Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fertilization mode drives sperm length evolution across the animal tree of life

Abstract

Evolutionary biologists have endeavoured to explain the extraordinary diversity of sperm morphology across animals for more than a century. One hypothesis to explain sperm diversity is that sperm length is shaped by the environment where fertilization takes place (that is, fertilization mode). Evolutionary transitions in fertilization modes may transform how selection acts on sperm length, probably by affecting postcopulatory mechanisms of sperm competition and the scope for cryptic female choice. Here, we address this hypothesis by generating a macro-evolutionary view of how fertilization mode (including external fertilizers, internal fertilizers and spermcasters) influences sperm length diversification among 3,233 species from 21 animal phyla. We show that sperm are shorter in species whose sperm are diluted in aquatic environments (that is, external fertilizers and spermcasters) and longer in species where sperm are directly transferred to females (that is, internal fertilizers). We also show that sperm length evolves faster and with a greater number of adaptive shifts in species where sperm operate within females (for example, spermcasters and internal fertilizers). Our results demonstrate that fertilization mode is a key driver in the evolution of sperm length across animals, and we argue that a complex combination of postcopulatory forces has shaped sperm length diversification throughout animal evolution.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Ancestral character reconstruction of fertilization mode across animals.
Fig. 2: Sperm length, evolutionary optima and evolutionary rates across fertilization modes in animals.
Fig. 3: Evolutionary shifts in sperm length across 900 million years of animal evolution.
Fig. 4: Magnitude, direction and number of descendants for shifts in sperm length over evolutionary history.

Data availability

Data, phylogeny and full references for our dataset are available on the OSF platform (https://osf.io/sxnqe) and at https://spermtree.org.

Code availability

The R code used to analyse the data in the current study is available on the OSF platform (https://osf.io/sxnqe) and at https://spermtree.org.

References

  1. Parker, G. A., Baker, R. R. & Smith, V. The origin and evolution of gamete dimorphism and the male–female phenomenon. J. Theor. Biol. 36, 529–553 (1972).

    CAS  PubMed  Google Scholar 

  2. Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Perspect. Biol. 6, a017509 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Lehtonen, J., Parker, G. A. & Schärer, L. Why anisogamy drives ancestral sex roles. Evolution 70, 1129–1135 (2016).

    PubMed  Google Scholar 

  4. Bulmer, M. G. & Parker, G. A. The evolution of anisogamy: a game-theoretic approach. Proc. Biol. Sci. Lond. B. 269, 2381–2388 (2002).

    CAS  Google Scholar 

  5. Pitnick, S., Hosken, D. J., Birkhead, T. R. in Sperm Biology: An Evolutionary Perspective (eds. Birkhead, T. R. et al.) 69–149 (Academic, 2009).

  6. Pitnick, S., Spicer, G. S. & Markow, T. A. How long is a giant sperm? Nature 375, 109–109 (1995).

    CAS  PubMed  Google Scholar 

  7. Lüpold, S. & Pitnick, S. Sperm form and function: what do we know about the role of sexual selection? Reproduction 155, R229–R243 (2018).

    PubMed  Google Scholar 

  8. Franzén, A. On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among invertebrates. Zool. Bidrag. Uppsala 31, 355–482 (1956).

  9. Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231 (1995).

    CAS  PubMed  Google Scholar 

  10. Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294 (1982).

    CAS  PubMed  Google Scholar 

  11. Beekman, M., Nieuwenhuis, B., Ortiz-Barrientos, D. & Evans, J. P. Sexual selection in hermaphrodites, sperm and broadcast spawners, plants and fungi. Philos. Trans. R. Soc. Lond. B. 371, 20150541 (2016).

    Google Scholar 

  12. Kekäläinen, J. & Evans, J. P. Gamete-mediated mate choice: towards a more inclusive view of sexual selection. Proc. Biol. Sci. Lond. B. 285, 20180836 (2018).

    Google Scholar 

  13. Immler, S. et al. Resolving variation in the reproductive tradeoff between sperm size and number. Proc. Natl Acad. Sci. USA 108, 5325–5330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dybas, L. K. & Dybas, H. S. Coadaptation and taxonomic differentiation of sperm and spermathecae in featherwing beetles. Evolution 35, 168–174 (1981).

    PubMed  Google Scholar 

  15. Briskie, J. V. & Montgomerie, R. Sperm size and sperm competition in birds. Proc. Biol. Sci. Lond. B. 247, 89–95 (1992).

    CAS  Google Scholar 

  16. Morrow, E. H. & Gage, M. J. G. The evolution of sperm length in moths. Proc. Biol. Sci. Lond. B. 267, 307–313 (2000).

    CAS  Google Scholar 

  17. Minder, A. M., Hosken, D. J. & Ward, P. I. Co-evolution of male and female reproductive characters across the Scathophagidae (Diptera). J. Evol. Biol. 18, 60–69 (2005).

    CAS  PubMed  Google Scholar 

  18. Anderson, M. J., Dixson, A. S. & Dixson, A. F. Mammalian sperm and oviducts are sexually selected: evidence for co-evolution. J. Zool. 270, 682–686 (2006).

    Google Scholar 

  19. Higginson, D. M., Miller, K. B., Segraves, K. A. & Pitnick, S. Female reproductive tract form drives the evolution of complex sperm morphology. Proc. Natl Acad. Sci. USA 109, 4538–4543 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fitzpatrick, J. L. et al. Chemical signals from eggs facilitate cryptic female choice in humans. Proc. Biol. Sci. Lond. B. 287, 20200805 (2020).

    Google Scholar 

  21. Fitzpatrick, J. L., Bridge, C. D. & Snook, R. R. Repeated evidence that the accelerated evolution of sperm is associated with their fertilization function. Proc. Biol. Sci. Lond. B. 287, 20201286 (2020).

    Google Scholar 

  22. Gasparini, C., Pilastro, A. & Evans, J. P. The role of female reproductive fluid in sperm competition. Philos. Trans. R. Soc. Lond. B. 375, 20200077 (2020).

    CAS  Google Scholar 

  23. Bishop, J. & Pemberton, A. J. The third way: spermcast mating in sessile marine invertebrates. Integr. Comp. Biol. 46, 398–406 (2006).

    CAS  PubMed  Google Scholar 

  24. Birkhead, T. R., Hosken, D. J. & Pitnick, S. Sperm Biology: An Evolutionary Perspective. (Academic, 2009).

  25. Simmons, L. W. & Fitzpatrick, J. L. Sperm wars and the evolution of male fertility. Reproduction 144, 519–534 (2012).

    CAS  PubMed  Google Scholar 

  26. Bishop, J. D. & Pemberton, A. J. Sessile animals: attached, but promiscuous? Trends Ecol. Evol. 12, 403 (1997).

    CAS  PubMed  Google Scholar 

  27. Fitzpatrick, J. L. Sperm competition and fertilization mode in fishes. Philos. Trans. R. Soc. Lond. B. 375, 20200074 (2020).

    Google Scholar 

  28. Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L. & Fitzpatrick, J. L. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. Lond. B 375, 20200064 (2020).

    Google Scholar 

  29. Parker, G. A., Immler, S., Pitnick, S. & Birkhead, T. R. Sperm competition games: sperm size (mass) and number under raffle and displacement, and the evolution of P2. J. Theor. Biol. 264, 1003–1023 (2010).

    CAS  PubMed  Google Scholar 

  30. Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417 (1992).

    CAS  PubMed  Google Scholar 

  31. Parker, G. A. & Lehtonen, J. Gamete evolution and sperm numbers: sperm competition versus sperm limitation. Proc. Biol. Sci. Lond. B. 281, 20140836 (2014).

    Google Scholar 

  32. Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85, 897–934 (2010).

    PubMed  Google Scholar 

  33. Eberhard, W. Female Control: Sexual Selection by Cryptic Female Choice (Princeton Univ. Press, 1996).

  34. Bishop, J. D. Female control of paternity in the internally fertilizing compound ascidian Diplosoma listerianum. I. Autoradiographic investigation of sperm movements in the female reproductive tract. Proc. Biol. Sci. Lond. B. 263, 369–376 (1996).

    Google Scholar 

  35. Bishop, J. D., Jones, C. S. & Noble, L. R. Female control of paternity in the internally fertilizing compound ascidian Diplosoma listerianum. II. Investigation of male mating success using RAPD markers. Proc. Biol. Sci. Lond. B. 263, 401–407 (1996).

    Google Scholar 

  36. Firman, R. C., Gasparini, C., Manier, M. K. & Pizzari, T. Postmating female control: 20 years of cryptic female choice. Trends Ecol. Evol. 32, 368–382 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Stockley, P., Gage, M. J. G., Parker, G. A. & Møller, A. P. Female reproductive biology and the coevolution of ejaculate characteristics in fish. Proc. Biol. Sci. Lond. B. 263, 451–458 (1996).

    Google Scholar 

  38. Ito, T. et al. Fertilization modes drive the evolution of sperm traits in Baikal sculpins. J. Zool. https://doi.org/10.1111/jzo.12867 (2021).

    Article  Google Scholar 

  39. Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hedges, S. B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. Tree of life reveals clock-like speciation and diversification. Mol. Biol. Evol. 32, 835–845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Guerrero-Jiménez, G., Zavala-Padilla, G., Silva-Briano, M. & Rico-Martínez, R. Morphology and ultrastructure of the freshwater rotifer Brachionus bidentatus (Monogononta: Brachionidae) using scanning and transmission electron microscopy. Rev. Biol. Trop. 61, 1737–1745 (2013).

    PubMed  Google Scholar 

  42. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  PubMed  Google Scholar 

  43. Beaulieu, J. M. & O’Meara, B. OUwie: analysis of evolutionary rates in an OU framework. R package version 1.5 https://rdrr.io/cran/OUwie/ (2014).

  44. Lüpold, S. & Fitzpatrick, J. L. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc. Biol. Sci. Lond. B 282, 20152122 (2015).

    Google Scholar 

  45. Arnqvist, G., Edvardsson, M., Friberg, U. & Nilsson, T. Sexual conflict promotes speciation in insects. Proc. Natl Acad. Sci. USA 97, 10460–10464 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mank, J. E. Mating preferences, sexual selection and patterns of cladogenesis in ray‐finned fishes. J. Evol. Biol. 20, 597–602 (2007).

    CAS  PubMed  Google Scholar 

  47. Seddon, N. et al. Sexual selection accelerates signal evolution during speciation in birds. Proc. Biol. Sci. Lond. B. 280, 20131065–20131065 (2013).

    Google Scholar 

  48. Janicke, T., Ritchie, M. G., Morrow, E. H. & Marie-Orleach, L. Sexual selection predicts species richness across the animal kingdom. Proc. Biol. Sci. Lond. B. 285, 20180173 (2018).

    Google Scholar 

  49. Cooney, C. R. & Thomas, G. H. Heterogeneous relationships between rates of speciation and body size evolution across vertebrate clades. Nat. Ecol. Evol. 5, 101–110 (2021).

    PubMed  Google Scholar 

  50. Pitnick, S. Investment in testes and the cost of making long sperm in Drosophila. Am. Nat. 148, 57–80 (1996).

    Google Scholar 

  51. Fitzpatrick, J. L. et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc. Natl Acad. Sci. USA 106, 1128–1132 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fitzpatrick, J. L., Garcia-Gonzalez, F. & Evans, J. P. Linking sperm length and velocity: the importance of intramale variation. Biol. Lett. 6, 797–799 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Simpson, J. L., Humphries, S., Evans, J. P., Simmons, L. W. & Fitzpatrick, J. L. Relationships between sperm length and speed differ among three internally and three externally fertilizing species. Evolution 68, 92–104 (2014).

    PubMed  Google Scholar 

  54. Bennison, C., Hemmings, N., Brookes, L., Slate, J. & Birkhead, T. R. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird. Proc. Biol. Sci. Lond. B. 283, 20161558 (2016).

    Google Scholar 

  55. Stoltz, J. A. & Neff, B. D. Sperm competition in a fish with external fertilization: the contribution of sperm number, speed and length. J. Evol. Biol. 19, 1873–1881 (2006).

    CAS  PubMed  Google Scholar 

  56. Parker, G. A. The evolution of expenditure on testes. J. Zool. 298, 3–19 (2016).

    Google Scholar 

  57. Parker, G. A., Ramm, S. A., Lehtonen, J. & Henshaw, J. M. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast‐spawning invertebrates. Biol. Rev. Camb. Philos. Soc. 93, 693–753 (2018).

    PubMed  Google Scholar 

  58. Evans, J. P., García-González, F., Almbro, M., Robinson, O. & Fitzpatrick, J. L. Assessing the potential for egg chemoattractants to mediate sexual selection in a broadcast spawning marine invertebrate. Proc. Biol. Sci. Lond. B. 279, 2855–2861 (2012).

    Google Scholar 

  59. Alonzo, S. H., Stiver, K. A. & Marsh-Rollo, S. E. Ovarian fluid allows directional cryptic female choice despite external fertilization. Nat. Commun. 7, 12452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosengrave, P., Montgomerie, R. & Gemmell, N. Cryptic female choice enhances fertilization success and embryo survival in chinook salmon. Proc. Biol. Sci. Lond. B. 283, 20160001 (2016).

    Google Scholar 

  61. Wake, M. H. & Dickie, R. Oviduct structure and function and reproductive modes in amphibians. J. Exp. Zool. 282, 477–506 (1998).

    CAS  PubMed  Google Scholar 

  62. Byrne, P. G., Simmons, L. W. & Roberts, J. D. Sperm competition and the evolution of gamete morphology in frogs. Proc. Biol. Sci. Lond. B. 270, 2079–2086 (2003).

    Google Scholar 

  63. Liao, W. B. et al. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? Evolution 72, 4–17 (2018).

    CAS  PubMed  Google Scholar 

  64. Ishimatsu, A., Mai, H. V. & Martin, K. L. Patterns of fish reproduction at the interface between air and water. Integr. Comp. Biol. 58, 1064–1085 (2018).

    CAS  PubMed  Google Scholar 

  65. Holt, W. V. & Lloyd, R. E. Sperm storage in the vertebrate female reproductive tract: how does it work so well? Theriogenology 73, 713–722 (2010).

    CAS  PubMed  Google Scholar 

  66. Oliveira, R. G., Tomasi, L., Rovasio, R. A. & Giojalas, L. C. Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J. Reprod. Fertil. 115, 23–27 (1999).

    CAS  PubMed  Google Scholar 

  67. Holman, L. & Snook, R. R. Spermicide, cryptic female choice and the evolution of sperm form and function. J. Evol. Biol. 19, 1660–1670 (2006).

    CAS  PubMed  Google Scholar 

  68. Boer den, S. P., Boomsa, J. J. & Baer, B. Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J. Insect Physiol. 55, 538–543 (2009).

    Google Scholar 

  69. Sakkas, D., Ramalingam, M., Garrido, N. & Barratt, C. L. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes? Hum. Reprod. Update 21, 711–726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cramer, E. R. et al. Sperm performance in conspecific and heterospecific female fluid. Ecol. Evol. 6, 1363–1377 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Brennan, P. L. et al. Coevolution of male and female genital morphology in waterfowl. PLoS ONE 2, e418 (2007).

    PubMed  PubMed Central  Google Scholar 

  72. Orbach, D. N., Hedrick, B., Würsig, B., Mesnick, S. L. & Brennan, P. L. The evolution of genital shape variation in female cetaceans. Evolution 72, 261–273 (2018).

    PubMed  Google Scholar 

  73. Suarez, S. S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 363, 185–194 (2016).

    PubMed  Google Scholar 

  74. Miller, G. T. & Pitnick, S. Sperm–female coevolution in Drosophila. Science 298, 1230–1233 (2002).

    CAS  PubMed  Google Scholar 

  75. García-González, F. & Simmons, L. W. Shorter sperm confer higher competitive fertilization success. Evolution 61, 816–824 (2007).

    PubMed  Google Scholar 

  76. Simmons, L. W. & Fitzpatrick, J. L. Female genitalia can evolve more rapidly and divergently than male genitalia. Nat. Commun. 10, 1312 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Strathmann, R. R. Why life histories evolve differently in the sea. Am. Zool. 30, 197–207 (1990).

    Google Scholar 

  78. Henshaw, J. M., Marshall, D. J., Jennions, M. D. & Kokko, H. Local gamete competition explains sex allocation and fertilization strategies in the sea. Am. Nat. 184, E32–E49 (2014).

    PubMed  Google Scholar 

  79. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  80. Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    Google Scholar 

  81. Eastman, J. M., Harmon, L. J. & Tank, D. C. Congruification: support for time scaling large phylogenetic trees. Methods Ecol. Evol. 4, 688–691 (2013).

    Google Scholar 

  82. Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).

    PubMed  Google Scholar 

  83. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS  PubMed  Google Scholar 

  84. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Google Scholar 

  85. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    PubMed  Google Scholar 

  86. Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).

    PubMed  Google Scholar 

  87. Uyeda, J. C., Eastman, J. & Harmon, L. bayou: Bayesian fitting of Ornstein–Uhlenbeck models to phylogenies. R package version 2.1.1 https://rdrr.io/cran/bayou/ (2014).

  88. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Roskov, Y. et al. Catalogue of Life. Species 2000 & ITIS Catalogue of Life https://www.catalogueoflife.org/ (2020).

  90. Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).

    Google Scholar 

  91. Weiss, N.A. wPerm: Permutation Tests. R package version 1.0.1 https://rdrr.io/cran/wPerm/ (2015).

  92. Parker, G. A. in Sperm Competition and the Evolution of Animal Mating Strategies (ed. Smith, R. L.) 1–60 (Academic, 1984).

Download references

Acknowledgements

The authors thank J. Eastman, J. Uyeda, C. Cooney and C. Wheat for assistance with analyses, K. Gunnarsdóttir and H. Ogden for help proofing the dataset and supplementary references, L. Simmons and S. Lüpold for comments on an early draft of the manuscript and three reviewers for their critiques and feedback, which greatly improved this manuscript. Funding was provided by Knut and Alice Wallenberg Academy Fellowship (2016–0146) to J.L.F.

Author information

Authors and Affiliations

Authors

Contributions

A.F.K., J.L.F. and R.R.S. collected the data, A.F.K. analysed the data, A.F.K. and J.L.F. wrote the original draft and all authors contributed to subsequent revisions.

Corresponding author

Correspondence to Ariel F. Kahrl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Heidi Fisher, Gustavo Burin and Matthew Gage for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evolutionary parameter estimates of sperm length for fertilization modes.

Estimates of sperm length evolutionary optima (θ) and the rate of evolution (σ2) of sperm length for external fertilizers (blue), spermcasters (purple), and internal (red) fertilizers from OUwie models. Values are presented for all species in our dataset (a,e), Annelida (b,f), Mollusca (c,g), and Chordata (d,h). In all graphs, each point represents an estimate from an independent model run.

Extended Data Fig. 2 Magnitude, direction and the number of descendents for shifts in sperm length in each phyla.

The magnitude of each of the 108 shifts (change in theta (evolutionary optima, θ) along a branch) in sperm length plotted by phyla. The number and average magnitude of positive (+) and negative (−) shifts in each phylum is summarized under the phylum name. The direction and magnitude of each shift is indicated with an arrow, and the start (circle) and end (arrowhead) locations of the arrow show the initial and ending theta value (evolutionary optima, θ) of the shift, respectively. The vertical dashed line shows the root value of theta (θ = 4.12) estimated by bayou. The size of the circle indicates the number of descendant species (species downstream of a shift). Red symbols indicate shifts in sperm length that followed an evolutionary transition to internal fertilization (for example all species downstream of these shifts were internally fertilizing species). Blue symbols indicate shifts in sperm length all species downstream were external fertilizers. Purple symbols indicate shifts in sperm length that occurred before transitions to external fertilization and where most species were spermcasters.

Extended Data Fig. 3 Evolutionary shifts in sperm length across Annelida.

The two adaptive shifts detected in the evolutionary optima (θ), and their location are presented as green (positive shift in sperm length). The size of the circle represents the magnitude of the shift (but is multiplied by 10 for visibility in this group). External fertilizers (blue), internal fertilizers (red), and spermcasters (purple) are depicted at terminal branches of the phylogeny.

Extended Data Fig. 4 Evolutionary shifts in sperm length across Mollusca.

The 7 adaptive shifts detected in the evolutionary optima (θ), and their location are presented as green (positive shift in sperm length) or grey (negative shift in sperm length) circles. The size of the circle represents the magnitude of the shift. External fertilizers (blue), internal fertilizers (red), and spermcasters (purple) are depicted at terminal branches of the phylogeny.

Extended Data Fig. 5 Evolutionary shifts in sperm length across vertebrates.

The 56 adaptive shifts detected in the evolutionary optima (θ), and their location are presented as green (positive shift in sperm length) or grey (negative shift in sperm length) circles. The size of the circle represents the magnitude of the shift. External (blue) and internal (red) fertilizers are depicted at terminal branches of the phylogeny.

Extended Data Fig. 6 Relationship between speciation rates and sperm evolution rates.

Phylogenetic trees are colored with mean per-branch rates of sperm evolution (σ2BT, left) and species diversification rates (λBAMM, right) (a). Dark colors correspond to slow rates and light colors correspond to fast rates. Scatter plots showing the relationship between log-transformed tip-rates for sperm evolution (σ2BT) and species diversification rate (λBAMM) for all species (b), invertebrates (c) and vertebrates (d) (all invertebrates were combined in panel c as this was the under-sampled portion of our dataset). The trendlines for each group are plotted with 95% CI. These trendlines are based on ordinary least-squares regression, while the statistical relationships were estimated with Spearman’s rank correlation (see methods).

Extended Data Fig. 7 Comparing nodal values from 100 SIMMAPs and 1000 SIMMMAPs.

Nodal values of transitions between spermcasting, internal, and external fertilization summarized for 1000 SIMMAPS (used for our ancestral character reconstruction) and 100 SIMMAPS (used for OUwie models) are plotted to compare transition estimates. We found that using 100 SIMMAP trees in our analyses captures the variation seen in the 1000 SIMMAP reconstructions.

Extended Data Fig. 8 Model fit of OUwie models.

AICc estimates from OUwie models for all species in our dataset (a), Annelida (b), Mollusca (c), and Chordata (d). In all graphs, each point indicates a single estimate from each model run. The model OUMV was the best fit in all cases. OUMA and OUMVA model fits are not shown as these models did not converge properly to our data.

Extended Data Fig. 9 Resampling OUwie estimates for all species, Annelida, Mollusca, and Chordata.

We used repeated resampling to validate the use of 100 SIMMAPs to estimate the evolutionary rate (θ) and evolutionary optima (σ2) of sperm length for external fertilizers (blue), spermcasters (purple), and internal fertilizers (red). We conducted 1000 iterations of resampling per each sample size of 5 to 100 estimates from our models for all species (a,e), Annelida (b,f), Mollusca (c,g), and Chordata (d,h). Generating a measure of variance in our estimate of the mean and standard deviation for both the evolutionary rate (θ) and evolutionary optima (σ2). Graphs illustrate the coefficient of variation (CV) for of these parameters for each fertilization mode.

Supplementary information

Supplementary information

Supplementary Methods and Tables 1–5.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kahrl, A.F., Snook, R.R. & Fitzpatrick, J.L. Fertilization mode drives sperm length evolution across the animal tree of life. Nat Ecol Evol 5, 1153–1164 (2021). https://doi.org/10.1038/s41559-021-01488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01488-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing