Fig. 7 Nonlinear multidimensional scaling analysis using t-SNE plotted with morphological character clusters identified by the PAM+Si method highlighted in different colours.

Numbers indicate character numbers in the updated character list available as Supplementary Data 1.

Source data

Extended Data Fig. 8 Histograms of depositional paleo-environment of all occurrences of all dipnomorphans and early tetrapodomorphs taxa assessed here.

Data obtained from the Paleobiology Database and from literature survey. For raw data, see Dataset S3.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, dataset updates, Figs. 1–30, Tables 1–13 and references.

Reporting Summary

Peer Review Information

Source data

Source Data Fig. 2

Bayesian posterior output for clock and FBD parameters across time bins for tip and tip + node calibrated analyses.

Source Data Fig. 5

Bayesian summary tree output for each clock partition per clade.

Source Data Extended Data Fig. 1

Bayesian posterior output for clock and FBD parameters across time bins for tip and tip + node calibrated analyses.

Source Data Extended Data Fig. 2

Bayesian posterior output for clock and FBD parameters across time bins for tip and tip + node calibrated analyses.

Source Data Extended Data Fig. 7

Gower distance matrix.

Source Data Extended Data Fig. 8

Statistical source data obtained from PBDB and additional sources (listed within file).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simões, T.R., Pierce, S.E. Sustained high rates of morphological evolution during the rise of tetrapods. Nat Ecol Evol 5, 1403–1414 (2021). https://doi.org/10.1038/s41559-021-01532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01532-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing